




A B S T R A C T

The hybridization between light and matter within optical cavities has emerged as a
promising avenue for controlling macroscopic functionalities in quantum material in
both the weak and strong coupling regimes. In recent years, optical resonators have been
shown to dramatically modify the path and rate of chemical reactions as well as the en-
ergy exchange and the electronic transport in semiconductors. Confining light fields in
cavities provides therefore a novel approach towards the control of the ground state of
quantum materials, establishing a connection between the manipulation through exter-
nal static stimuli (like electric or magnetic fields) and the generation of non equilibrium
light-driven phases.

In the present thesis we focus on the experimental possibility of exploiting the light-
matter interaction in cavity-confined systems to dress collective excitations in complex
materials and eventually gain control over their cooperative properties. For this purpose
we developed a unique set-up to study the strong and weak coupling regimes between
low energy excitations in correlated solid-state materials and tunable cavity modes. This
has been realized in a Terahertz Fabry-Pérot resonator whose unique strength lies in
its capability of tuning its fundamental mode in a cryogenic environment. The high
versatility of the set-up makes it ideally suited to study a wide range of low energy
modes in quantum materials and to subsequently investigate how their coupling with
the extended cavity field may affect their collective dynamics.

We firstly study the strong coupling of vibrational excitations in CuGeO3, a bench-
mark dielectric material exhibiting a strong phononic resonance in the Terahertz spec-
tral range. Motivated by the possibility of reaching the strong and weak coupling limit
in the designed resonators, we study the effect of cavity electrodynamics on the metal-to-
insulator transition in the Charge Density Wave (CDW) material 1T-TaS2. We observe a
large modification of the linear response when 1T-TaS2 is embedded within low energy
Terahertz cavities. Importantly, the cavity electrodynamics enables a reversible control
of the metal-to-insulator phase transition, where a switch between the conductive and
dielectric phases can be obtained by both tuning the cavity frequency and its alignment.
Guided by the possibility offered by the cavity environment of controlling materials
dissipations, we study how charge dissipations across the metal-to-insulator transition
in 1T-TaS2 influence the cavity response. We reveal that the free charges responsible
of the conductive behaviour can couple to cavity modes and modify their dissipative
dynamics. The presence of free charges in the system can induce a vibrational weak
coupling regime when the cavity mode is hybridized with the phonons of the insulat-
ing CDW phase. Finally, motivated by the strong connection between electronic exci-
tations in cuprates and their high-temperature superconducting response, we explore
the possibility of hybridizing the charge transfer transition in YBCO in tailored cavity
heterostructures.

Our findings show how cavity electrodynamics can play a role in the intricate equi-
librium physics of complex materials, possibly providing a new tool to control and
engineer their static cooperative properties.
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1
I N T R O D U C T I O N

Light-matter interaction is a key process in modern physics, providing the means
to probe and actively manipulate material functionalities. This possibility has offered
major breakthroughs in the field of complex materials.

Complex materials display several competing orders, originating from the delicate
and intricate interplay between their degrees of freedom, such as electrons, lattice, spins
etc. This delicate interplay makes complex materials highly susceptible to even small
external stimuli that can induce giant collective responses and eventually modify their
macroscopic properties.

A common way to exploit light-matter interaction to enginner collective properties
in complex materials is represented by out-of-equilibrium optical methods [1, 2]. With
these techniques materials are driven out of the thermodynamical equilibrium through
non-thermal pathways by strong ultrafast laser pulses. In these out-of-equilibrium states
the materials are characterized by the response of the excited quasi-particles, giving rise
to new functionalities [3–10].

The light-driven control of complex materials can be also seen from a different per-
spective, where classical driving fields are replaced by extended photonic modes re-
alized within optical cavities. This approach has been extensively explored in atomic
and molecular physics, while its extension to correlated quantum materials is emerging
only in the last years [11]. The experimental possibility of exploiting cavity electrody-
namics to dress collective excitations in complex materials and eventually control their
cooperative properties is the core of the present thesis.

The possibility of tailoring light-matter interaction in cavity confined systems is rooted
in the pioneering experiments of Purcell [12], who firstly discovered that the atomic
emission could be modified when atoms are placed in a resonant optical cavity. This
was the first demonstration of the more general principle that material properties can
by controlled by engineering their electromagnetic environment. In other words, proper-
ties that were thought to be intrinsic to matter turned out to be properties of the matter
dressed by its reshaped electromagnetic environment.

Even though remarkable effects on the radiative properties of atoms or molecules
could be observed by placing them within a poor metallic resonator [13–16], the most
dramatic modification of their bare properties is expected to happen when the light-
matter strength within the cavity volume overcomes any possible relaxation rate. In
this limit, called strong coupling regime, the light-matter interaction overcomes the dis-
sipative processes occurring in the uncoupled systems, and the wave-functions of the
material excitations and the photon inside the cavity are coherently mixed. This mixing
results in the formation of hybrid light-matter states dubbed polaritons [17, 18]. The
core feature that has raised much interest in light-matter hybrids in the strong coupling
limit is the fact that the coupled polaritonic states can be regarded as highly delocalized
quantum states. This delocalization arises from the fact that if many emitters are placed
within the optical mode volume, their simultaneous interaction with a common cavity
mode induces quantum correlations among the spatially separated emitters. For this
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2 introduction

reason, while the hybridization between light and matter was originally comprehended
and realized in isolated atomic and molecular systems [13–16, 19–21], it has more re-
cently been extensively studied in organic and inorganic semiconductors excitons [22–
24], phonons [25–31], or magnons [32]. Exploiting the strong coupling limit is emerg-
ing as a promising tool to control material functionalities in different physical-chemical
settings. In particular, it has been recently shown that vibrational strong coupling can
affect chemical reactivity [33–35], conductivity [36], molecular structure [37] and charge
and energy transfer [38–41].

These evidences have led to the suggestion that also condensed-matter platforms and
their embedding in cavities should be further explored with the aim of modifying their
cooperative properties. The main advantages of exploiting cavity electrodynamics to
control collective properties in complex materials are:

• In an optical cavity the light-matter interaction can be strongly enhanced due to
the resonant condition. This implies that even the hybridization with the vacuum
cavity field is enough to trigger major changes in the material properties [42], thus
leading to an effective control of the matter’s ground state. This is a major advan-
tage over light-driving techniques, where heating effects are almost unavoidable
and the recovery times are generally limited to much longer times which are deter-
mined by slower relaxation processes, ruled by the thermodynamic characteristic
of the sample.

• The cavity environment provides the unique means to control the dissipations in
quantum materials. This mechanism is fairly general and can be applicable also in
the weak coupling regime, where dissipations dominate over the coherent energy
exchange between light and matter.

• The cavity mode can be seen as an artificial or external bosonic mode with tunable
energy, to which charges can couple. In this scenario the cavity plays a role similar
to that of other natural bosonic modes (phonons and magnons) and can introduce
additional scattering channels, which mediate the long-range interactions among
the charges.

The perspective of employing light-matter coupling in optical cavities to control the
properties of solid-state materials has recently stimulated a wealth of theoretical propos-
als. Among them we mention: enhanced superconductivity through cavity-mediated
electron pairing [43–48], cavity control of the competing order between charge density
wave and superconducting phases [49], cavity control of excitons [50], enhanced ferro-
electricity [51–54], and cavity control of magnetic order [55].

From the experimental point of view, it has been recently proved that vacuum cavity
fields in the strong coupling regime can reshape material functionalities even without
external illumination, i.e. in the cavity photo-ground state. It has been recently experi-
mentally shown that the coupling with cavity vacuum modes can change the magneto-
transport in two dimensional materials [38], suppress the topological protection of the
integer quantum Hall effect [56], or even modify the critical temperatures and the mag-
netic order in conventional and unconventional superconductors [57, 58].

Selecting the energy of the photon trapped inside the cavity is a crucial parameter
in these experiments. Indeed, it sets the coupling energy scale and subsequently the
energy scale of the targeted degree of freedom.



introduction 3

In this thesis we focus on the experimental possibility of using Terahertz and sub-
Terahertz cavities to hybridize low energy excitations in quantum materials and even-
tually control their collective properties. For this aim we developed a unique set-up
suitable to study the Terahertz optical properties of low energy degrees of freedom in
crystalline samples coupled with a tunable optical cavity in cryogenic environment. The
unique feature implemented in the set-up lies in its capability of tuning the cavity res-
onance at cryogenic temperatures, thus enabling to target different material excitations
and study how the collective coupling with an optical cavity may affect the material’s
macroscopic properties.

The thesis is structured in the following way.

• In Chapter 2 we provide the general framework of light-matter coupling in the
strong and weak coupling limit and show how dissipations can induce a tran-
sition between the two regimes. We will derive the full spectral response of the
hybrid cavity in both a classical and quantum formalism, which will give us the
theoretical connection with the experimental results presented in the thesis.

• Chapter 3 is dedicated to the description of the experimental set-up specifically
developed in the q4q laboratory at Elettra Sincrotrone Trieste. This consists of
a tunable cryogenic Terahertz (THz) cavity combined with a THz time-domain
spectrometer for the characterization of the light-matter hybrids.

• Chapter 4 reports the experimental demonstration of the vibrational strong cou-
pling at low temperatures in the benchmark material CuGeO3. We will show how
the strong coupling features of vibrational excitations are mapped in the THz do-
main and the thermal evolution of the emerging vibro-polariton resonances. The
models presented in Chapter 2 will be exploited to justify the experimental results.

• Chapter 5 represents the core of the present thesis. We present here the first possi-
ble experimental evidence of the reversible cavity control of the metal-to-insulator
transition in the correlated material 1T-TaS2. We will show that a large modifica-
tion of the material’s linear response can be obtained by embedding the material
in THz and sub-THz Fabry-Pérot cavities. We will prove that the modification of
the hybrid response is sensitive to the cavity frequency and alignment and present
all the experimental tests performed to prove the cavity-induced origin of the ob-
served behaviour.

• In Chapter 6 we study how charge dissipations across the model metal-to-insulator
transition in 1T-TaS2 affect the cavity electrodynamics. We will show that the life-
time of the cavity photons decreases going from the insulating to the metallic
state when the cavity resonance lies in the low-frequency region dominated by
the free carriers response. Conversely, when the cavity is tuned resonantly to the
IR-active modes of the insulating state we reveal a multiple polariton mixing re-
sulting from the cavity-mediated hybridization of the non-degenerated phonons
of the dielectric phase. We will show that, due to a different dissipative response
of the charges in the two phases, the splitting between the polaritons closes across
the phase transition, reaching the weak coupling limit near the critical tempera-
ture.

• Lastly, in Chapter 7 we will explore the possibility of coupling the electronic
charge transfer transition in the high-Tc superconductor YBCO to an optical cavity
and exploit non-linear optical techniques to see how the electronic coupling may
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affect the superconducting response. The results presented in this chapter are still
very preliminary and complementary techniques will be needed to track the effect
of the cavity on the superconduncting behaviour.



2
L I G H T- M AT T E R C O U P L I N G I N
C AV I T Y- C O N F I N E D S Y S T E M S

In quantum mechanics, the presence of a cavity surrounding a targeted emitter can
be described as a coherent evolution with a photon repeatedly absorbed and re-emitted
by the emitter itself. In this limit, the strength of the light-matter coupling, which in
vacuum is limited by the fine structure constant α ∼ 1/137 [17], is mainly determined
by the oscillator strength of the targeted optical transition, which is fixed by the nature
of the emitter, and by the cavity quality factor which can be tuned and set the lifetime
of the trapped photons [18, 42]. If the cavity confinement is sufficiently high, i.e. in the
strong coupling limit, the light-matter interaction can be enhanced at the point that the
localized emitters can hybridize with the cavity field giving rise to hybrid delocalized
states, dubbed polaritons [22, 23, 25, 59–61]. These hybrid states inherit both material’s
and light’s features.

In this chapter we give the theoretical basis underlying the strong light-matter cou-
pling in both non-dissipative and dissipative cavities and show how real systems dis-
sipations skew the coherent strong coupling features. To simplify the discussion, we
will focus on the case of co-planar Fabry-Pérot optical cavities, which are the ones em-
ployed in the experiments presented in the thesis. However, the main results derived
in this chapter will remain valid for any kind of electromagnetic resonator [11, 62–64],
provided that the light-matter coupling strength and the resonator losses remain in the
same ratio.

After having outlined the main characteristics of a Fabry-Pérot resonator, we will de-
scribe the optical response of the hybrid resonator using a simple coupled oscillator
quantum model [65, 66]. The abstraction of the hybrid cavity to coupled levels will en-
able us to gain insight on the nature of the new light-matter eigen-states, whereas its
extension to more complex systems, where dissipative dynamics are included, will pro-
vide the full spectral response of the coupled cavity, giving a more realistic guideline to
understand the experimental results. The spectral response of the cavity will be firstly
derived in a classical framework (the Transfer-matrix method) and then extended to a
fully quantum model (the Input-Output model). Importantly, we will show that the spec-
tral response of the hybrid cavity predicted with the classical and quantum formalisms
coincide in the linear regime, offering therefore a powerful tool to simulate the cavity
spectra presented in this thesis.

2.1 fabry-pérot optical resonators

The schematic picture of a Fabry-Pérot cavity is represented by a slab of a material
embedded between two mirrors. We will assume the mirrors to be partly transmitting
with a reflectivity Rm. Let us consider a single mode optical field with wavelength λ
entering the cavity from the left mirror. As the input field propagates through the cavity,
it will acquire a phase component ϕC which is determined by the cavity length L and
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6 light-matter coupling in cavity-confined systems

by the index of refraction n within the cavity volume. The total phase accumulated by
the optical field over a round trip (Figure 2.1A) is:

ϕ = 2ϕM + 2ϕC = 2ϕM + 2
2πnL

λ
, (2.1)

where we have indicated with ϕM the phase shift due to the mirrors.
Given the boundary conditions set by the mirrors, the light will continue to cycle

through the cavity volume, picking up this phase ϕ at each round trip and interfering
with itself. In order for the optical mode to be allowed within the cavity, the total phase
ϕ must be an integer multiple of 2π. We will suppose that the phase shift induced by
each mirror (ϕM) is exactly π. This is typically the case of broadband dielectric mirrors
at the designed wavelength [67], and approximatively the case of the metallic mirrors of
the Terahertz cavities employed in our studies. Under this assumption, we can therefore
tune the cavity thickness to support a particular wavelength by selecting the distance
between the two mirrors:

L = m
λ

2n
m ∈ N. (2.2)

With each round-trip within the cavity, some light is transmitted through the sec-
ond mirror with an advanced phase and an amplitude reduced relative to the previous
cavity cycle due to the two reflections. After summing an infinite series of these trans-
missions and accounting for the interference effects, we can hence compute the full
cavity transmission as a function of the phase shift per cycle [68]:

T(ϕ) =
1

1+ 4 Rm

(1−Rm)2
sin2

(
ϕ
2

) . (2.3)

The cavity interference induces therefore a strongly frequency-dependent transmis-
sion. At the frequencies ωm = 2πcn

λm
, where a cavity mode is allowed by the boundary

conditions, the transmission through the cavity structure increases dramatically. We
note that those frequencies ωm correspond to a total spectral phase accumulation of
ϕ = 2πm (Figure 2.1B).

The spacing between adjacent cavity modes ωm is called the Free-Spectral-Range
(FSR) and entirely depends on the optical thickness of the cavity, i.e. on the tunable
distance L between the cavity mirrors.

We stress that the constructive interference of light within the cavity greatly enhances
the electric field amplitude of that cavity at particular positions, determined by the spa-
tial symmetry of the standing modes. By placing materials with dipole-allowed transi-
tions at the antinodes of the confined optical modes we can therefore think of coupling
the material excitations more strongly to light than outside the resonator, i.e. in free
space. This evidence is the core of light-matter coupling in cavity-confined systems,
where a reshaping of the density of states of the vacuum optical mode can change
the dissipative rates of the matter excitations (weak coupling regime) or even induce
a light-matter hybridization (strong coupling regime). In particular, we expect the en-
hancement of the light-matter coupling to increase at higher spatial compressions of the
cavity mode volume [42].

2.1.1 properties of the cavity modes

Once a cavity has been assembled, it is crucial to characterize the emergent Fabry-Pérot
resonances in terms of their linewidths, which will subsequently set their lifetimes.
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Figure 2.1: Linear transmission of a Fabry-Pérot resonator. A. Phase accumulation during
round trip of light within a Fabry-Pérot planar cavity. ϕM represents the phase accumulation
due to the mirrors, while ϕC accounts for the phase acquired within the cavity volume. B. Rep-
resentative transmission of a Fabry-Pérot cavity (Rm = 0.8). A resonant mode (vertical dashed
lines) appears every times the round-trip phase accumulation (blue curve) matches an integer
multiple of 2π (horizontal dashed lines). The fundamental cavity mode (m = 1) appears at a
phase accumulation ϕ = 2π, while the second order mode (m = 2) in correspondence with
ϕ = 4π. In the present plot the fundamental mode is set at ωc = 1.25 THz.

The cavity mode resonance can be well understood as a damped harmonic oscillator.
Within this classical framework, the electric cavity field can oscillate with a certain
resonant frequency and the amplitude of that oscillation decreases exponentially. We
will show in the following that the damping is connected to the optical losses due to the
finite mirrors transmission and extract the expression of the quality factor of the optical
resonator. The latter is the used parameter to quantify the bare optical dissipations
within the cavity volume.

2.1.1.1 Quality factor

In an optical cavity, since the mirrors reflectivity is less than 1, the intensity of the
confined cavity mode decays with time by photon escaping through the mirrors. These
losses are characterized by a dimensionless parameter, the cavity quality factorQ, which
is defined as the ratio between the energy stored inside the cavity and the energy dissi-
pated per optical cycle [69]:

Q =

∣∣∣∣∣ωc
Uc

dUc
dt

∣∣∣∣∣ . (2.4)

In the previous expression ωc is the frequency of the cavity mode, Uc is the electro-
magnetic energy stored within the cavity volume and dUc

dt is the energy loss rate, i.e.
the dissipated optical power. As in the general case of damped oscillators, we expect
the electromagnetic energy within the cavity to be dissipated exponentially as:

Uc(t) = U0e
−γct, (2.5)
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where γc sets the lifetime of the mth cavity mode. The dissipative dynamics of the
optical power stored within the cavity volume hence reads:

Pd(t) =

∣∣∣∣dUc(t)

dt

∣∣∣∣ = γcUc(t). (2.6)

The previous equation allows to express the cavity quality factor as:

Q = ωc
Uc(t)

γUc(t)
=
ωc

γc
. (2.7)

This definition is commonly used to experimentally determine Q, since it is enough to
measure the cavity spectral response and extract from the Fourier spectrum the central
frequency ωc and the linewidth of the cavity mode γc.

Considering the relationship between the electromagnetic energy Uc(t) and the elec-
tric field amplitude |EEE(t)|2, the electric field within the optical resonator can be ex-
pressed as:

EEE(t) = EEE0e
−
ωc

2Q
t

e−iωct, (2.8)

where EEE0 is the initial amplitude corresponding to U0. The Fourier transform of Equa-
tion 2.8 gives the field and energy distribution of the cavity resonator in the frequency
domain:

Uc(ω) ∝ |EEE(ω)|2 ∝ 1

(ω−ωc)2 +
(
ωc
2Q

)2 . (2.9)

The cavity spectrum has therefore the form of a Lorentzian-like distribution. This is
characterized by a central wavelength ωc, i.e. the targeted cavity mode1, and a Full
Width Half Maximum (FWHM) γc = 1

2Q . The latter sets the upper limit of the lifetime
of the cavity photons2 within the resonator volume.

Importantly, the cavity Q-factor can be related to the experimental design of the res-
onator, and in particular to the mirrors reflectivity Rm and to the mode order m. In the
following we will explicitly show these connections.

In a schematic picture, the cavity confinement can be considered as a pulse of light
bouncing back and forth between the mirrors. Every time the light bounces, photons
will escape from the cavity with probability 1− RM. This will correspond to a reduc-
tion of the stored optical energy Ufin = RmUin. In this picture, we can average the
dissipated EM energy over the time light takes to complete half a round trip [69]. The
energy lost in the cavity within half a round trip is:

∆Utrip = (1− RM)Ui, (2.10)

corresponding to a time of flight:

∆ttrip =
mnλ

2c
. (2.11)

The EM energy lost per oscillation can be expressed as the energy lost per half round
trip times the ratio of oscillator to trip periods:

∆Ucycle = ∆Utrip
∆tcycle

∆ttrip
=
2(1− RM)

m
Ui. (2.12)

1 Note that for simplicity we have neglected the higher order harmonics of the cavity field.
2 Here and in the following we will refer to the single particle optical mode inside the cavity as a cavity

photon. This can be considered as a well defined particle with an energy and a lifetime.
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Recalling now the definition of Q in Equation 2.7, we can express the quality factor of
the Fabry-Pérot resonator as:

Q =
mπ

2

1+ Rm
1− Rm

. (2.13)

We highlight that the Q factor is directly determined by the cavity mode order m and
by the mirror quality which, in this simplified classical picture, can be fenomenologi-
cally set through the mirrors reflectivity Rm. Comparing this expression to Equation
2.7, the inverse photon lifetime γc can be hence directly related to cavity design as:

γc =
2ωm

mπ

1− Rm
1+ Rm

. (2.14)

Therefore, all cavity photons have the same lifetime which is fixed by the cavity length
and mirror quality. However, one can increase the lifetime of a desired wavelength by
making the cavity longer, such that the targeted mode is a higher order. The trade-off
typically made by making this choice is the reduction of the free spectral range of the
resonator.

Figure 2.2: Cavity transmission as a function of the mirrors reflectivity. Transmission through
a planar Fabry-Pérot cavity for different values of the mirrors reflectivity Rm. Changes in Rm are
mapped in a modification of the linewidth of the cavity resonance γc, and hence of the quality
factor of the resonator (Q).

The Q-factor has two complementary physical interpretations, depending on the ac-
tual application of the Fabry-Pérot structure: (1) when working as a cavity to confine
light, which is the main interest of this thesis, the Q-factor represents the lifetime of
the confined field; (2) when working as an interferometer, the Q-factor represents the
spectral resolution and is related to the interferometer finesse.

For an ideal absorption-less Fabry-Pérot cavity only the mirror losses contribute to
reduce the value of the Q factor or, equivalently, to broaden the cavity modes. As an
example, transmission spectra for different mirrors reflectivity Rm are shown in Figure
2.2. The linewidth of the cavity mode γc is reduced sharply with increasing mirror
reflectivity, as a consequence of the longer decay time of the modal cavity field.
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Conversely, in real systems, also light absorption inside the cavity volume, or inco-
herent light scattering due to imperfect interfaces contribute to the reduction of Q.

2.2 light-matter hybridization : a quantum pic-
ture

In the previous section we have described the optical features of Fabry-Pérot resonators
and show how they can be exploited to reshape the EM environment, giving rise to
frequency-localized optical modes with longer lifetimes. If we place a material within
the cavity volume with a specific dipole-allowed transition resonant to the cavity mode,
the boundary conditions will induce a coherent evolution of the trapped photon, which
will be repeatedly absorbed and re-emitted by the material.

If the losses dominate over these coherent coupling between the cavity and the ma-
terial mode, the dynamics is essentially incoherent and each material’s emitter will
interact independently with the cavity field. Nevertheless, even in this regime , named
weak coupling regime, the reshaping of the EM density of states induced by the cavity
manifests itself in the change of the excited states lifetimes of the material’s emitters, as
described by the Purcell effect [13–16].

Conversely, when the rate of the coherent energy exchange becomes comparable to
the losses, the cavity-material system enters the strong coupling regime. In this limit, the
recurrent exchange of excitation quanta between the cavity mode and the material’s
emitters leads to the formation of hybrid states, which inherit features of the both con-
stituents parts [17, 18, 42, 70]. In this regime, the cavity field induces spatial correlation
among the separated material’s emitters forming collective delocalized states dubbed
polaritons [22, 23, 25, 59–61].

We will present in the following the theoretical framework of strong-light matter
coupling in cavity-confined systems. Starting from a coupled oscillator quantum model
we will derive the polaritonic modes and discuss their hybrid features.

2.2.1 coupled oscillator model

In order to see how the dynamics of the coherent energy exchange can emerge at a
microscopic level, we resort to a quantum mechanical description of the light-matter
coupled system. We will exploit a basic Hamiltonian approach, idealizing the material’s
excitations as an assembly of N two-level systems, and modelling the cavity field by a
single quantized mode.

Let us start from the basic situation in which a single material’s dipole with resonant
frequency ω0 interacts with the cavity mode. The interaction potential between the
single dipole-allowed transition and the cavity field EEE can be written as [71]:

U = −µµµ ·EEE, (2.15)

being the µµµ the dipolar strength.
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Writing both the electric field and the transition dipole moment in a quantum repre-
sentation, we can subsequently obtain the Hamiltonian description of the light-matter
interaction within the cavity, known as Rabi model [72]:

ĤRabi = ωcâ
†â+ω0σ̂

†
σ̂
+ Ĥint. (2.16)

The interaction Hamiltonian, resulting from the quantization of the interaction potential
U, reads:

Ĥint = g
(
σ̂+ σ̂†

)(
â+ â†

)
. (2.17)

In the previous Hamiltonians â (â†) is the annihilation (creation) operator for the cav-
ity photons of frequency ωc, and σ̂ (σ̂†) the lowering (raising) operator acting on the
two-level dipolar system. The coupling strength g between cavity and dipole oscilla-
tors scales with the transition probability of the material’s excitation (i.e. the dipolar
strength) and with the spatial overlap between the dipole and the modal cavity field.
The coupling constant g can be therefore generally expressed as:

g ∝ |µµµ|

∫
R3
drrr ucav(rrr)udip(rrr), (2.18)

where ucav(rrr) and udip(rrr) are the spatial-dependent wave-functions of the cavity and
dipole modes.

The generalization to a large number of molecules is given by the Dicke model [65],
which describes the interaction between a set ofN two-level systems with a single-mode
bosonic field, i.e. the single mode optical cavity. By working in the cavity ground state,
i.e. by excluding the states with multiple photon excitations, the Dicke Hamiltonian
reads:

ĤDicke = ωcâ
†â+

N∑
i=1

ω0σ̂
†
iσ̂i + g

N∑
i=1

(
σ̂i + σ̂i

†
)(
â+ â†

)
. (2.19)

2.2.1.1 Tavis-Cummings Hamiltonian

A commonly used solution for the Dicke model is obtained under the rotating wave
approximation [73] in which the fast oscillating terms corresponding to the multiple
excited states (σ̂†â† and σ̂â) are neglected. For near resonant light-matter interaction,
those latter terms beat at high frequencies in the rotating frame and can be thus ne-
glected as long as the coupling g remains small with respect to the cavity frequency
ωc. On the contrary, if g approaches ωc, these multiple-excitations terms become rel-
evant, leading to a new regime, named ultrastrong coupling regime, where phenomena
like ground-state squeezing, band-gap opening, and dynamical Casimir effect can ap-
pear [64, 74–77].

This approximated Hamiltonian goes under the name of Tavis-Cummings model [66]:

Ĥ = ωcâ
†â+

N∑
i=1

ω0σ̂
†
iσ̂i + g

N∑
i=1

(
σ̂
†
iâ+ σ̂iâ

†
)

. (2.20)

Importantly, since the Tavis-Cummings Hamiltonian conserves the total number of
excitations (i.e. it commutes with the total number operator n̂ = â†â+

∑N
i=1 σ̂i

†
σ̂i), its

eigen-states are a linear superposition of states with the same number of excitations.
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In the one-particle manifold, the eigen-states |ψ⟩ of the coupled Hamiltonian can be
hence written as:

|ψ⟩ = α|G, 1⟩+
N∑
i=1

ci|ei, 0⟩. (2.21)

In the previous equation we have indicated with |G, 1⟩ the purely cavity eigen-state in
which all the dipoles are in their ground state |G⟩ and there is one photon inside the
cavity, and with

∑N
i=1 ci|ei, 0⟩ the purely matter state in which the cavity is in its ground

state |0⟩ and each material’s dipole is in its first excited state |ei⟩ [61]. Additionally,
we will suppose the coefficient ci to be the same for all the material’s excitations (i.e.
∀i = 1, ...,N). This hypothesis implies that the photon excitation is put to each of the N
spatially separated dipoles with an equal probability.

In the one particle manifold the eigen-states of the light-matter system (Hamiltonian
2.21) are split into an upper and lower polariton branch whose energies as a function of
the cavity frequency ωc are given by:

ωLP =
ωc +ω0

2
−

√
Ng2 +

(
ωc −ω0

2

)2

ωUP =
ωc +ω0

2
+

√
Ng2 +

(
ωc −ω0

2

)2
(2.22)

and a set of N − 1 dark states of material excitations at the energy ω0 of the bare
dipoles (Figure 2.3). The dark states are dipole-forbidden excitations generated through
the strong light-matter coupling and hence invisible to linear spectroscopy3. We stress
that the dark-states do not have the properties of the states of the uncoupled material,
and notably, like the polaritonic states, they can acquire a delocalized character [78] that
extends over the whole system.

Figure 2.3: Energy diagram of cavity-mediated light-matter strong coupling. Strongly coupled
material and optical transitions, leading to the formation of the hybrid dipole-allowed polari-
tonic states UP and LP separated in energy by the Rabi splitting ΩR, and the dipole-forbidden
dark states (DS).

3 This can be proved by calculating the average dipole operator µ̂ = |µµµ|
∑N

i=1|Gi⟩⟨ei|+h.c on the dark
states set and by verifying that it gives 0.



2.2 light-matter hybridization : a quantum picture 13

The energy of the lower (upper) polariton is smaller (larger) than the energy of the
material’s transition in free space and the energy splitting between the two polaritonic
states in resonant condition (i.e. ωc = ω0) is referred as Rabi frequency (ΩR):

ΩR = 2
√
Ng. (2.23)

ΩR can be therefore exploited to quantify the coupling strength between the cavity
and the material oscillator. It is important to stress that the Rabi splittingΩR scales with
the squared root of the number of dipole-like oscillators (

√
N). Therefore, for optically

dense materials, such as the solid-state materials studied in this thesis, larger splitting
can be achieved by tuning the thickness of the absorbing material within the cavity
volume.

From a microscopical point of view, the Rabi splitting can be expressed as [18]:

ΩR = 2|µµµ|

√
Nωc

2ϵ0V
×
√
⟨n̂phot⟩+ 1, (2.24)

where V is the volume of the electromagnetic cavity mode, and ⟨n̂phot⟩ is the num-
ber of photons involved in the coupling mechanism. From Equation 2.24 it is therefore
clear that strong coupling can occur even with no photon driving, i.e. when the mate-
rial’s dipoles interact with the fluctuations of the confined vacuum EM field, for which
⟨nphot⟩ = 0.

The Tavis-Cummings Hamiltonian (2.21) can be directly diagonalized in the single
excitation manifold [79]. The diagonalization procedure yields 2 polariton eigen-states,
which are a linear super-positions of optical and dipole excitations:

|LP⟩ = X0(ωc,ω0)

N∑
i=1

|ei, 0⟩+Xc(ωc,ω0)|G, 1⟩

|UP⟩ = Xc(ωc,ω0)

N∑
i=1

|ei, 0⟩−X0(ωc,ω0)|G, 1⟩,

(2.25)

together with the N− 1 dark states:

|DS⟩ =
N∑
i=1

ci|ei, 0⟩. (2.26)

The coefficients of the polaritonic wave-functions can be expressed as a function of the
frequency of the cavity mode ωc as:

X0(ωc,ω0) =
1√

1+

(
ωLP(ωc,ω0) −ω0

g

)2

Xc(ωc,ω0) = −
1√

1+

(
g

ωLP(ωc,ω0) −ω0

)2

. (2.27)

The coefficients |X0|
2 and |Xc|

2 of the hybrid wave-functions represent therefore the
dipole and photon fractions of the polaritonic branches.
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Figure 2.4A presents the calculated eigen-modes of the lower and upper polariton
branches (Equation 2.22) as a function of the cavity frequency ωc, which is the tun-
able parameter in our experiments (Chapter 3). The polariton branches exhibit an anti-
crossing feature as a function of the cavity detuning arising from the collective strong
coupling [17–20, 22, 23, 33]. The frequency splitting between the two polariton reso-
nances is minimum at resonance (ωc = ω0) and corresponds to the collective Rabi
splitting ΩR = 2g

√
N. The respective dipole and cavity fraction of the lower and up-

per polaritons are shown in Figure 2.4A, B respectively. We note that, as one polariton
branch approaches the photonic dispersion, its cavity fraction |Xc|

2 increases. Likewise,
as it approaches the dipoles frequency ω0, its matter fraction |X0|

2 increases. Therefore,
each polariton exhibits more matter-like or photon-like physical properties depending
on the exact cavity detuning and the branch it populates. This feature will be exten-
sively discussed in Chapter 6, where we will present the features of a multi-phonon
mixing in the quantum material 1T-TaS2.

In general, the possibility of tuning the photon-dipole fraction offered by the cavity
environment is crucial in the polaritonic field, in particular in processes like polariton
Bose-condensation [80–82] or exciton-polariton lasing [83–86].

Figure 2.4: Cavity-dependent properties of polariton modes predicted by the coupled oscil-
lator quantum model. A. Upper and lower polariton branches as a function of the cavity fun-
damental mode ωc calculated from the coupled oscillator model. The bare cavity and dipole
dispersions are shown as dashed lines. B. Material (orange) and cavity (light blue) fractions of
the lower and upper polariton branch as a function of the cavity detuning. The employed pa-
rameters are indicated in A.
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2.3 role of dissipations on the coupling strength

In the previous section we have highlighted the features of the hybrid polariton modes
characteristic of the strong coupling regime. In this section we will introduce in a semi-
classical way dissipations in the coupled system. In particular, we will show how the
presence of dissipations can cause the coherent strong coupling dynamics to evolve into
a dissipative-like dynamics characteristic of the weak coupling regime. We will discuss
the boundary between strong and weak coupling and show how dissipations of the
uncoupled systems can cause the anti-crossing between the hybrid states (Figure 2.4A)
to collapse.

Based on Equation 2.22, we would always expect strong coupling between material’s
excitations and the cavity mode, regardless the value of the collective coupling con-
stant g

√
N. However, we see experimentally that most systems require hard efforts to

achieve strong coupling. Indeed, high quality mirrors are used in literature to enhance
the cavity field within the mode volume and contain the cavity photon [32, 87–90], or
highly absorptive materials, as the one studied in the present thesis, are employed. The
reasons beyond these efforts lie in the role that dissipations play in the light-matter
coupling. Indeed, only by coupling an infinite crystal with no incoherent scattering to
an infinite coherent cavity mode we would expect strong coupling to occur at any cou-
pling strength g

√
N. In real systems, dissipations of the uncoupled modes (cavity and

material) would prevent the coherent energy exchange between the photonic and mate-
rial degrees of freedom, and ultimately suppress the strong coupling regime when their
rate overcomes the Rabi cycle 1/ΩR.

Within the coupled oscillator quantum framework (Section 2.2.1), bare dissipations
can be introduced through the semi-classical evolution of the uncoupled dipole (σ(t))
and cavity fields (a(t)) [60]:∂tâ(t) = −iωcâ(t) + g

√
Nσ̂(t) − γcâ(t)

∂tσ̂(t) = −iω0σ̂(t) − g
√
Nâ(t) − γmσ̂(t)

(2.28)

In the previous coupled equations γc (γm) indicates the linewidth of the bare cavity
(dipole) mode, setting its lifetime in free space. We clarify that this approximation is
semi-classical in the sense that with the fields definitions of Equation 2.28 the commu-
tation relations

[
â†, â

]
=
[
σ̂†, σ̂

]
= 1 is not satisfied. On the basis of this dissipative

evolution we get indeed
[
â†, â

]
∼ e−2γct and

[
σ̂†, σ̂

]
∼ e−2γmt, which converge to 1 for

t >> 1
γc,m

, i.e. for long-living uncoupled resonances.
Setting the initial conditions a(t = 0) = a(0) and σ(t = 0) = σ(0), the solutions of the

coupled field equations 2.28 read [60]:

a(t) =
(ωc − ω̃LP − iγc)a(0) + i

√
Ngσ(0)

ω̃UP − ω̃LP
e−iω̃UPt+

+
(−ωc + ω̃UP + iγc)a(0) − i

√
Ngσ(0)

ω̃UP − ω̃LP
e−iω̃LPt,

(2.29)

σ(t) =
(ω0 − ω̃LP − iγm)σ(0) − i

√
Nga(0)

ω̃UP − ω̃LP
e−iω̃UPt+

+
(−ω0 + ω̃UP + iγm)σ(0) + i

√
Nga(0)

ω̃UP − ω̃LP
e−iω̃LPt

(2.30)
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In the previous equations the temporal evolution of the coupled fields is set by the
complex frequencies ω̃LP and ω̃UP. The latter correspond to the eigen-modes of the
dissipative-like Tavis-Cummings Hamiltonian:

Ĥdiss = (ωc − iγc) â
†â+

N∑
i=1

(ω0 − iγm) σ̂†iσ̂i + g
N∑
i=1

(
σ̂
†
iâ+ σ̂iâ

†
)

, (2.31)

where the finite lifetimes of photons and material’s excitations have been introduced as
an imaginary self-energy of the bare modes:ω0 → ω0 − iγm

ωc → ωc − iγc

. (2.32)

The fact that an imaginary self energy will result in gain or decay of a the quantum
coupled state can be seen by looking at the time evolution of the coupled fields (Equa-
tions 2.29, 2.30): while quantum phase oscillates at the frequency of the eigen-modes,
the amplitude can increase or decrease according to any imaginary part of the energy.

From the eigen-modes ω̃LP,UP of the dissipative-like Hamiltonian 2.31 we can hence
derive the collective Rabi splitting as a function of the bare decaying rates (γc, γm):

Ω̃R = ω̃UP(ωc = ω0) − ω̃LP(ωc = ω0) =
√
4Ng2 − (γc − γm)2. (2.33)

To see directly in the time domain how bare dissipations affect the coherent Rabi cycle
characteristic of the strong coupling regime, we evaluate the time-dependent emission
of the coupled cavity field [60]:

Icav(t) =
〈
â†(t)â(t)

〉
=
4σ(0)2Ng2

|Ω̃R|
2

e−(γc+γm)t sin

(
Ω̃R

2

)
sin

(
Ω̃∗

R

2

)
. (2.34)

Note that in the previous expression we have considered a non-driven cavity (i.e. a(0) =
0) in resonant condition (ωc = ω0). The calculated emission spectra for a representative
material’s mode in the THz range is presented in Figure 2.5 (oscillators parameters
inside the legend).

We note that the dissipations cause an exponential decay of the beating Rabi modu-
lation occurring at a rate 1/ΩR and characteristic of the strong coupling regime. The
temporal extent of this coherent energy exchange, which would be infinite in a loss-
less cavity, is hence exponentially suppressed by the bare dissipations. This exponential
damping of the coherent beating dynamics can make the hybrid system to fall in the
weak coupling regime in the limit ΩR << γc,γm.

2.3.1 strong-to-weak coupling transition

Recalling the expression of the collective Rabi splitting in dissipative systems Ω̃R (Equa-
tion 2.33), we can identify the boundaries between the strong and the weak coupling
regimes.

Importantly, we highlight that the strong light-matter coupling is only achieved when
4Ng2 > (γc − γm)2, which yields a real value of the collective Rabi splitting.

In the weak coupling regime, for which 4Ng2 < (γc − γm)2, Ω̃R becomes purely
imaginary and therefore does not result in any measurable energy splitting. In this
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Figure 2.5: Calculated time-dependent emission of a dissipative THz cavity. Time-dependent
emission spectrum of a non-driven THz cavity calculated from Equation 2.34 showing the expo-
nential damping of the coherent Rabi beating. Parameters of the cavity and material’s oscillators
are indicated in legend. The cavity emission has been normalized by its maximum value, occur-
ing at t = 0 ps.

case, the coupling is mapped in a modification of the lifetime of the coupled excitations.
In Chapter 6, we will use this feature as a weak coupling signature in the quantum
material 1T-TaS2.

As the collective coupling g
√
N is directly related to the oscillator strength of the

targeted excitation (Equation 2.18), the coupling regime is essentially determined by the
interplay between the dipolar oscillator strength |µµµ| and the photon/dipole linewidths.
Since for our THz cavities (Chapter 3) |µµµ| and the excitation’s linewidth γm are fixed and
determined by the active material and by the cavity temperature, the coupling regime
is mainly governed by the cavity Q factor, which ultimately dictates the photon lifetime
1/γc (Section 2.1.1).

The effect of Q on the polariton eigen-energies and linewidths is presented in Figure
2.6. The imaginary and real parts of the complex eigen-modes of the dissipative-like
Hamiltonian 2.31, corresponding to the polariton broadening and frequency, are shown
in Figure 2.6A and B respectively. Plots have been made for a THz cavity in resonant
conditions, i.e. for ωc = ω0.

The dependence on the cavity quality factor marks two distinct regimes of the light-
matter coupling.

• For low-Q cavities, in the weak coupling regime, there is no polariton splitting
and hence the system can be still described in terms of the bare dipoles and
photons. Nevertheless, their respective linewidths are modified by the coupling
with the cavity field, as illustrated in Figure 2.6A. We highlight that, within the
weak coupling boundary, the dipole linewidth increases with the cavity Q factor,
exhibiting an enhanced emission rate that can be rationalized by the Purcell effect
of atomic and molecular physics [13–16] . The Purcell effect predicts indeed a
linear scaling of the weakly coupled material’s excitation (γm) as a function of the
Q factor of the resonator:

γm(Q) = γm + FPQ. (2.35)

In the previous equation FP = 3
4π2V

c
nωc

denotes the Purcell factor. Similar trends
have been reported in literature also in semiconductor materials weakly coupled
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Figure 2.6: Weak-to-strong coupling transition as a function of the cavity quality factor. A.
Calculated polaritons linewidths as a function of the cavity Q factor from the dissipative-like
Hamiltonian 2.31. The linewidth of the uncoupled dipoles (γm) and photons (γc) are plotted as
dashed lines. B. Corresponding evolution of the polaritons frequencies as a function of the Q
factor. The polariton splitting marks the weak-to-strong coupling transition. Employed parame-
ters: ωc = ω0 = 1.5 THz, γm = 0.05ω0, g

√
N = ΩR

2 = 0.2 THz.

to vacuum cavity fields [23]. Importantly, as highlighted in Figure 2.7, the cavity-
induced renormalization of the dipole’s linewidth scales with the collective cou-
pling strength g

√
N. Indeed, at a fixedQ factor of the cavity, γm is more efficiently

modified at higher light-matter couplings .

Figure 2.7: Linewidth enhancement in the weak coupling regime at different coupling
strengths. Dependence of the linewidth of the weakly coupled dipoles on the Q factor for dif-
ferent couplings g

√
N. A broadening enhancement (black dashed line) is observed at higher

couplings. Employed parameters: ωc = ω0 = 1.5 THz, γm = 0.05ω0.

• Conversely, in the strong coupling regime, the eigen-modes splits into two values
and the polaritonic concepts presented in Section 2.2.1 are necessary to describe
the coupled system. Within this dissipative model, in the strong coupling regime
the upper and lower polariton linewidths equal to the average value of the uncou-
pled dipole and photon linewidths and, hence, decrease at higher Q factors.
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From the expression of the dissipation-dependent Rabi splitting (Equation 2.33), it
should be highlighted that a difference in the decoherence rates between the dipoles
and the cavity photon (|γc − γm|) causes a reduction of the light-matter coupling. In
principle, even if the two uncoupled resonances have large but similar broadening, a
Rabi splitting is predicted by the model. However, we must stress that, in order to
spectrally resolve the polaritonic states, their individual linewidths has to be less than
the splitting between them. This evidence gives therefore two requirements that has to
be fulfilled for achieving strong coupling:|γc − γm| < g

√
N

γc,γm < g
√
N

. (2.36)

The first condition indicates that the effective Rabi splitting can be reduced by the life-
time mismatch between the uncoupled states. The second condition is the requirement
that the polariton states has to be spectrally distinguishable in the Fourier domain. The
conditions of Equation 2.36 will be exploited in the present thesis to verify the achieve-
ment of the strong coupling regime in the studied materials.

2.4 modelling linear response of light-matter

hybrids

In the previous section we have developed the quantum mechanical framework under-
lying the strong light-matter coupling in both dissipative and non-dissipative cavities.
In this section we extend the coupled oscillator model to a cavity response theory in
both the classical and the quantum regimes. In particular, we will present how the cav-
ity spectral response, which is our experimental observable, can be derived in a classical
Transfer-matrix formalism and in a fully quantum Input-Output theory. Importantly, we
will demonstrate that the predictions of the two response theories coincide in a linear
regime. This is the regime of non-driven cavities and where the coupling between the
optical and material’s degrees of freedom can be considered linear.

2.4.1 a classical approach : the transfer-matrix formalism

The Transfer-matrix is a formalism commonly used is optics to analyse the propaga-
tion of electromagnetic waves through a stratified medium characterized by layers of
materials with different refractive properties [91–93]. In this classical framework, the
transmission and reflection coefficients at the interface between two layers with differ-
ent optical constants are described by the Fresnel equations and the overall response of
the cavity-material hybrid will be the result of the linear interference between multiple
reflections and transmissions of light at all the interfaces.

Let us firstly consider the simplest system constituted of two different media with an
infinite interface (Figure 2.8A). We will denote with n0 and n1 the refractive indexes
of the two media. The incident and the transmitted light through the material can be
linked through the Snell law: n0 sin(θ0) = n1 sin(θ1). The complex amplitude of the
electric field at a fixed position z can be expressed as:

E(z) = E+(z) + E−(z), (2.37)
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where E+(z) and E−(z) represent individually electro-magnetic waves travelling along
the +z and the −z directions, respectively. We can hence define a two dimensional vector
Φ built upon these complex electric field amplitudes:

Φ(z) =

[
E+(z)

E−(z)

]
(2.38)

based on which all the presented Transfer-matrix calculations will be performed [69].

Figure 2.8: Transmission through a layered structure included in Transfer-matrix simulations.
Transmission through a two-media system (A) and a multilayer system (B). dj and nj indicates
respectively the thickness and the complex refractive index of the jth layer.

2.4.1.1 Transfer-matrix at material’s interfaces

Firstly, let us consider the light propagating from a medium with refractive index n0

into a medium having n1 refractive index. Note that the refractive indexes are complex
quantities, hence taking into account both the inductive and the dissipative response of
the materials. At the boundaries between the two media, Fresnel’s equations apply:

r0,1 =


n0 cos θ0 −n1 cos θ1
n0 cos θ0 +n1 cos θ1

(s− pol)

n0 cos θ1 −n1 cos θ0
n1 cos θ0 +n0 cos θ1

(p− pol)

(2.39)

t0,1 =


2n0 cos(θ0)

n0 cos θ0 +n1 cos θ1
(s− pol)

2n0 cos(θ0)
n1 cos θ0 +n0 cos θ1

(p− pol)

(2.40)

where r0,1 (t0,1) is the complex reflection (transmission) coefficient at the interface. The
s (respectively p) polarization corresponds to an EM wave having its electric field os-
cillating perpendicular (respectively parallel) to the plane of incidence, defined by the
incident ray and the normal to the interface. Clearly, the two polarization cases become
identical at normal incidence, i.e. when θ0 = θ1 = 0.
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In order to obtain the full interference pattern we have also to consider the backwards
propagating wave, i.e. the field incident from the medium n1 into the medium n0 at
the same interface. In this configuration, the reflection and transmission coefficients
(respectively r1,0 and t1,0) are linked through the Fresnel’s law to r0,1 and t0,1 by the
relations:

r1,0 = −r0,1 t1,0 =
1− r20,1

t0,1
, (2.41)

which imply:
r1,0r0,1 + t1,0t0,1 = 1 (2.42)

As depicted in Figure 2.8A, let us label with E0 and E1 the longitudinal electric field
amplitude at the two boundaries of the material’s interface. By considering the EM
wave incident on the interface from the +z direction we will have E−1 = 0. Therefore,
the reflection and transmission coefficients can be expressed as the ratios between the
electric field amplitudes at each side of the interface:

r0,1 =
E−0
E+0

t0,1 =
E+1
E+0

. (2.43)

Similarly, for the back-travelling wave incident from the −z direction (for which E+0 = 0),
we get:

r1,0 =
E+1
E−1

t1,0 =
E−0
E−1

. (2.44)

From the expressions of the complex reflectivity and transmittivity (Equations 2.43,
2.44) and considering the full interference pattern, i.e. waves incident from both ±z
directions, we can write the electric field in the n0 medium as a function of the electric
in the n1 medium through the following "interface Transfer-matrix" equation:[

E+0

E−0

]
=

 1
t0,1

−
r1,0
t0,1

r0,1
t0,1

t1,0 −
r0,1r1,0
t0,1

 =

[
E+1

E−1

]
(2.45)

By recalling Equation 2.41, the above single-layer Transfer-matrix equation can be sim-
plified to: [

E+0

E−0

]
=

1

t0,1

[
1 r0,1

r0,1 1

]
=

[
E+1

E−1

]
, (2.46)

which, recalling the definition of the Φ-vector in Equation 2.38, becomes:

Φ0 = I0,1Φ1 (2.47)

with

Φ0 =

[
E+0

E−0

]
Φ1 =

[
E+1

E−1

]
(2.48)

and

I0,1 =
1

t0,1

[
1 r0,1

r0,1 1

]
. (2.49)

I0,1 is therefore the Transfer-matrix at the interface of a single-layer, where the re-
fractive properties changes from n0 to n1. The previous matrix representation will be
exploited in the following to derive the full Transfer-matrix of the multilayer cavity-
like structure, where all the single-layer interferences will be taken into account (Figure
2.8B).
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2.4.1.2 Transfer-matrix for free propagation

The next step towards the derivation of the multi-layer Transfer-matrix is getting the
matrix expression describing the free field propagation between adjacent dielectric in-
terfaces.

Let us hence consider light propagating in the medium n1 within a distance d, as
illustrated in Figure 2.8A. Labelling with Ed the electric field amplitude after the free
propagation inside the medium n1, we will have:[

E+1

E−1

]
=

[
e−in1kd cos(θ1) 0

0 e−in1kd cos(θ1)

]
=

[
E+d

E−d

]
, (2.50)

where k is the vacuum wavevector. The propagation equation 2.50 can be equivalently
written in the Φ-vector form as:

Φ1 = L1,dΦd. (2.51)

Here

L1,d =

[
e−in1kd cos(θ1) 0

0 e−in1kd cos(θ1)

]
(2.52)

is defined as the Transfer-matrix of free field propagation for a distance d within a
material with complex refractive index n1.

Combining the interface propagation (Equation 2.47) with the free field propagation
within dielectric boundaries (Equation 2.51) we get:

Φ0 = I0,1L1,dΦd =M0,1,dΦd, (2.53)

where M0,1,d = I0,1L1,d is the Transfer-matrix describing the single-layer structure
of Figure 2.8A. This matrix structure is the basic element for constructing the optical
response of a multilayer system. The optical response of the multilayer system will be
discussed in the following section.

2.4.1.3 Transfer-matrix of a multilayer system

As outlined in Figure 2.8B, a multilayer system, as can be schematized the cavities
employed in this thesis, is constructed by stacking a number of individual single-layer
units analogous to the one shown in Figure 2.8A.

The whole system contains N layers, each of which has a finite thickness dj and a
complex refractive index nj (j = 1, ...,N). This N-layer structure is surrounded by a
medium n0 on the left, and a medium nN+1 on the right, both of which are semi-
infinite. The interference within the whole multilayer structure can be described by the
Φ-vector equation:

Φ0 = SΦS, (2.54)

where

S =

 N∏
j=1

Mj−1,j,dj

 IN,N+1 =

 N∏
j=1

Ij−1,jLj,dj

 IN,N+1. (2.55)

Here Φ0 (ΦS) is the Φ-vector at the left (right) boundary of the N-layer system, as
labelled in Figure 2.8B. S is instead the overall Transfer-matrix of the multilayer system
accounting for the interferences at each dielectric boundary.
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2.4.1.4 Optical properties of the multilayer system

Once the general Transfer-matrix S for a multi-layer system has been constructed, it is
straightforward to obtain the linear optical properties, i.e. transmission and reflection
of the whole system. The full Φ-vector equation 2.54 explicitly reads:[

E+0

E−0

]
=

[
S11 S12

S21 S22

]
=

[
E+S

E−S

]
, (2.56)

where S11, S12, S21, S22 are the four matrix elements of the Transfer-matrix S. The latter
depend on the thickness dj and on the complex refractive index nj of each layer.

In order to obtain the linear response of the full multilayer structure, let us consider a
s-polarized optical wave entering the stacked system from the left boundary and leaving
it through the right interface. In this case, E−S = 0 because there is no back-travelling
light after the right boundary. The total transmitted ts and reflected rs amplitudes are
therefore:

ts =
E+S
E+0

=
1

S11
rs =

E−0
E+0

=
S21
S11

. (2.57)

As rs and ts contain both the real and imaginary parts of the amplitude ratios, they
actually characterize both the amplitude and the phase response of the layered structure.
If we focus only on the intensity, the full spectral transmission T(ω) and reflection R(ω)

can be calculated as:

T(ω) = |ts(ω)|2 =

∣∣∣∣ 1

S11(ω)

∣∣∣∣2 R(ω) = |rs(ω)|2 =

∣∣∣∣S21(ω)

S11(ω)

∣∣∣∣2 , (2.58)

where the ω dependence is inherited from the frequency-dependent refractive indexes
of the single layers (nj(ω)). The Transfer-matrix formalism hence allows to predict the
full optical response of a multilayer cavity, having in input only the cavity geometry (i.e.
the layer thicknesses) and the complex dielectric constants of the constituting layers.

2.4.1.5 Comparison with the quantum oscillator model

In the following we demonstrate that in the linear regime, i.e. for a non-driven cavity
with linear light-matter coupling [60, 94, 95], the polariton features extracted from the
coupled oscillator quantum model (Section 2.2.1) match with the classical predictions of
the Transfer-matrix method. The Transfer-matrix formalism can be hence considered as
a "local" dielectric model [60], where the overlap integral between the material and pho-
ton wave-functions, which determines the coupling strength within the cavity (Equation
2.18), is taken into account through the refractive properties of the cavity constituents
and through the boundary conditions set by the cavity geometry.

For this comparison we will exploit the model Terahertz cavity setting presented in
Figure 2.9A, where an absorber’s slab of thickness dm is put within two thin gold
mirrors (dAu = 2 nm, nAu(ω) from literature [96]). In this model setting, the cavity
frequency is set by the mirrors distance which in turns determines the thickness of the
air spacer dair. For simplicity, we will model the material’s optical response nm(ω) as
a strongly damped Lorentzian oscillator [97]:

nm(ω) =

√
1+

ω2
p

ω2
0 −ω

2 − iωγm
, (2.59)
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Figure 2.9: Transfer-matrix calculations of the linear response of a hybrid THz cavity and
comparison with the coupled oscillator model. A. Schematic multilayer structure of the THz
cavity employed in the classical simulations. B. Dispersion of the polariton transmission as a
function of the cavity frequency simulated with the classical Transfer-matrix method. The eigen-
frequencies of the upper and lower polaritons estimated from the coupled oscillator model
(Equation 2.22) are plotted as white dashed lines. C. Polariton transmission simulated with the
Transfer-matrix method as a function of the absorber’s thickness for a fixed cavity frequency
ωc = 1.5 THz. Note that, in the different simulations, the material thickness is compensated by
a reduction of the mirrors distance in order to maintain the resonance condition of the cavity
unaltered. D. Rabi splitting as a function of the absorber’s thickness estimated from the spectral
responses in C. A square root scaling, analogous to the Tavis-Cummings quantum formulation,
is observed.

where we have representatively set ω0 = 1.5 THz, ωp = 0.9 THz, and γm = 0.05ω0.
The polariton dispersion obtained with the Transfer-matrix method is presented in

Figure 2.9B, where the simulated spectral transmission is plotted as a function of the
cavity fundamental frequency. Simulations have been made at normal incidence (θ0 =

0), which is the geometry adopted for all the experiments presented in the thesis.
We note that, by matching the Rabi splitting of the coupled oscillator model (ΩR =

2g
√
N) to the splitting obtained on resonance with the Transfer-matrix method, the dis-

persion of the polariton eigen-modes (Equation 2.22) matches the simulated transmis-
sion peaks. This crucial result implies that, within a linear framework, the bright peaks
detected in transmission are associated to the spectral response of the hybrid modes
originating from the quantum superposition with the cavity field. This evidence is fun-
damental since the linear transmission will be the experimental observable adopted in
the thesis to track the strong coupling regime in different samples.



2.4 modelling linear response of light-matter hybrids 25

Importantly, the splitting between the upper and lower polariton branches simulated
with the Transfer-matrix method increases with the active layer thickness dm (Figure
2.9C). The Rabi splitting ΩR as a function of the absorptive material thickness, esti-
mated from the linear transmission spectra of Figure 2.9C, is presented in Figure 2.9D.
We highlight that the estimated ΩR scales with the square root of the thickness of the
layer embedded within the cavity. This gives a further connection between the classical
Transfer-matrix method and the quantum Tavis-Cummings model. Indeed, the Tavis-
Cummings model predicts, in the linear case, a scaling of the Rabi splitting as

√
N, be-

ing N the number of emitters within the cavity volume (Equation 2.24). In a condensed
matter rephrasing of the Rabi interaction, the number of emitters should be hence re-
placed by the total oscillator strength of the active material, which indeed scales with
its thickness.

2.4.2 a quantum approach : the input-output formalism

In the previous section we have proved that in a linear regime the classical Transfer-
matrix formalism reproduces the spectral response of the hybrid polaritons.

In this section we present a fully quantum formalism, the Input-Output theory IO
[98–103], which provides a direct connection between the microscopic dynamics of the
hybrid cavities and their time and frequency domain signals measured in experiments.

In a nutshell, the Input-Output formalism allows for the treatment of the properties
of light-matter hybrids beyond their coupling to the photonic ground state. In particular,
by treating the injection of photons into the cavity and their ejection through a simple
linear coupling, which is described quantum-mechanically as a beam splitter operator,
it is possible to describe the time evolution of the optical properties of the light-matter
hybrids. IO theory allows for a formal description of the injection of photons in cavity
as well as for their emission, which is treated at the same level of approximation.

Being a fully quantum theory, the IO formalism can be easily extended to describe
non-linear couplings in driven cavities, where instead the linear Transfer-matrix method
can’t be applied.

In the following we provide a brief review of the IO theory and utilize it to derive
the fully quantum equation of motion for the cavity photonic field in the presence of a
resonant material’s excitation. We will then apply the quantum formalism to obtain the
transmission spectrum of the polaritonic modes, i.e. our experimental observable, and
prove that in a linear regime it matches the classical Transfer-matrix results.

To model the material’s within the cavity, let us consider a set-up of N independent
dipole-allowed excitations strongly coupled to a single mode of a co-planar Fabry-Pérot
resonator. The resonator modes are weakly coupled to the external bath EM modes on
the left and right-hand sides of the cavity transverse direction. The total Hamiltonian of
the hybrid system can be expressed as the sum of three distinct contributions [98, 99]:

Ĥ = Ĥc + Ĥm + Ĥint. (2.60)

Ĥc and Ĥm are the Hamiltonians modelling the bare cavity and material dynamics
weakly coupled to their corresponding external baths. Ĥmc describes instead the light-
matter interaction within the cavity volume (cfr Equation 2.17). Each term of the full
Hamiltonian of the hybrid cavity (Ĥ) will be described in the following sections.
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2.4.2.1 Equation of motion of the empty cavity operator

Let us consider a planar Fabry-Pérot cavity, as the one employed in our experiments,
with a single relevant mode. We will suppose the reshaped EM modes within the cavity
volume to be weakly-coupled to the EM bath occupying the space external to the cavity.
Having a weak coupling with the external bath implies that only linear transmission
of photons from the vacuum to the cavity (and vice-versa) is allowed [98, 103]. We
will suppose the cavity to have a transverse length L along the z axis, and the vacuum
electromagnetic modes to live in the semi-infinite spaces to the left and right-side of the
cavity. The empty cavity dynamics is governed by the Hamiltonian [98]:

Ĥc = ωcâ
†â+

∫+∞
−∞ dω ′ω ′

[(
âLω ′

)†
âLω ′ +

(
âRω ′

)†
âRω ′

]
+

+

∫+∞
−∞ dω ′

√
γc(ω

′)

4π

[(
âLω ′

)†
â+

(
âRω ′

)†
â+ h.c.

] . (2.61)

Here â is the annihilation operator of the single cavity mode of frequency ωc, âL(R)ω

annihilates the left (right) photons of the bath of frequency ω, and κ(ω) is the weak
coupling constant with the vacuum EM bath. This is assumed to be independent on
the cavity side4. The Heisenberg equation of motion connecting the external EM field
operators to the cavity mode operator â(t) reads [98]:

∂tâ
L
ω(t) = −iωâLω(t) − i

√
γc(ω)

4π
â(t). (2.62)

The latter is a linear equation and can be solved given the initial conditions on the
fields. Let us now suppose that the cavity-bath coupling is frequency-independent, i.e.
γc(ω) = γm. This assumption is reasonable, as the cavity mode interacts significantly
only with a small subset of the external vacuum EM modes, where the variation of
γc(ω) is negligible [104]. We highlight that in this fully quantum formalism the cou-
pling constant between the cavity field and the external EM bath plays an analogous
role to the photon dissipation rates (γc) introduced semi-classically in the Rabi model
(see Section 2.3).

In the case of frequency-independent coupling with the external bath, the temporal
evolution of the cavity photon operator â(t) reads:

∂tâ(t) = −i
(
ωc − i

γc

2

)
â(t) −

√
γc

2
âin(t). (2.63)

Here we have introduced the input electromagnetic field operator âin(t) [98]:

âin(t) = â
L
in(t) + â

R
in(t), (2.64)

being

â
L(R)
in (t) =

i√
2π

∫+∞
−∞ dω ′e−iω ′(t−ti)â

L(R)
ω ′ (ti) t > ti. (2.65)

The input operators represent the optical driving of the cavity at a certain time t due to
the past external electromagnetic state described by the operators âL(R)ω (ti). By follow-
ing the same procedure, we can obtain also the effective dynamics of the cavity mode
in terms of the external EM field at future times tf > t:

∂tâ(t) = −i
(
ωc + i

γc

2

)
â(t) −

√
γc

2
âout(t) t < tf. (2.66)

4 We have introduced also the unphysical negative frequencies of the external EM field modes just to
simplify the mathematical treatment. This has a no practical consequences, since in a weak coupling
approximation the relevant EM modes are those near-resonant with the cavity mode [99].
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Here, in analogy with the input operators of Equation 2.65, we have introduced the
cavity output operators as:

âout(t) = â
L
out(t) + â

R
out(t) (2.67)

â
L(R)
out (t) =

i√
2π

∫+∞
−∞ dω ′eiω

′(tf−t)â
L(R)
ω ′ (tf). (2.68)

Equations 2.63 and 2.66 respectively give the forward and backward temporal dynamics
of the empty cavity weakly coupled to the external electromagnetic bath. Moreover, they
imply the Input-Output relation:

âout(t) − âin(t) =
√
2γcâ(t), (2.69)

which links the temporal evolution of the input and output fields to the cavity field op-
erator â(t) via the coupling constant with the bath (γc). Note that a similar relationship
holds also for the left and right bath degrees of freedom:

âLout(t) − â
L
in(t) =

√
2γcâ(t) = â

R
out(t) − â

r
in(t) (2.70)

2.4.2.2 Equation of motion of the material’s field

After having derived the quantum evolution of the empty cavity field as a function of
the input and output operators of the vacuum bath, we will discuss in the following the
temporal evolution of the quantized material’s field. The material’s system is modelled
as a set of N harmonic oscillators weakly interacting with a macroscopic bath repre-
sented by a collection of non-interacting harmonic oscillators [98]. The interaction of
the material’s modes with the macroscopic bath phenomenologically models the bare
dissipations of the material’s excitations. The Hamiltonian for the material subsystem,
weakly coupled to its environment, reads [98]:

Ĥm = ω0

N∑
i=1

σ̂
†
iσ̂i+

N∑
i=1

∫+∞
−∞ dω ′ω ′

(
r̂iω ′

)†
r̂iω ′ +

N∑
i=1

√
γm

∫+∞
−∞

dω ′
√
2π

[(
r̂iω ′

)†
σ̂i + h.c.

]
.

(2.71)
Here σ̂i is the annihilation operator of the ith material’s dipole, r̂iω the annihilation
operator of the ith material’s bath mode with frequency ω, and γm the dissipative cou-
pling constant of each dipole mode to the environment. As for the photonic degrees
of freedom, we will suppose the coupling with the material’s bath to be weak, hence
implying a linear interaction between the σ̂i and r̂iω fields for each dipole mode. Since
the matter Hamiltonian Ĥm is separable and the bath’s degrees of freedom are cou-
pled linearly with each dipole mode, the equation of motion of the matter field can
be derived analogously to the cavity field equation of the previous section. The only
difference with respect to the derivation of the cavity field lies in the fact that the cavity
modes interact with distinct left and right baths, while there is no such distinction for
the material’s system [98, 99]. The equation of motion of each dipolar field reads:

∂tσ̂i(t) = −i
(
ω0 − i

γm

2

)
σ̂i(t) −

√
γmσ̂

in
i (t), (2.72)

where the input operator for each material’s excitation reads:

σ̂ini (t) = i

∫+∞
−∞

dω ′
√
2π
e−iω ′(t−ti)r̂iω ′(ti), t > ti. (2.73)
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We highlight that, as in the case of the empty cavity evolution, each dipolar mode
satisfies the Input-Output relation:

σ̂out
i (t) − σ̂ini (t) =

√
γmσ̂i(t), (2.74)

where the output material’s operator reads:

σ̂out
i (t) = i

∫+∞
−∞

dω ′
√
2π
e−iω ′(tf−t)r̂iω ′(tf), t < tf. (2.75)

2.4.2.3 Equation of motion of the light-matter hybrids

In order to get the quantum equation of motion for the strongly coupled light-matter
hybrids, we resort to the full Hamiltonian 2.60. We will work under a linear light-matter
coupling, which implies that the interaction Hamiltonian Ĥint can be written in the
rotating wave approximation [73] as:

Ĥint = g

N∑
i=1

(
σ̂
†
iâ+ â

†σ̂i

)
, (2.76)

being g the harmonic coupling strength. We stress that by employing a fully quantum
description any non-linear light-matter coupling, as well as non-linear couplings with
the external baths, can be added. For simplicity, we will work here in a fully linear
framework. This assumption will enable us to compare the obtained results with the
classical Transfer-matrix predictions (Figure 2.9). By supposing, as in the experimental
setting, that there are no incoming EM fields from the right side of the cavity, i.e. âRin =

0, the coupled equations of motion, which link the cavity and material’s fields and take
into account the linear dissipations with the baths, read:

∂tâ(t) = −i
(
ωc − i

γc

2

)
â(t) −

√
γc

2
âLin(t) − ig

∑N
i=1 σ̂i(t)

∂tσ̂i(t) = −i
(
ω0 − i

γm

2

)
σ̂i(t) − igâ(t)

. (2.77)

The corresponding frequency-domain solutions of the coupled field equations will be
exploited in the following to obtain the linear transmission of the hybrid polariton
modes.

2.4.2.4 Linear transmission within the Input-Output quantum model

In this section we apply the described Input-Output quantum framework to estimate
the linear transmission spectrum of the coupled polaritons. This derivation is impor-
tant since the linear transmission will be the main experimental observable employed
in the thesis to track the strong coupling features. Importantly, we will demonstrate that,
within a linear coupling between the matter and the cavity oscillators, the fully quan-
tum IO model reproduces the classical linear response predicted by the Transfer-matrix
(Section 2.4.1).

Within the quantum IO formalism, the transmission spectrum of the hybrid cavity is
given by:

T(ω) =

∣∣〈âRout(ω)
〉∣∣2∣∣〈âLin(ω)
〉∣∣2 . (2.78)



2.4 modelling linear response of light-matter hybrids 29

By solving the equation of motions of the coupled fields (Equation 2.77) in the frequency
domain, it follows that the output optical field operator âRout(ω) can be written in terms
of the spectrum of the input optical field âLin(ω) as:

âRout(ω) = −i
γc

2

(
ω−ω0 + i

γm
2

)(
ω−ωc + i

γc
2

) (
ω−ω0 + i

γm
2

)
−Ng2

âLin(ω). (2.79)

Therefore, the linear transmission spectrum (Equation 2.78) is given in the Input-Output
model by the expression:

T(ω) =

∣∣〈âRout(ω)
〉∣∣2∣∣〈âLin(ω)
〉∣∣2 =

γ2c
4

∣∣(ω−ω0 + i
γm
2

)∣∣2∣∣(ω−ωc + i
γm
2

) (
ω−ω0 + i

γc
2

)
−Ng2

∣∣2 . (2.80)

We clarify that this approach gives an approximation of the linear spectral transmis-
sion T(ω) of the hybrid modes. Indeed, we have assumed the optical leakage rate of
the cavity (γc) to be independent of frequency and in-plane wave vector. Moreover, we
have neglected the variation of the in-plane wave vector of the cavity with the detun-
ing. Therefore, the above result is expected to hold only for a small neighbourhood of
frequencies around the empty cavity resonance [99].

Figure 2.10: Polariton dispersion simulated with the quantum Input-Output model in the lin-
ear regime and comparison with the classical Transfer-matrix method. A. Linear transmission
of the hybrid modes as a function of the cavity frequency calculated with the Input-Output
formalism (Material’s oscillator parameters: ω0 = 1.5 THz, γc = γm = 0.05ω0, Collective cou-
pling: g

√
N = 0.2 THz). B. Dispersion of the polariton transmission simulated with the classical

Transfer-matrix formalism (adopted parameters as in Figure 2.9B). C. Selected transmission spec-
tra at different detunings ∆ω = ωc −ω0 calculated with the IO formalism (blue lines) and with
the Transfer-matrix method (green lines).
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In order to highlight the connection between the IO model in the linear regime and
the classical Transfer-matrix formalism, we present in Figure 2.10 the comparison of the
linear polariton dispersion within the THz cavity setting of Figure 2.9A simulated with
the two methods. We highlight that, by matching the Rabi splitting obtained on reso-
nance with the Transfer-matrix method (Figure 2.9B) to the collective coupling constant
of the IO formalism, the fully quantum IO model reproduces the frequency dispersion
of the hybrid modes obtained within the classical Transfer-matrix framework. A de-
viation in the estimation of the polaritons linewidths is attributed to a non-constant
frequency loss of the mirrors. The latter enters indeed in the Transfer-matrix method in-
side the frequency-dependence of the mirrors refractive index. This effect has not been
taken into account in the present IO quantum model, since a frequency-independent
coupling between the cavity and the EM bath has been supposed.

In conclusion, we have demonstrated that, despite its completely classical character,
the linear Transfer-matrix theory remains a very accurate tool at describing the linear
response of light-matter hybrids in terms of the cavity geometry and the static refractive
properties of its constituents. This fact should not be too surprising since, in the case
of a weak external interaction, one could always cast a linear response theory which
will effectively describe the quantum mechanical microscopic response of the system.
Within the cavity framework, this external weak interaction is represented by the photon
exchange with the EM external bath. Obviously, the linear Transfer-matrix response will
not describe the dynamics of coupled cavities where non-linearities emerge or where
quantum statistics become important. In those cases a fully quantum theory, as the
Input-Output previously described, would be the most accurate one.



3
E X P E R I M E N TA L A P PA R AT U S :
T U N A B L E C RY O G E N I C T E R A H E RT Z
C AV I T Y

We report in this chapter the set-up employed in the thesis to study the optical prop-
erties of light-matter hybrids. These are constituted of crystalline samples embedded
within a Terahertz Fabry-Pérot cavity. The experimental assembly developed offers the
unique opportunity to study the weak and strong coupling regimes between a tunable
optical cavity in cryogenic environment and low energy degrees of freedom, such as
phonons, magnons, or charge fluctuations.

We clarify that this cavity setting does not allow to reach the high compression of
the electric field obtained within other kind of resonators such as split-ring resonators
[64], array-defects cavities [32], or plasmonic cavities [88]. However, its crucial strength
lies in its unique possibility of tuning the cavity resonance in a cryogenic environment,
thus enabling to study the coupling at low temperature of a vast number of Terahertz
excitations.

We describe in this chapter the developed set-up that allows for the positioning of
crystalline samples in a Terahertz optical cavity of different quality factors, the tuning
of the cavity length at cryogenic temperatures, and its optical characterization with a
broadband time domain THz spectrometer (∼ 0.1− 6.0 THz). The built THz spectrome-
ter allows, at the same time, for the characterization of the cavity optical characteristics
(fundamental mode and quality factor) and the study of the linear response of the
light–matter hybrids at low temperatures.

3.1 cryogenic cavity assembly

A detailed scheme of the built variable-length cryogenic THz cavity is presented in Fig-
ure 3.1. This is composed of two cryo-cooled piezo-controlled movable mirrors between
which the sample is inserted. The movement of each of the the two cavity mirrors is
ensured by three piezo actuators (N472-11V, Physik Instrumente) with a total travel
range of 7 mm and a minimum incremental motion of 50 nm with a designed resolu-
tion of 5 nm. The independent movement of each of the three piezo actuators ensures
the independent horizontal and vertical alignment of the mirrors while the simultane-
ous motion of the three results in a rigid translation of the whole mirror. Importantly,
since both the mirror positions are controlled by the piezoelectric mechanics, the set-up
includes both the possibility of tuning independently the cavity length and the sample
position with respect to the mirrors.

The tunability of the cavity length sets the frequency of the cavity fundamental mode.
Instead, the tunability of the sample position with respect to the mirrors allows us to
maximize the coupling of the cavity photons with the targeted excitation, since the
coupling energy scales with the absolute cavity field [42, 105] (see Section 2.2.1).

31
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The mirrors are mounted on copper holders, and they are cryo-cooled by means
of copper braids directly connected to the cold finger of the cryostat. Since the piezo
actuators temperature operational range is 283–313 K, the piezo actuators are thermally
decoupled from the mirror supports. The thermal decoupling is realized by placing
between the piezo actuators and the mirror holders a PEEK disk on which the actuators
actually act and three ceramic cylinders. These materials are thermal insulators, and
they have a low thermal expansion coefficient in the operational temperature range of
the cryostat (10− 300 K). These features ensure the mirrors to be thermally insulated
as well as an alignment stability of the cavity in the operational temperature range. We
tested the set-up under nitrogen-cooled conditions and proved that in the temperature
range of 80− 300 K, the thermal decoupling between the cryo-cooled mirrors and the
piezo actuators is efficient, thus making the set-up suitable to perform cavity length-
dependent studies in cryogenic environment.

The chamber, shown in Figure 3.1A, is mounted on a flow cryostat, which is sup-
ported by a mechanical assembly allowing for the movement of the whole sample in
the x, y, and z directions. We stress that the mechanical translation of the sample is
particularly crucial for the experiment since it allows us to perform THz transmission
measurements of the empty cavity by simply moving the vertical/horizontal position of
the whole chamber in Figure 3.1A. The chamber shown in Figure 3.1A is enclosed in a
vacuum chamber allowing for optical access for transmission. The cryostat windows are
two 2 mm crystalline quartz windows, which are suitable for the THz range. The vac-
uum conditions are ensured via a turbo pumping system (Pfeiffer HiCube). Pressures
of 10−6 mbar can be reached at room temperature, while at cryogenic temperature, the
typical working pressure is 10−7 mbar. The temperature is normally read on the sample
holder and on the mirrors mounts by means of cryogenic silicon diodes. A temperature
controller provided with a feedback circuit enables to modify the sample temperature
so that a complete temperature scan can be performed at a fixed cavity length.

Figure 3.1: Tunable cryogenic Terahertz cavity. A. Detailed illustration of the cryogenic Tera-
hertz cavity. The cavity mirrors are kept in thermal contact with the sample holder while they
are insulated from the piezoelectric mechanics. B. Illustration of the sample holder. The sample
is mounted between two transparent silicon nitride membranes of 2µm thickness.
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3.1.1 semi-reflecting mirrors fabrication

The cavity semi-reflecting mirrors were fabricated by evaporating a thin bilayer of
titanium-gold (2-10 nm) on a 2 mm thick crystalline quartz substrate, resulting in a
transmission amplitude of 20 % across the THz spectral range of the experiment with
no apparent spectral features. In detail, the deposition of the thin film coating has been
achieved by classical E-beam evaporation. The substrates were first cleaned using stan-
dard procedure based on RCA-1 (NH4OH-H2O2-H2O 1:1:5, 75

◦ C, and 10’), rinsed by
de-ionized (DI) water, and dried under N2 blow. Right before the transfer in the evapo-
rator chamber, the substrates were treated by oxygen plasma (P:20 W, B:50 V, and t:1’).
The first 2 nm thin layer of titanium was used to increase the adhesion of the following
gold layer. The deposition rate for the titanium layer was 0.1 Å/s, while for the gold
we deposited the first 2 nm at a rate of 0.1 Å/s and the other 8 nm at a rate of 0.3 Å/s.
At these deposition rates, we estimated an error in the film thickness of ∼ 5 %, which
translates in a 0.1 nm error for the 2 nm titanium film and 0.5 nm error for the 10 nm
gold film.

3.1.2 sample’s mounting

The sample is mounted between the semi-reflecting mirrors in a copper sample holder
directly connected to the cold finger of the cryostat and sealed between two silicon
nitride membranes (LP-CVD grown) with a window size of 11 x 11 mm2 and a thick-
ness of 2 µm (Figure 3.1B). The membranes are supported on a 13 x 13 mm2 silicon
frame that has a thickness of 500 µm. Importantly, the membranes are transparent in
the THz frequency range employed in the experiments and do not show any spectral
dependence. This is proved in Figure 3.2, where we present the transmission of the free
standing silicon nitride membranes within the employed THz range. No absorption-like
spectral features are indeed revealed.

Figure 3.2: Measured THz transmission of the silicon nitride membranes within the employed
spectral range.
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3.2 terahertz time-domain spectroscopy

We characterize the tunable cryogenic cavity and eventually the light-matter hybrids
through linear THz spectroscopy. In this section we outline the main features of the
technique and the advantages with respect to standard FTIR to track the light-matter
coupling features. We then present the built THz spectrometer and the procedure to
extract the optical constants from the measurements of the THz transients.

3.2.1 the terahertz domain

The Terahertz (THz) region of the electromagnetic spectrum, extending from approx-
imatively 0.1 THz to 30 THz, is of major importance for the study of correlated sys-
tems, since it is in this low frequency region that many of the phenomena influencing
electronic properties of complex materials are found [106–108]. Whereas probing the
ground state excitations may unveil the underlying mechanism of these complex phe-
nomena, the characteristic energy scales of different elementary excitations and collec-
tive modes in many of these materials lie within the THz range. Bound states such as
excitons and Cooper pairs have energies in the THz range, as do phonons and charge
fluctuations. Moreover, by investigating the THz spectral region, information may be
gained on scattering rates in semiconductors and superconductors and confinement in
low-dimensional solids [106].

In the last two decades the THz region has opened up through the advent of THz
time-domain spectroscopy. This technique has overcome the problems of infra-red spec-
troscopy techniques, which all lack brightness in the THz range, by providing sources
with a broad bandwidth in the THz region and by enabling direct measurements of
the dielectric function of materials without resorting to Kramers-Kronig methods [109].
The principle of THz time-domain spectroscopy is founded on the generation of THz
transient fields using ultrafast laser pulses, which are then detected using optical gat-
ing. This allows for a direct measurement of the THz electric field of the pulse itself,
which is used to reconstruct the real and imaginary parts of the optical constants with-
out extrapolations or approximations. Within the cavity framework, having an intrinsic
phase-resolved probe is also crucial, since it allows for a temporal reconstruction of the
cavity-mediated dynamics, such as the coherent energy exchange characteristic of the
strong coupling regime (Figure 2.5). These features are indeed hidden in intensity-based
FTIR techniques [18, 30, 61, 110–112].

3.2.2 terahertz generation and detection

3.2.2.1 THz generation: the photo-conductive antenna

Let us consider a slab of a material excited at normal incidence by a time-dependent
optical pulse. The electromagnetic radiation Erad(t) emitted from the slab in the far-
field limit, i.e. when the spatial position at which the field is detected is much larger
than the ratio of the dimension of the emitter over the emitted wavelength [113], follows
the Maxwell’s equations:

Erad(t) ∝
(
∂JJJ(t)

∂t
+
∂2PPP(t)

∂t2

)
. (3.1)
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Here JJJ(t) is the time-varying isotropic conduction current and PPP(t) the polarization,
both induced by the time-dependent photo-excitation. Therefore, by properly selecting
the medium and the excitation pulse, it is possible to either induce a time-dependent
charge current or a time-varying optical polarization, so that the emitted electromag-
netic radiation lies in the Terahertz range. The first can be induced in photo-conductive
switchers, while the latter in non-linear optical media.

We will focus in this section on the photo-conductive switching method, which is the
process to generate the THz pulses employed in the experiments.

The photo-switching is commonly realized in a photo-conductive antenna (PCA)
[114–116]. A photo-conductive antenna typically consists of a grown semiconductor
material with metallic electrodes separated by a few microns deposited on the surface,
as illustrated in Figure 3.3A. An ultrafast laser pulse (temporal duration ∼ 50 fs) is
used to excite carriers within this gap, which are then accelerated by the applied bias
electric field Vbias. The photo-excited carriers are then rapidly recaptured by defect
trap sites through a recombination process. This process of generation, acceleration and
recombination undergone by the charge carriers occurs over the time range of a few
picoseconds, hence leading to the emission of broadband THz radiation. A representa-
tive temporal evolution of the pump pulse envelope, of the induced photo-current JJJ(t),
and of the resulting THz field are presented in Figure 3.3B. It is worth stressing that
the semiconductor substrate and the input laser used are interconnected, as the photon
energy of the pulse has to be above the band gap of the semiconductor to efficiently
generate conductive carriers.

Figure 3.3: Mechanism of THz generation in a photo-conductive antenna. A Sketch of the THz
pulses generation though ultrafast optical excitation of the antenna. The ultrafast laser pulse
(∼ 50 fs) excites carriers which are accelerated by the potential Vbias. The resulting charge
separation induces the emission of the THz field. B. Typical electrical and optical response of
the photo-conductive antenna to an optical pump pulse of femtosecond time duration (Picture
taken from [117]).

The typical dependence of the output THz power spectrum generated in the semiconductor-
based photo-conductive antenna is given by [118]:

PTHz(ωTHz) ∼
1

1+ (ωTHzτeff)2
. (3.2)
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Here τeff represents the effective lifetime of the photo-carriers, which is equal to the
lifetime of the non-equilibrium charge carriers in the semiconductor. From Equation 3.2,
we notice that the shorter the lifetime τeff is, the greater efficiency of THz generation
can be obtained. GaAs (Gallium Arsenide) grown by molecular beam epitaxy on a low
temperature substrate (LT-GaAs) is usually chosen as a photo-conductive material, as
this grown method allows to obtain a material with a larger number of defects and
hence with shorter lifetimes of out-of-equilibrium charge carriers (< 200 fs) [118].

The THz emitter employed in the experiments presented in this thesis is fabricated
on a semi-insulating GaAs substrate by depositing the metal electrodes having an inter-
digitated finger-like structure [119–122]. Each electrode is ∼ 1 cm long and 10µm wide.
The gap between two nearby electrodes, which is also the active region, is 10µm. The
total area of the emitter is 1× 1 cm2. Due to such a narrow electrode gap, a bias of
just a few volts on the electrodes creates an electric field of the order of a few kV/cm
in the active region. Now, photo-excitation of the active regions creates charge carriers
in GaAs, which accelerate due to the presence of an applied electric field and emit
THz radiation having polarization parallel to the applied electric field. To avoid the
destructive interference of THz radiated from two neighbouring active regions, each
alternate active region is covered with a metallic layer to avoid the photo-excitation and,
hence, out-of-phase THz generation from those regions.

3.2.2.2 THz detection: Electro-Optical Sampling

The full temporal structure of the THz pulses are commonly detected through Electro-
Optical Sampling (EOS) techniques [123, 124]. EOS is essentially the inverse process
of the optical rectification, mixing the THz pulse with an optical gating pulse in a non-
linear medium through the Pockels effect. In the Pockels effect, a non-linear polarization
PPP is induced in an electro-optical medium according to:

Pi(ω) = 2
∑
jk

χ
(2)
ijkEj(ω)Ek(ω), (3.3)

being χ(2)ijk the non-linear susceptibility tensor. Therefore, a static field induces a birefrin-
gence in the medium proportional to the applied field amplitude. Thus, by measuring
the degree of birefringence, the applied field strength can be determined. This is the
principle of the EOS technique.

The generated THz field and the optical gating pulse co-propagate through the electro-
optical medium. By assuming a matching between the THz phase velocity and the op-
tical group velocity, the short optical pulse experiences a constant electric field due to
the presence of the THz field and its polarization rotates as a consequence of the field-
induced birefringence. The rotation degree is proportional to the THz field strength so
that, if the THz and the gating pulse temporally overlap, a measurement of the polariza-
tion rotation results in a direct measurement of the THz electric field. This is achieved
by propagating the optical pulse through a quarter-wave plate aligned such that in the
absence of the THz field the linearly polarized sampling beam becomes circularly polar-
ized and then through a Wollaston prism. The Wollaston prism splits the optical pulse
into two ortogonally polarized components, which are subsequently detected by two
photodiodes (Figure 3.4), balanced in order to have no differential signal when no THz
is present. Conversely, when the THz field is present, the polarization of the optical
gating pulse slightly rotates and the polarization is hence elliptical after the quarter-
wave plate. In the presence of the THz the two detectors are therefore unbalanced and
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Figure 3.4: Schematic layout of electro-optical sampling (EOS) EO: Non linear Electro-optic
crystal, λ/4: Quarter-wave plate, WP: Wollaston prism. The effect of the presence of the THz
field on the polarization of the gating optical pulse are illustrated beneath.

the differential intensity read on the diodes maps the ellipticity of the sampling beam
and, subsequently, the instantaneous THz electric field (Figure 3.4). By scanning the
relative temporal delay between the optical and the THz pulses and measuring the
THz-induced differential polarization components of the gating beam, it is therefore
possible to temporally map the THz pulse.

3.2.3 terahertz time-domain spectrometer

The layout of the built THz spectrometer based on THz generation in a GaAs-based
photo-conductive switcher is shown in the schematic diagram of Figure 3.5.

Figure 3.5: Schematic layout of the Terahertz time-domain spectrometer. OPA: Optical Paramet-
ric Amplifier, PCA: Photo-Conductive Antenna, TS: Translation Stage, OPM: Off-Axis Parabolic
mirror, λ/4: Quarter-wave plate.

Ultrashort laser pulses (50 fs pulse duration and 745 nm central wavelength) from a
commercial 50 kHz pulsed laser + Optical Parametric Amplifier (OPA) system (Pharos +
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Orpheus-F, Light Conversion) are split into two to form an intense optical beam for THz
generation (6 µJ/pulse) and a weak readout pulse (< 100 nJ/pulse) for time-resolved
Electro-Optical Sampling.

Single-cycle THz pulses are generated via the acceleration of the photoinduced carri-
ers in a large-area GaAs-based photoconductive antenna (PCA). The acceleration of the
free carriers induced by the pump is achieved by biasing the PCA with a square-wave
bias voltage Vbias triggered with the laser at a frequency of 1.25 kHz. We employed a
biasing square wave with a voltage peak of 8.0 V and a 50 % duty cycle. For an efficient
THz generation using 6 µJ pump pulse energy, an area of around 6 mm diameter on the
1 cm2 large emitter is illuminated using a collinear pump beam. Since the diameter of
the excitation area is comparatively much larger than the THz wavelength, the radiated
THz beam has a similar wavefront as the pump beam on the emitter and, hence, follows
the same beam path as the pump beam.

The emitted collimated THz beam is then focused on the sample mounted inside the
cavity, which is placed in the focal plane of two off-axis parabolic mirrors (OPMs). The
THz field and the readout pulse are then combined and focused on a 0.5 mm ZnTe crys-
tal, which acts as the electro-optical crystal. After the electro-optical crystal, the probe
beam, variable delayed in time through a translation stage (TS), is analyzed for its dif-
ferential polarization changes induced by THz in the ZnTe crystal, which maps the time
evolution of the ultrafast THz field. This is carried out by standard Electro-Optical Sam-
pling (EOS), by splitting the two probe polarizations with a Wollaston prism and mea-
suring the differential intensity recorded on a pair of photodiodes (Section 3.2.2.2). The
resulting differential signal is then detected using a lock-in amplifier (SR830, Stanford
Research System) referenced at the frequency of the bias voltage (Vbias). We estimated
the signal-to-noise ratio of the detected THz field to be 4.6× 104 and the temporal phase
stability to be ⩽ 30 fs.

The entire system is purged with nitrogen to eliminate THz absorption coming from
the water vapour in the ambient atmosphere. We show in Figure 3.6A the measured
electric field of the generated THz pulse and its calculated Fourier spectrum (Figure
3.6B). As shown, the input field is, indeed, a nearly single-cycle THz pulse with the
spectral content reaching 6 THz, as highlighted in the logarithmic scale plot in the inset
of Figure 3.6B.

3.2.4 determining thz optical properties

The power of THz time-domain spectroscopy relies in its ability to record both am-
plitude and phase information by direct sampling of the electric field. This provides
amplitude and phase information on the transmission (or reflection) coefficients of the
targeted sample, which in turns yields both real and imaginary parts of the complex
dielectric function within the spectrum of the THz pulse. This aspect is of major ad-
vance over the FTIR techniques commonly used in the cavity field [18, 30, 61, 110–112],
which only provide power spectra and rely on Kramers-Kronig methods to determine
the optical constants.

In this section we outline the basic procedure for obtaining the complex dielectric
constant and complex optical conductivity of a medium from measurements of the
THz transient field. Since the samples of interest for this thesis are all transparent within
the THz range, all experiments are carried out using transmission measurements only.
Therefore, only the transmittivity will be considered in the following treatment, though
the analysis can be analogously applied to the reflection coefficients.
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Figure 3.6: Employed THz pulses generated by the photo-conductive antenna. A. Free space
nearly single-cycle THz field employed in the experiments detected through Electro-Optical-
Sampling (EOS) in a 0.5 mm ZnTe crystal. B. Fourier transform of the nearly single-cycle THz
field in free space. In the inset, the Fourier spectrum is plotted in logarithmic scale to highlight
the spectral content of the THz field up to ∼ 6 THz. The black dashed line in the logarithmic
plot marks the spectral noise level.

3.2.4.1 Complex optical constants

The optical properties of a given medium can be described by the dielectric constant
ϵ̃(ω), the optical conductivity σ̃(ω), and the complex refractive index ñ(ω), all of which
are, in general, complex quantities:

ϵ̃(ω) = ϵ1(ω) + iϵ2(ω),

σ̃(ω) = σ1(ω) + iσ2(ω),

ñ(ω) = n(ω) + iκ(ω),

(3.4)

where n(ω) is the refractive index and κ(ω) the absorption coefficient [125]. The com-
plex refractive index is related to the complex dielectric constant through the relation:

ñ2(ω) = ϵ̃(ω). (3.5)

The general relation between the dielectric constant and the complex conductivity can
be hence shown to be:

ϵ̃(ω) = ϵ1(ω) + i
σ1(ω)

ωϵ0
, (3.6)

where ϵ0 is the free space permittivity, ϵ1(ω) describes the motion of bound charges,
and σ1(ω) describes that of free charges, in the limit of low near-DC driving frequen-
cies. Nonetheless, at higher frequencies, especially in the optical range, the response of
free and bound charges to fast oscillating fields changes significantly from the lower
frequency case, and the distinction between free and bound charges becomes one of
convention [126]. It is therefore possible to redefine the relation between the dielec-
tric constant and the complex conductivity in order to include the response of all the
charges (bound and free) into the conductivity term:

ϵ̃(ω) = 1+ i
σ̃(ω)

ωϵ0
. (3.7)
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The previous relation also allows in converting back and forth between ϵ̃(ω) and σ̃(ω),
since the real and imaginary parts of ϵ̃(ω) and σ̃(ω) can be expressed in terms of each
other as:

σ1(ω) = ωϵ0ϵ2(ω)

σ2(ω) = ωϵ0(1− ϵ1(ω))
(3.8)

The latter relations will be exploited to map the THz absorptive (σ1) and inductive (σ2)
contributions to the dielectric response of the targeted materials.

3.2.4.2 Analysis of the THz time domain measurements

After having established the definitions of the optical constants and their mutual rela-
tions, we show in this section how to recover them from the experimental measurements.
The experimental procedure involves the measurements of electric fields transmitted
through the samples under investigation. In all the investigated samples we will work
under the so called "thin film approximation". In this configuration the sample’s optical
length is less than the geometrical length of the THz pulse. Therefore, in this case it
is not possible to distinguish in the time-domain trace the multiple reflections of the
THz field within the sample’s surfaces. For the THz fields employed in the experiments
we estimate a pulse width in free space of τTHz ∼ 0.25 ps, corresponding to an optical
thickness of 75 µm.

By denoting with t12 and t21 the complex Fresnel coefficients associated to the light
passing into and out of the sample, the THz field transmitted through the sample Es(ω)

can be expressed as a function of the incident THz field E0(ω) as:

Es(ω) = E0(ω)t12t21e
i
ñ(ω)ωd

c

= E0(ω)t12t21e
−

κ(ω)ωd
c ei

n(ω)ωd
c

(3.9)

where d is the sample’s thickness.
By dividing the Fourier spectrum of the THz pulse passing through the sample Es(ω)

by the Fourier spectrum of a reference spectrum passing through air, we can obtain the
complex transfer function1:

H(ω) =
Es(ω)

Er(ω)
= T(ω)eiϕ(ω) = t12t21e

−
κ(ω)d

2 eid(n(ω)−1)ω
c . (3.10)

By supposing that the targeted material is low absorptive, the imaginary part of the
Fresnel coefficients can be neglected, and the real and imaginary part of the material’s
refractive index can be expressed in terms of ϕ(ω) and T(ω) as:

n(ω) = 1+
ϕ(ω)c

ωd
(3.11)

κ(ω) = −
1

d
ln
(
(n(ω) + 1)2

4n(ω)
T(ω)

)
. (3.12)

We note that for calculating the complex refractive index one needs to extract the phase
ϕ(ω) from the experimental transfer function H(ω) through the equation:

ϕ(ω) = arctan
(
Re(H(ω))

Im(H(ω))

)
. (3.13)

1 In the present equation we have set nair = 1 and supposed normal incidence, so that the angular
dependence of the Fresnel coefficients can be neglected (see Equation 2.40).



3.3 characterization of the bare terahertz cavity 41

Because of the periodicity of the arctan function the phase is hence not continuous
and displays jumps of 2π, which has to be corrected through a phase unwrapping
procedure.

We present in Figure 3.7 an example of optical constants extraction, corresponding to
the low temperature phase of a 15 µm 1T-TaS2 sample (see Chapters 6, 5 for further de-
tails). The measured transmitted THz field is shown in Figure 3.7A, while the extracted
real and imaginary part of the optical conductivity are shown in Figures 3.7B and 3.7C,
respectively. Both the absorptive (σ1) and the inductive (σ2) response of the material
mark the presence of optical THz phonons whose origin will be discussed in Chapters
6, and 5.

Figure 3.7: Extraction of THz optical constants. A. Time domain THz field transmitted through
a 15 µm 1T-TaS2 sample at 80 K. B. Extracted real part of the optical conductivity σ1(ω). C.
Extracted imaginary part of the optical conductivity σ2(ω).

3.3 characterization of the bare terahertz cav-
ity

We present in this section the characterization of the optical properties of the tunable
THz cavity. Firstly, we will present the estimation of the quality factor of the employed
Fabry-Pérot cavities, which sets the photon confinement. Secondly, we will character-
ize how the cavity resonance evolves in temperature and illustrate the procedure for
correcting the thermal drift of the cavity length employed in all the temperature scans
presented in the thesis.

3.3.1 empty cavity characterization at low temperature

In this section, we present the characterization of the response of the empty THz cavity
at low temperature (80 K), i.e. when the THz field passes only through the silicon
nitride membranes within the mirrors. With this characterization, the quality factor of
the cavity can be determined. As described in Section 2.1.1, the cavity quality factor
is a crucial parameter for the experiment, setting the photon lifetime inside the cavity
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and, hence, the coupling strength between the cavity mode and the targeted material
resonance.

In order to minimize the photon losses and, hence, maximizing the cavity quality
factor, the two cavity mirrors were set parallel to each other and perpendicular to the
THz incoming beam. This was obtained by aligning the multiple reflections of the pump
beam, which is made collinear with THz by the generation process. The alignment
was then finely tuned by maximizing the THz field peaks in the time domain trace
associated with the multiple reflections of the THz beam within the cavity.

The results of the characterization are presented in Figure 3.8 where we plot the time
domain THz field transmitted through the Fabry–Pérot empty cavity and the corre-
sponding spectral content for three representative values of the cavity length.

Figure 3.8: THz spectroscopy of the empty cavity at 80 K for representative distances L be-
tween the cryogenic mirrors A. Measured time-resolved THz fields transmitted through the
empty cavity at 80 K. B. Corresponding transmission spectra showing the tunability of the cav-
ity fundamental resonance mode (m = 1). For the presented measurements the thickness of the
gold layer on the semi-reflecting mirrors is dAu = 10 nm.

The transmission spectra are obtained by taking the ratio between the Fourier spec-
trum of the time domain THz traces shown in Figure 3.8A and the reference free-space
spectrum shown in Figure 3.6B. The latter was measured once at the beginning of each
measurement campaign and once at the end. This is justified by the amplitude and
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phase stability of the free-space THz field discussed in Section 3.2.3. We estimated the
contribution to the cavity transmission error due to an amplitude variation in the refer-
ence THz field in the spectral range 0.5− 2.5 THz to be ∼ 45 times less than the relative
amplitude variation in the cavity filed.

The time-dependent detected fields (Figure 3.8A) show that when the nearly single-
cycle THz pulse passes through the cavity, it is repeatedly reflected by the mirrors with a
round-trip time set by the cavity length. This causes the nearly single-cycle THz field to
be stretched to a multi-cycle decaying oscillating field with a decay time set by the cavity
quality factor. This results in transmission spectra (Figure 3.8A) exhibiting interference
Fabry-Pérot modes with their frequency determined the ωm = c

2nLm, where L is the
length of the cavity, n the refractive index of the medium inside the cavity, and m is the
mode number. The estimated quality factor of the cavity at 80 K, defined as the ratio
between the fundamental cavity mode and its bandwidth at a fixed cavity length, is
Q ∼ 6.0.

Cavities with higher quality factors can be produced by depositing a thicker gold
layer on the quartz mirror substrates. Increasing the thickness of the gold layer will
increase the bare cavity quality factor and, hence, lead to a sharper cavity resonance.
On the other hand, increasing the layer thickness will decrease the intensity of the
transmitted signal and overall the signal-to-noise ratio of the detected THz field. It
should be noted that the ideal gold layer thickness should be chosen as a trade-off
between the two quantities and depends on the experimental goals.

3.3.2 thermal evolution of the cavity resonance

The developed THz cavity allows for performing temperature-dependent studies of the
light-matter hybrids. It is therefore crucial to characterize how the bare cavity properties
evolve with temperature to subsequently correct possible thermal drifts.

Figure 3.9A presents the thermal evolution of the empty cavity transmission mea-
sured in the range 80− 280 K. A thermal drift of the cavity resonance is detected. The
thermal drift is quantified in Figure 3.9B where we present the thermal variation of the
cavity length ∆L estimated from the cavity transmission resonances. Overall, a length
variation of ∼ 55 µm is detected within the employed temperature range, consistent
with a linear thermal expansion of the copper mirrors mounts [127].

Importantly, as shown in Figure 3.9C, the thermal drift of the cavity length does not
significantly affect the quality factor of the cavity. This implies that the cavity align-
ment, which in turn sets the Q factor of the Fabry-Pérot resonator, can be considered
temperature-independent.

Given these evidences, we schematic present in the following the procedure to ac-
count for thermal drifts of the cavity resonance which, obviously, become more impor-
tant at higher cavity frequencies. The employed procedure for correcting this thermal
drift and subsequently obtain a temperature scan at a fixed cavity mode is the following:

• We set the bare cavity frequency at 80 K by measuring its THz interference spec-
trum (Figure 3.8).

• For the cavity length set at 80 K, we run the temperature scan and measure the
temperature-dependent THz transmission of the coupled cavity.

• For each spectrum obtained at fixed temperature we assign an effective cavity
length. This can be estimated by fitting the thermal variation of the cavity length
∆L for a representative empty cavity resonance (see the polynomial fit of Figure
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Figure 3.9: Temperature dependence of the empty cavity properties A. Evolution of the empty
cavity THz transmission as a function of the temperature (measured on the sample’s mount). B.
Thermal shift of the cavity length (∆L) estimated from the THz transmission spectra in A. In
blue solid the corresponding polynomial fit. C. Quality factor of the empty cavity as a function
of the temperature estimated from the THz transmission in A. As in Figure 3.8, the thickness of
the gold layer on the semi-reflecting mirrors is dAu = 10 nm.

3.9C). In this way, each cavity spectrum can be labelled through its temperature
and through its effective cavity length.

• We collect all the cavity spectra sharing the same effective cavity length and con-
struct the corrected temperature scan, in which the thermal drift of the cavity
resonance is removed.

In conclusion, the developed set-up allows to study the Terahertz optical properties
of low energy degrees of freedom in crystalline solid samples coupled with a tunable
optical cavity in cryogenic environment. The unique feature implemented in the set-
up lies in its capability of tuning the cavity resonance at cryogenic temperatures. The
light–matter hybrids are characterized with a broadband THz nearly single-cycle field
generated in a photo-conductive switcher and with a frequency content of up to 6 THz.
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The use of broadband THz fields is particularly crucial in this sense as it allows for the
simultaneous characterization of the empty cavity and the cavity hybridized with the
contained material.

The capability of the set-up of tuning the cavity resonance combined with its capa-
bility of performing temperature-dependent studies in a wide range of cryogenic tem-
peratures makes it a versatile platform for the study of how light–matter hybridization
of different low energy excitations may affect the macroscopic properties of complex
materials, as we will show in the following chapters.





4
V I B R AT I O N A L S T R O N G C O U P L I N G
I N C u G e O 3

In view of the intriguing possibilities offered by electronic strong coupling as a mean to
modify the excited state properties of complex systems, achieving analogous behaviours
within the electronic ground state manifold, i.e. through the strong coupling of vibra-
tional transitions [27, 30, 110, 128–132] , would be a crucial step towards new material
science and chemistry.

When photons are hybridized with specific vibrational modes, the physical and op-
tical properties of those vibrations, such as the excited state lifetime [133], emissivity
[134], Raman scattering dynamics [135], and phonon non-linearites [136] in the ground
electronic state can change. Since the frequency of the normal mode vibration shifts
under strong coupling with the cavity field, the ground state potential well can be as
well modified [18, 137]. This fascinating perspective has stimulated the condensed mat-
ter community to apply the vibrational strong coupling framework in phonon-assisted
collective phenomena in quantum materials, such as superconductivity [57], ferromag-
netism [58], or ferroelectricity [51, 52].

We report here the experimental demonstration of the vibrational strong coupling
regime in the benchmark material CuGeO3. Crystalline CuGeO3 is an ideal platform
wherein to test the potentiality of the developed set-up to detect the features associated
with the strong coupling of THz vibrational excitations. Indeed, it is a dielectric mate-
rial exhibiting a strong optical-active phonon mode in the THz range with smoothly
varying line parameters as a function of the temperature. We are therefore in a suitable
setting to detect how the signatures of vibrational strong coupling directly emerge in
the measured THz spectrum and to verify the consistency of the experiments with the
light-matter interaction models presented in Chapter 2.

Firstly, we demonstrate the strong coupling of the CuGeO3 optical phonon at cryo-
genic temperature (80 K). The strong coupling within the cavity leads to the formation
of new phonon-polariton modes which we experimentally observe in the time domain
as a normal mode beating, corresponding in the Terahertz spectrum to an avoided
crossing. We further validate the strong coupling regime by comparing the experimen-
tal results with the predictions of the coupled oscillator model and with Transfer-matrix
classical simulations, which we prove to reproduce the measured polariton dispersion.
We lastly vary the temperature and prove that the line changes of the bare phonon are
mapped in a thermal modification of the linewidth and frequency of the vibro-polariton
lines. This leads to a slight enhancement of the Rabi splitting at high temperature which
we relate to a decrease of the bare phonon lifetime.

4.1 thz spectroscopy of CuGeO3 normal phase

In this section the static Terahertz properties of the benchmark material CuGeO3 are
presented. CuGeO3 is an insulating crystal belonging to the family of cuprates. Its
room temperature crystalline structure is presented in Figure 4.1A and takes the name

47
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of "normal" or "undistorted" phase. The building blocks of the crystal structure are the
Cu2+ and Ge4+ chains parallel to the c axis. These chains are bounded together through
the oxygen atoms and form layers parallel to the b-c plane weakly coupled along the
a axis [138–141]. CuGeO3 is extensively studied for its peculiar magnetic behaviour
revealing the onset of a spin-Peierls phase (below 14 K) in which the lattice distortion
is accompanied by the formation of a spin-singlet ground state and by the creation of
an energy gap in the spectrum of magnetic excitations [139, 140, 142–144].

A full review of the spin-Peierls physics in CuGeO3 goes beyond the scope of the
chapter. CuGeO3 is indeed chosen as a playground to explore vibrational strong cou-
pling at THz frequencies since it exhibits a strong Cu-O optical-active vibrational mode
within the employed THz range (ωphon ∼ 1.45 THz). This mode is associated with the
rotation (accompanied by a slight internal distortion) of the GeO4 tetrahedra around the
axis defined by the oxygen sites and presents a B2u symmetry [139, 145], which makes
it IR-active. The optical activity of the targeted phonon mode is a crucial ingredient in
the strong coupling framework [146]. Indeed, it is the dipole moment change associated
to the vibrational excitation which, in terms of the phonon normal coordinates Qk can
be written as:

µ = µQk=0 +

(
∂µ

∂Qk

)
Qk=0

Qk, (4.1)

which couples to the cavity electric field.
The targeted B2u mode shows an anomalous monotonic blue shift across the undis-

torted phase when the temperature is increased from 14 K to 300 K together with a line
broadening due to phonon thermal population [139, 140]. These features make therefore
this phonon a suitable benchmark target to measure how the temperature dependence
of its line parameters is mapped onto the vibro-polariton states when the phonon is
strongly coupled with a resonant cavity mode.

Figure 4.1: Terahertz linear spectroscopy of CuGeO333. A. CuGeO3 crystal structure in the nor-
mal phase. B. CuGeO3 static transmission at 80 K of THz ligth polarized along the a and the b
axis measured in the open cavity configuration. Along the b axis an IR-active phonon is detected
at 1.45 THz.

Due to symmetry selection rules [145] the targeted B2u phonon can be measured only
with a THz electric field polarized perpendicular to the magnetic chains (and hence
lying along the b axis), while no absorption is present at the phonon energy when the
THz radiation is polarized along the chains (and hence along the a axis). For this reason
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the sample was oriented in order to have the b axis lying along the same direction of
the input THz field.

The frequency-dependent transmission at 80 K of the 20 µm thick CuGeO3 crystal
employed in this study is presented in Figure 4.1B in the cases when the THz field
is polarized along the a and along the b axis. The 80 K b axis transmission spectrum
exhibits a sharp absorption at ωphon = 1.45 THz associated with the B2u mode, while
no absorption is present when the THz electric field lies along the a direction.

We clarify that both the transmission spectra presented in Figure 4.1B are measured
in the open cavity configuration, i.e. when the distance between the two cavity mirrors
is such that the fundamental cavity frequency lies far below the targeted phonon. In this
setting, the frequency of the cavity fringes is smaller than the frequency resolution of
the spectrum and the measured sample transmission can be regarded as the free space
one with only a damping coefficient (∼ 5% transmission) due to the absorption of the
two semi-reflecting mirrors.

4.2 phonon strong coupling evidences at 80 k

After having characterized the bare phonon response we examined the 80 K response
of the sample placed in the center of cavities with resonances across the phonon absorp-
tion. We will firstly examine the resonant configuration, i.e. when the distance between
the mirrors is set in order to have the first-order cavity mode resonant with the CuGeO3

vibrational mode. We will then change the cavity resonance, map the vibro-polariton
dispersion and prove that it exhibits the anti-crossing feature characteristic of the strong
coupling regime (cfr Section 2.2).

4.2.1 resonant cavity measurements

We present in Figure 4.2 the THz transmission spectrum obtained when the cavity is
resonant to the targeted 1.45 THz CuGeO3 phonon. The spectrum of the coupled system
(blue solid line) is plotted together with the free space phonon transmission (red dashed
line) and the empty cavity transmission at the phonon frequency (black dashed line).
The estimated quality factor of the empty cavity at 80 K , defined as the ratio between
the fundamental cavity mode (ωcav = 1.45) and its FWHM1, is Q = 6.3.

We note that the hybrid sample-cavity system exhibits a splitting in its spectral re-
sponse around the phonon frequency with a frequency separation greater than both the
dissipative response of the free space phonon and the cavity linewidth, which quantifies
the photon dissipative rates inside the bare cavity. The measured double-peaked spec-
tral structure is a peculiar feature of a normal-mode splitting arising from the strong
coupling between the cavity and the vibrational mode [17–20, 22, 23, 25–28, 30–33, 61].

We stress that the spectrum measured within the resonant cavity cannot be simply
ascribed to a trivial phonon absorption from a field with the spectral content of the
empty cavity field (black dashed line in Figure 4.2). The absorption at the phonon fre-
quency from a spectrally-shaped THz field would also yield a double-peaked structure.
However, in that case the separation between the two peaks will be dominated by the
phonon linewidth rather than by the strength of the coupling between the phonon and
the cavity field. In the measured spectrum, the phonon linewidth is significantly nar-
rower than the observed splitting, hence validating the fact that the two measured bright
peaks can be associated with the hybrid vibro-polariton states.

1 Full Width Half Maximum.
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Figure 4.2: Normal-mode splitting of CuGeO333 phonon-polaritons at 80 K. Static transmission
of CuGeO3 at 80 K in a cavity of length with the fundamental frequency resonant to the phonon
one. Strong coupling between the phonon and the cavity modes results in a spectral splitting
into two new modes: Upper Polariton (UP) and Lower Polariton (LP) with a separation ΩR
greater than either the free space phonon linewidth (red dashed curve) and the empty cavity
linewidth at the resonance frequency (black dashed curve).

The energy separation between the two vibro-polariton states (Rabi splitting) is esti-
mated to be ΩR = 0.32 THz. The measured Rabi splitting at 80 K is approximatively the
22 % of the bare phonon frequency (ωphon = 1.45 THz), placing the hybridized system
closed to the ultrastrong coupling regime [17].

Thanks to the intrinsic phase-resolution of THz spectroscopy, the fingerprints of the
vibrational strong coupling regime are visible also in the THz field exiting the coupled
cavity. In order to illustrate this, we present in Figure 4.3 the comparison of the mea-
sured THz fields exiting the bare cavity (Figure 4.3A) and the bare material (Figure 4.3B)
with the THz field detected at the output of the resonant hybrid system (Figure 4.3C).
We note that, while in the bare systems the THz field decays as a single exponential with
the lifetime set by the bare cavity and phonon dissipations, in the strongly coupled con-
figuration the signal is an exponentially decaying field modulated by a periodic beating
of period 1/ΩR = 3.1 ps (cfr Figure 2.5). This periodic modulation corresponds to co-
herent Rabi oscillations and indicates that there is a coherent energy exchange between
photons and phonons at a rate ΩR = 0.32 THz occuring inside the resonant cavity. We
note, indeed, that if there were no splitting associated with the strong coupling regime,
the cavity and the vibrational mode would be frequency-degenerate at resonance and
therefore exhibit no temporal beating.

We highlight that Rabi oscillations occurring under strong coupling of molecular
excitations were previously observed probing the excited state population with non-
equilibrium pump-probe studies [147]. Conversely, here we are able to detect the Rabi
oscillations directly in the static electric field transmitted through the coupled cavity.

As shown in Figure 4.4A, in addition to the two vibro-polaritons, the second-order
cavity mode (m = 2) is also located within the input THz bandwidth. Therefore, the
input THz pulse probes a superposition of the polaritonic states with the second-order
uncoupled cavity mode. This gives rise to higher frequency components within the
raw output field (Figure 4.4B) which may hide the coherent Rabi oscillations. For this
reason, we have filtered the raw time-domain signal with a band-pass filter [32] in order
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Figure 4.3: Time-domain THz fields exiting the uncoupled systems and the strongly coupled
system. A. THz trace measured at the output of the resonant 1.45 THz empty cavity. B. Measured
time-resolved THz field transmitted through the 20 µm CuGeO3 sample in the open cavity
configuration. C. Raw THz field exiting the coupled 1.45 THz cavity. Coherent Rabi oscillations
associated with the strong coupling regime can be seen in the raw field.

to exclude all the frequencies outside the 0.4− 2.5 THz range. The filtered time-domain
field is presented in Figure 4.4C. As can be seen, this filtering procedure of the time-
domain data allows us to examine the evolution of the emitted field at frequencies
around the resonance (1.45 THz) and, hence, to highlight more clearly the coherent
energy exchange between photonic and phononic degrees of freedom associated with
strong coupling.

Figure 4.4: Spectral filtering of the cavity fields. A. Full frequency transmission spectrum show-
ing the first order cavity mode strongly coupled to the phonon and the second order uncoupled
mode. In the dashed box the filtering region. B. Raw THz field exiting the cavity at resonance.
C. THz field obtained filtering in the region 0.4− 2.5 THz the resonant raw field shown in B.

It is important to highlight that the measured Rabi splitting between the polaritonic
modes (Figure 4.2) is not induced by the incoming THz pulse. The THz field instead
acts only as a probe for the coupled states generated with the interaction with the cav-
ity mode [18, 94]. Therefore, in order to verify that the Rabi splitting is not induced
by the THz pulses, we repeated the measurement in the resonant condition with lower
strengths of the incoming THz field. This was achieved by tuning the bias of the photo-
conductive antenna. Figure 4.5 shows the power spectra and the corresponding trans-
missions for five different strengths of the incoming THz field. The results show that,
for the THz field strengths employed in the experiment, there is no dependence of the
polaritonic resonances and linewidths on the THz intensity. This confirms that the THz
field acts only as a probe of the coupled modes.
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Figure 4.5: Dependence of the phonon-polariton modes on the strength of the THz field. A.
Power spectra at the output of the resonant cavity measured with different input pulse inten-
sities. B. Corresponding transmission spectra. The black vertical lines mark the measured Rabi
splitting ΩR.

4.2.2 tunable cavity measurements : mapping polariton dis-
persion

After having characterized the signatures of the vibrational strong coupling of the B2u
phonon in the resonant cavity condition, we tuned the resonance of the cavity at 80 K
and measured the anti-crossing behaviour between the two polaritonic states.

This is a distinctive feature of the strong coupling regime and corresponds to the
creation of two separate polaritonic branches that do not intersect when the cavity res-
onance lies within the absorption band of the targeted excitation [17–20, 22, 23, 25–
28, 30–33] (cfr Figure 2.4). We tracked the emergence of the two polariton branches by
symmetrically tuning the position of the two mirrors around the resonant cavity mode
(ωcav = 1.45 THz), which is, therefore, tuned across the phonon frequency.

In Figure 4.6A we plot the THz transmission for each configuration of the mirrors and
the obtained dispersion of the polaritonic branches as a function of the cavity frequency.
The measured evolution of the transmission spectra shows that when the cavity is tuned
away from the vibrational resonance at 1.45 THz, the frequencies of the polariton modes
shift with respect to the resonant case (Figure 4.2), and their relative spectral weight is
also modified. Indeed, as highlighted in Figure 4.6A, when the frequency of the cavity
fundamental mode is different with respect to the phonon one, the energies of the two
polariton branches approach the ones of the uncoupled system (black and red dashed
lines of 4.6A). Conversely, under the resonant condition (ωcav = ωphon) the measured
difference between the polariton energies and the uncoupled systems ones is maximum.
This results in the measured avoided crossing around the vibrational mode frequency.

In 4.6B we present the evolution of the filtered time-domain THz fields exiting the
cavity for different detuning ∆ω = ωcav −ωphon around the phonon frequency. The
data show that tuning the cavity mode away from the vibrational resonance is mapped
in the time domain with a damping of the coherent Rabi oscillations with respect to the
resonant case ∆ω = 0.
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Figure 4.6: Dependence of the phonon-polariton states on the cavity frequency. A. Frequency
dispersion of CuGeO3 phonon-polaritons at 80 K. The red dashed line marks the uncoupled
phonon frequency ωphon = 1.45 THz, while the black dashed one marks the uncoupled cavity
mode ωcav. B. Evolution of the filtered THz fields exiting the cavity at 80 K for different detun-
ings ∆ω = ωcav −ωphon.

4.3 modelling phonon strong coupling in CuGeO3

In the previous section we have experimentally proved the strong coupling regime of the
B2u mode in CuGeO3 at 80 K. In this section we will take advantage of the linear mod-
els presented in Chapter 2 to simulate the experimental spectra. In particular, we will
exploit the coupled oscillator model to estimate the mixing wave-function components
of the polaritonic states and the Trasfer-matrix method to simulate the full transmission
spectra at all the detunings and gain insight about the polaritons’ linewidth. We will
lastly prove that, thanks to the high oscillator strength of the targeted mode, the em-
ployed quality factor (Q = 6.3) is sufficient to overcome the strong coupling threshold.

4.3.1 estimation of the components of the polariton wave-
functions

Let us model the vibrational strong coupling in CuGeO3 as the interaction between N
dipole-active phonons with a single tunable cavity mode. Recalling the Tavis-Cummings
approximation within the coupled oscillator model (Section 2.2.1) the upper and lower
polariton wave-functions (|LP⟩, |UP⟩) can be expressed on the uncoupled phonon/cavity
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bases as follows (cfr Equation 2.25):

|LP⟩ = XLP
cav(∆ω)|G, 1⟩+XLP

phon(∆ω)

N∑
i=1

|ei, 0⟩

|UP⟩ = XUP
cav(∆ω)|G, 1⟩+XUP

phon(∆ω)

N∑
i=1

|ei, 0⟩

(4.2)

In Equation 4.2 we have indicated with |G, 1⟩ the purely cavity state in which we have
no phonon excitations and one photon inside the cavity, and with

∑N
i=1|ei, 0⟩ the purely

vibrational state in which the cavity is in its ground state |0⟩ and each vibrational dipole
is in its first excited state |ei⟩. Importantly, for each value of the cavity detuning ∆ω,
the coefficients of the polaritonic wave-functions expressed in Equation 4.2 must satisfy
the relation : XLP

phon(∆ω) = XUP
cav(∆ω)

XLP
cav(∆ω) = −XUP

phon(∆ω)
(4.3)

|X
LP/UP
cav (∆ω)|2 and |X

LP/UP
phon (∆ω)|2 are therefore the cavity and phononic fraction of

the lower/upper polariton wave-function [79] and can be expressed as a function of the
collective coupling constant gc = g

√
N = 2ΩR as:

|X
LP/UP
cav (∆ω)|2 =

1

1+

(
ELP/UP(∆ω) −ωphon

gc

)2

|X
LP/UP
phon (∆ω)|2 =

1

1+

(
gc

ELP/UP(∆ω) −ωphon

)2

(4.4)

where ΩR is the Rabi splitting measured in the resonant configuration (∆ω = 0). For
the present setting we estimated ΩR = 0.32 THz (Figure 4.2). Therefore, by extracting
the vibro-polariton energies form the dispersion measured in Figure 4.6A and using
Equation 4.4 we can estimate within the coupled oscillator framework the wave-function
components of the hybrid states.

Figure 4.8A shows the measured frequencies of the upper and lower polariton branches
as a function of the cavity fundamental frequency. The latter have been obtained by fit-
ting for each value of the cavity length a two oscillator asymmetric Voigt function [148,
149] to the experimental transmission spectra of Figure 4.6A2. A representative fitted
spectrum is presented in Figure 4.7.

The estimation of the phonon and cavity fractions of the lower and upper polariton
branches are shown in Figures 4.8B, and 4.8C respectively. We note that, as the lower
polariton branch approaches the vibrational energy ωphon, its phononic (cavity) frac-
tion increases (decreases). Conversely, as the upper polariton branch approaches the
cavity dispersion ωcav, its cavity (phononic) fraction increases (decreases). Within the
coupled oscillator framework we are therefore able to demonstrate that the CuGeO3

vibro-polaritons exhibit more phonon-like or cavity-like physical properties depending

2 We modelled the asymmetry with a Voigt lineshape with a frequency-dependent linewidth

Γ(ω) =
2Γ0

1+ ea(ω−ω0)
, where a is the asymmetry parameter, Γ0 the frequency-independent linewidth,

and ω0 the central frequency of the oscillator.
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Figure 4.7: Fitted polariton spectrum of strongly coupled CuGeO333. Fit of the transmission
spectrum of the strongly coupled B2u phonon with a two mode asymmetric Voigt function. In
black dot the raw data, in blue (red) the deconvoluted lower (upper) polariton components of
the experimental spectrum.

on the detuning. This aspect is of major importance for the polaritonic field in processes
like polariton Bose-condensation [80–82] or polariton lasing [83–85].

Importantly, as highlighted in Figures 4.8B and 4.8C, the estimated cavity (phonon)
fractions of the upper and lower polariton wave-functions crosses when the detuning
of the cavity approaches the frequency of the vibrational mode ωphon = 1.45 THz,
i.e. near the resonant configuration. In this case we note that |XLP

cav|
2 ≃ |XUP

cav|
2 ≃ 0.5 ,

and |XLP
phon|

2 ≃ |XUP
phon|

2 ≃ 0.5. Our estimation confirms therefore that on resonance
the vibro-polariton states are in a superposition of a half cavity state |G, 1⟩ and a half
excited phonon state

∑N
i=1|ei, 0⟩.

To further consolidate the estimations presented in Figure 4.8, we computed the sum
of the cavity and photon components of the upper and lower branches as a function of
the detuning. We show that the normalization condition |XLP

cav|
2 + |XUP

cav|
2 = |XLP

phon|
2 +

|XUP
phon|

2 = 1 is satisfied within the errors for the estimated phonon fraction (Figure
4.9A), and, symmetrically, for the cavity fraction (4.9B). This validates the accuracy of
the estimations presented in Figure 4.8.
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Figure 4.8: Estimated wave-function components of the cavity-phonon hybrid states. A. THz
vibro-polariton branches of strongly coupled CuGeO3. The points correspond to the mea-
sured polariton peaks, obtained by scanning the cavity resonance across the phonon absorption
(marked by the horizontal dashed line). B. Photon fraction of the lower (blue) and upper (red)
polariton wave-function as a function of the cavity frequency obtained. C. Phonon fraction of
the lower (blue) and upper (red) polariton wave-function as a function of the cavity fundamen-
tal mode. The polariton wave-function components presented in B. and C. have been estimated
within the coupled oscillator model (Equation 4.4).

Figure 4.9: Sum of the cavity and phonon fraction of the polaritonic wave-functions. A. Sum
of the photon fraction of the upper and lower polariton wave-functions. B. Symmetrical sum
of the phonon fraction of the upper and lower polariton wave-functions. The black dashed line
marks the normalization condition |XLP

cav|
2 + |XUP

cav|
2 = |XLP

phon|
2 + |XUP

phon|
2 = 1.
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4.3.2 transfer-matrix simulations

In order to simulate the full transmission spectra of the coupled cavity at 80 K we
exploited the classical Transfer-matrix method, which, in the linear regime, gives the
same predictions of the fully quantum model [60, 94, 95] (see Section 2.4.1).

For the simulations, we used the experimentally measured refractive index of gold
[96] to model the cavity mirrors and then tuned the thickness of the gold layer to match
the polaritons’ linewidth measured on resonance (Figure 4.2). We followed this proce-
dure since it should be noted that the polaritons’ linewidth is greater than the bare
cavity mode (black line in Figure 4.10A), even though the bare phonon is sharper, and
hence longer lived, than the cavity mode. Within a coupled oscillator framework we
would have instead expected the polaritons’ lifetime corresponding to the average of
the coupled modes [60, 150] (see Section 2.2.1). This is evidence can be ascribed to the
fact that the empty cavity spectrum shown in black in Figure 4.10A is not representa-
tive of the effective cavity mode because it is measured outside the CuGeO3 sample
and, therefore, does not take into account all the incoherent scattering losses due to the
presence of the sample’s full dielectric environment. By fitting with the Transfer-matrix
method the polaritons’ linewidth on resonance we can therefore extract the effective
cavity resonance (red dashed line of Figure 4.10B) which has been adopted for all the
simulations. The latter corresponds to an empty cavity with mirrors having the gold
layer with an effective thickness deff = 1.8 nm.

The interaction of the single cavity mode with the phonons can be modelled classi-
cally by including in the Transfer-matrix simulations the frequency-dependent complex
dielectric function of the sample [151]. The complex dielectric function ϵ̃(ω) of CuGeO3

is accurately described in the THz range by a Lorentz–Drude model [97]:

ϵ̃(ω) = ϵ∞ +

n∑
j=1

Sj
ω2

0j

ω2
0j −ω

2 − iωγj
. (4.5)

The first term ϵ∞ represents the high frequency part of the dielectric constant. Con-
versely, the second term gives the contribution to the dielectric constant from the jth

Lorentzian phonon oscillator, where Sj is the oscillator strength, ω0j is the vibrational
frequency, and γj the phonon linewidth. Note that, since the system is insulating [139,
140], there is no Drude contribution to the static dielectric function.

Table 4.1 lists the fit parameters for Equation 4.5 for bare CuGeO3 at 80 K. The data
and the corresponding fit for the 20 µm CuGeO3 sample are shown in Figure 4.10B.3

ϵ∞ = 2.5 j ω0j [THz] γj [THz] Sj

1 1.45 0.076 0.41

2 4.97 0.052 0.46

Table 4.1: Lorentz fit parameters for bare CuGeO333 at 80 K. The higher frequency phonon has
been added to fit the transmission background around the B2u low energy phonon.

3 We precise that the spectrum presented in Figure 4.10B is measured in the open cavity configuration.
Before fitting the data we have therefore divided the spectrum for the total transmission of the mirrors
(5 %), which is frequency-independent in the employed frequency range.



58 vibrational strong coupling in CuGeO3

In Figure 4.10C we present the simulated Transfer-matrix results for the coupled sys-
tem (green lines) and their comparison with the measured spectra (blue lines) for three
representative values of the detuning ∆ω. In the simulations, we fixed all the parame-
ters except for the thickness of the air gap between the sample surfaces and the tunable
mirrors which therefore sets the cavity fundamental resonance. In the simulations, the
exact detuning for each cavity length has been extracted by removing the contribution of
the vibrational resonance to the dielectric function of CuGeO3 and taking into account
only its background index of refraction.

Figure 4.10: Comparison of the cavity transmission spectra with the Transfer-matrix model
A. Comparison between the measured empty cavity spectrum at resonance (black line) and the
effective empty cavity spectrum (red dashed line) adopted in the simulations to take into account
the incoherent broadening of the cavity line. B. Phonon transmission at 80 K in the open cavity
geometry (black line) and its fit with a Lorentz model (red line). C. Selected cavity transmission
spectra at different detunings ∆ω (blue lines) and their comparison with the Transfer-matrix
simulations (green lines).

The full comparison between the measured and the simulated vibro-polariton disper-
sion at 80 K is presented in Figure 4.11.

We stress that the Transfer-matrix formalism predicts the spectral response of the
cavity in the linear regime [60, 152], therefore the agreement between the experimental
and simulated transmission spectra further indicates that the THz field does not govern
the strong coupling effect but acts instead only as a probe for the coupled oscillators.
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Figure 4.11: Comparison of the measured vibro-polariton dispersion at 80 K with the Transfer-
matrix simulation. A. Measured dispersion of CuGeO3 phonon-polaritons at 80 K. B. Polariton
dispersion at 80 K simulated with the Transfer-matrix method. C. Measured upper (red circles)
and lower polariton (blue circles) frequencies as a function of the cavity fundamental mode. The
solid curves show the polariton frequencies simulated with the Transfer-matrix model.

4.3.3 evolution of the polaritons linewidth

We demonstrate here that the features associated to the strong coupling of the B2u
phonon emerge also by looking at the linewidths of the polariton modes. It should be
indeed noted that the broadening of the vibro-polaritons depends on the detuning of
the cavity, given that it results from the contribution of the phonon/cavity linewidths
weighted by the relative phonon/cavity fraction [60, 150].

The estimated polariton linewidths, defined as the FWHM of the deconvoluted polari-
tonic peaks in transmission (Figure 4.7), are presented in Figure 4.12. We note that the
lower polariton branch is getting narrower when approaching the vibrational mode at
ωphon = 1.45 THz, whilst the upper polariton peak becomes broader moving towards
the resonant cavity condition.

This evidence can be rationalized within the coupled oscillator framework (Section
2.2.1) noting that the polariton lifetime approaches the phonon (resp. cavity) one when
the phononic (resp. photonic) fraction of its wave-function increases. This is highlighted
in Figure 4.12B where we note that the linewidths of the two polariton branches cross
in correspondence of the phonon frequency, while they tend to the broadening of the
uncoupled modes in off-resonance conditions.

We stress that the measured detuning dependence of the polaritons’ broadening can’t
be ascribed to a change in the Q factor of the effective cavity mode (orange dashed
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Figure 4.12: Measured upper and lower polariton linewidths as a function of the cavity fre-
quency. A. Experimental evolution of the cavity transmission spectra at 80 K with cavity fun-
damental frequencies (indicated in legend) across the phonon resonance. The spectra have been
vertically shifted for clarity. B. Estimated FWHM of the polariton modes as a function of the
cavity mode. The light blue dashed line indicates the bare phonon linedwidth, while the orange
dashed line corresponds to the FWHM of the effective cavity mode shown in in Figure 4.10A.

line of Figure 4.12B) estimated with the Transfer-matrix method. A mode broadening
of the cavity resonance would indeed not explain the narrowing of the lower polariton
branch when the detuning approaches the vibrational frequency. Indeed, if the polariton
lifetimes were dominated by the change of the cavity lifetime we would have expected
the linewidth of both the polariton branches to follow the same trend upon changing
the detuning.

Therefore, the narrowing (broadening) of the lower (upper) polariton branch as the
detuning approaches the phonon frequency can be considered a further prove of the
strong-coupling regime. Indeed, this narrowing (broadening) can be rationalized as an
increasing contribution of the bare phonon (bare cavity) lifetime to the lower (upper)
polariton lifetime.

4.3.4 dependence of the coupling on the quality factor

In this section we exploit the quantum coupled oscillator model (Section 2.2.1) to demon-
strate that, thanks to the high oscillator strength of the B2u mode, the employed quality
factor of the bare cavity (Q = 6.3) is sufficient to overcome the strong coupling threshold.

We recall that, within the coupled oscillator framework, the polariton splitting mea-
sured in the resonant configuration ∆ω = 0 can be expressed as a function of the bare
dissipation channels as:

EUP(∆ω = 0) − ELP(∆ω = 0) =

√
4g2c −

(
γphon − γcav

)2 (4.6)

where:

ELP(∆ω = 0) = ωphon −
1

2

(√
4g2c −

(
γphon − γcav

)2
− i
(
γphon + γcav

))
EUP(∆ω = 0) = ωphon +

1

2

(√
4g2c −

(
γphon − γcav

)2
− i
(
γphon + γcav

)) (4.7)
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In Equations 4.6 and 4.7 γphon = 0.076 THz is the bare CuGeO3 phonon linewidth,
γcav the effective cavity linewidth (see Figure 4.10A) and gc = g

√
N the collective cou-

pling constant which can be expressed as a function of the experimental Rabi splitting
ΩR as gc = 2ΩR = 2 × 0.32 THz = 0.64 THz. Since at fixed temperature (80 K) the
collective coupling gc and the phonon linewidth are fixed, the coupling regime is gov-
erned by the cavity quality factor Q ∝ 1/γcav which dictates the lifetime of the photon
inside the cavity.

The effect of the quality factor on the vibro-polariton eigenenergies of CuGeO3 at
80 K, according to Equation 4.7 and for the experimental parameters written above, is
presented in Figure 4.13. The real and imaginary parts of ELP and EUP, correspond-
ing to the polariton energy and linewidth, are show in Figure 4.13A and Figure 4.13B
respectively.

Figure 4.13: Estimated frequency and linewidth of CuGeO3 vibro-polaritons as a function of
the quality factor of the bare cavity. A. Calculated splitting of CuGeO3 phonon-polaritons at
80 K from the coupled oscillator model. B. Calculated linewidth of CuGeO3 phonon-polaritons
at 80 K from the coupled oscillator model. Both the calculation has been made in the resonant
condition (∆ω = 0). The black dashed line indicates the measured quality factor of the resonant
empty cavity (Qempty), while the grey dashed line the effective quality factor (Qeff) which takes
into account the incoherent broadening of the empty cavity resonance. The effective quality
factor of the bare cavity is estimated to be in the strong coupling region, confirming the observed
polariton splitting.

The coupled oscillator calculations show that for a bare quality factor Qempty = 6.3
(corresponding to an effective quality factor Qeff = 4.0) the phonon is strongly coupled
to the cavity mode, as can be seen by the energy splitting of the two polariton branches.
Within this model we note that, for our effective quality factor, the predicted broaden-
ings of the polariton peaks (γLP,γUP) equal the average value of the uncoupled phonon
and photon linewidths.

We stress that an effective quality factor Qeff = 4.0 is sufficient for having the relation
γLP,γUP < ΩR satisfied. The latter condition is indeed necessary to make the two
strongly coupled modes distinguishable in the frequency spectrum (see Equation 2.36).
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4.4 temperature evolution of the vibro-polariton

modes

In the previous section we have demonstrated the vibrational strong coupling of the
B2u phonon of CuGeO3 at 80 K. In this section we present the study of the temperature
evolution of the strongly-coupled polaritonic modes above the spin-Peierls transition.

The targeted B2u mode shows an anomalous monotonic blue shift across the CuGeO3

normal phase when the temperature is increased from 14 K to 300 K. This anomalous
blue shift is associated with a line broadening due to the phonon thermal distribution
[139, 140].

Figure 4.14A reports the comparison between the bare phonon transmission at 80 K
and 290 K in the open cavity geometry. We detected a blue shift of the vibrational Cu-O
mode of approximatively the 3 % and a linewidth broadening of ∼ 50 %. We stress that,
as presented in Figure 4.14B, no significant change in the broadening of the bare cavity
is instead measured upon increasing the temperature. This is a crucial aspect in the
temperature-dependent analysis since it implies that, within a linear approximation4,
any change in the parameters of the polaritonic modes has to be linked to a change of
the bare phonon resonance.

Figure 4.14: Change in temperature of the bare phonon and of the bare cavity mode. A. 80

K and 290 K THz transmissions of the bare CuGeO3 phonon in the open cavity configuration.
A relative blue shift of the phonon mode together with an increase of the linewidth is detected
going from 80 K to 290 K B. Resonant bare cavity transmission measured at 80 K and 280 K. No
significant change of the linewidth of the bare cavity is measured.

Figure 4.15 presents the full temperature evolution of the polariton spectra across
the undistorted phase of CuGeO3. We note that, upon increasing the temperature, the
splitting frequency ω0 between the two polariton modes shifts towards higher frequen-
cies and the linewidths of the two polaritons become broader. We highlight in Figure
4.15B that the reduction of the polaritons lifetime upon increasing the temperature can
be directly visualized in the time-domain THz fields exiting the cavity. At higher tem-
peratures we measured indeed a reduction of the Rabi oscillations’ envelope which is
associated to a shorter polaritons’ lifetime.

4 The linear regime has been demonstrated in Figure 4.5 by studying the fluence dependence of the probing
THz field on the polaritonic modes.
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Figure 4.15: Frequency and time-domain temperature-dependent spectra of CuGeO333 polari-
ton modes at resonance. A. THz transmission spectra of CuGeO3 phonon within a resonant
cavity measured at different temperatures. B. Temperature-dependent THz time traces detected
at the output of the resonant cavity and filtered in the range 0.4− 2.5 THz.

Figure 4.16: Comparison between low and high temperature dispersion of the vibro-
polaritons in CuGeO333. A. Vibro-polariton dispersion in CuGeO3 at 80 K. B. Vibro-polariton
dispersion in CuGeO3 at 290 K.

We further proved that the measured polariton broadening is related to an intrinsic
modification of the phononic resonance by mapping the full polariton dispersion as
a function of the cavity detuning at 80 K and 290 K. The measured dispersions are
presented in Figure 4.16. The results show that at 290 K the polaritons linewidths are
greater than the 80 K ones for each detuning. This further demonstrates that the mea-
sured broadening of the polariton resonances can’t be ascribed to a change of the cavity
mode upon temperature increasing.
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The temperature evolution of the measured parameters of the polariton modes (split-
ting frequency ω0, linewidth γ and Rabi splitting ΩR) is presented in Figure 4.17. Upon
increasing the temperature, we estimated a monotonic blue shift of the splitting fre-
quency (Figure 4.17A) and a monotonic broadening of both the upper and lower polari-
ton resonances with a similar trend (Figure 4.17B).

Figure 4.17: Temperature dependence of the polariton parameters. Temperature dependence
of the percentage change in splitting frequency ω0 (A), linewidth γUP ,LP (B), and normalized
Rabi splitting ΩR/ω0 (C) of the CuGeO3 phonon-polariton modes.

As highlighted in Figure 4.17C, we note that also the Rabi splitting between the vibro-
polaritons slightly changes with temperature. This can be interpreted by recalling the
dependence of the Rabi splitting on the bare dissipations rates (γcav, γphon):

ΩR =

√
4g2c −

(
γphon − γcav

)2 (4.8)

Equation 4.8 indicates that, if the polariton resonances are sharp enough to be resolved,
the Rabi splitting can be enhanced by a smaller mismatch between the bare linewidths
(γcav − γphon).

To further validate the previous predictions we performed Transfer-matrix simula-
tions of the strongly-coupled cavity at different temperatures. As demonstrated in Fig-
ure 4.14, we can assume that the only input parameter which significantly changes with
temperature is the dielectric function ϵ(ω) of CuGeO3. We present in Figures 4.18A and
4.18B the comparison between the 80 K and the 290 K phonon transmission with the
corresponding Lorentz-Drude fit (Equation 4.5). We list in Table 4.2 the fit parameters
for bare CuGeO3 at 290 K.

ϵ∞ = 2.5 j ω0j [THz] γj [THz] Sj

1 1.50 0.115 0.39

2 4.92 0.143 0.38

Table 4.2: Lorentz fit parameters for bare CuGeO333 at 290 K. The higher frequency phonon has
been added to fit the transmission background around the B2u low energy phonon.
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Figure 4.18D presents the results of the Transfer-matrix simulations at 80 K and 290

K using for the dielectric constant of CuGeO3 the Drude-Lorentz parameters shown
Tables 4.1 and 4.2 respectively.

Figure 4.18: Comparison between the measured and the simulated polaritonic spectra at 80 K
and 290 K. A. Phonon transmission at 80 K in the open cavity geometry and its fit with the 80

K Lorentz model. B. Phonon transmission at 290 K in the open cavity geometry and its fit with
the 290 K Lorentz model. C. Comparison between the polariton spectra measured on resonance
at 80 K and 290 K. D. Transfer-matrix simulations of the vibro-polariton spectra at 80 K and 290

K exploiting the CuGeO3 dielectric function obtained from the fits in A. and in B.

As highlighted by the comparison with the experimental transmission spectra (Figure
4.18C), the Transfer-matrix method reproduces the measured temperature-dependent
polaritonic features. Indeed, the simulations predict a blue-shift of the splitting fre-
quency together with a line broadening of the polaritonic modes. Moreover, an increase
of the Rabi splitting is predicted upon raising the temperature.

We highlight that a framework in which the increase of the Rabi splitting at high tem-
perature is due to a line broadening of the B2u mode is consistent with the simulations.
Indeed, by looking at the Lorentz fit parameters at 80 K and 290 K, we note that there
is no significant change of the oscillator strength of the targeted mode, whereas a 50 %
modification of its linewidth is estimated.

We can therefore conclude that the measured increase of the Rabi splitting (Figure
4.17C) can be justified, within the coupled oscillator framework, by the broadening of
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the bare B2u mode upon temperature increasing (Figure 4.14A). Indeed, since in our
experimental configuration the effective cavity mode is larger than the bare phonon
resonance at each temperature, we will have:

|γcav − γphon(80K)| > |γcav − γphon(290K)|.

This, following Equation 4.8, justifies the increase of the Rabi splitting at higher temper-
atures. The results point therefore to a scenario in which the temperature change of the
Rabi splitting is mainly linked to a thermal change of the lifetime of the B2u phonon
mode and not to a modification of its oscillator strength.

4.5 conclusions

In conclusion, we have demonstrated the THz signatures of the vibrational strong cou-
pling regime of an IR-active phonon in the normal phase of CuGeO3. Strong coupling
with the cavity field results in the formation of hybrid vibro-polariton states which we
directly observed in the time-domain as a normal mode beating, characteristic of the
coherent energy exchange between the vibrational and the optical degrees of freedom.
By varying the temperature across the undistorted phase of CuGeO3 we detected a
thermal modification of the vibro-polariton lines, associated to a change in the bare
phonon lifetime. The thermal change of the phonon dissipative rates leads to a slight
enhancement of the Rabi splitting between the polaritons at higher temperatures. The
results validate therefore the capability of the set-up to track temperature-dependent
strong coupling features of THz excitations.



5
C AV I T Y C O N T R O L O F T H E
M E TA L - T O - I N S U L AT O R T R A N S I T I O N
I N 1 T - Ta S 2

The weak and strong coupling regimes described in Chapter 2, which can be obtained
by placing quantum materials into resonant optical cavities, provide a unique platform
to control quantum cooperative properties of matter. We present in this chapter the
first experimental evidence of the reversible cavity control of a metal-to-insulator phase
transition in a correlated solid state material. The large modification of the linear re-
sponse observed by placing the dichalcogenide charge density wave material 1T-TaS2
in tunable low energy Terahertz cavities enables a reversible touchless control of the
metal-to-insulator phase transition. We revealed that a switch between conductive and
insulating behaviour can be obtained by mechanically tuning the distance between the
cavity mirrors and their alignment. Our finding uncovers a new path to control the
macroscopic transport properties of quantum materials by changing their electromag-
netic environment.

5.1 motivation

Light-matter interaction provide the means to control and manipulate the collective
properties of complex materials. In commonly explored approaches materials are driven
into highly non-equilibrium transient states where the materials are characterized by the
response of excited quasi-particles, giving rise to new functionalities [3–10]. In recent
years, the modification of the electromagnetic environment introduced by placing mate-
rials into resonant optical cavities is emerging as a suggestive possibility for controlling
material properties at equilibrium and without out-of-equilibrium driving.

The proposal of employing light-matter coupling in optical cavities to control the
properties of solid-state complex materials has stimulated in the last years a wealth
of theoretical proposals [11], ranging from: enhanced superconductivity through cavity-
mediated electron pairing [43–48], cavity control of the competing order between charge
density wave and superconducting phases [49], cavity control of excitons [50], enhanced
ferroelectricity [51–54], and cavity control of magnetic order [55].

From the experimental point of view, it has been recently proved that vacuum fields
in the strong coupling regime [42] can reshape material properties even without exter-
nal illumination, e.g. by changing the magneto-transport in a two dimensional material
[38], suppressing the topological protection of the integer quantum Hall effect [56], or
even modifying the critical temperatures in conventional and unconventional super-
conductors [57, 58]. These effects can be rationalized within the framework of strong
light-matter coupling presented in Chapter 2 in which the coherent energy exchange
between the cavity field and the resonant material excitations leads to changes of ther-
modynamical potentials [153].

67
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Figure 5.1: Mechanisms of cavity control of quantum materials. A. Sketch of a material embed-
ded in the middle of a tunable optical cavity with controllable fundamental frequency ωc and
alignment. B. Coupling of the material’s excitations with the cavity field can act on the sample’s
thermodynamics within two different scenarios: it can either renormalize the free energy of one
material phase with respect to the other (left panel) or reshape the material’s spectral emission
and subsequently rescale its temperature (right panel).

Confining materials into optical cavities provides new means to control the phase
transformations in correlated systems in different mechanisms (Figure 5.1).

• On one hand, the selective coupling of the cavity modes to the excitation of a
given phase can renormalize the free energy of that phase with respect to that
of other ones, thereby modifying the temperature at which the phase transition
occurs (left panel of Figure 5.1B).

• On the other hand, the optical cavity can reshape the exchange energy between the
material and the thermal reservoir of photons in which the material is immersed
[154]. In general, thermal emission can be associated with a black-body at a certain
temperature which exchanges energy with its environment in the radiative form.
The spectral energy density of a black-body u(ω, T) can be expressed as [155]:

u(ω, T) = E(ω)n(ω, T)D(ω), (5.1)

where E(ω) and n(ω, T) are respectively the mode energy and its occupation, and
D(ω) the density of states of the electromagnetic field, which can be reshaped
by the cavity boundary conditions. In analogy with the Purcell effect [13–16], by
engineering the local density of states of the electromagnetic environment at the
sample position through tunable optical cavities, it is therefore possible to modify
the absorption and emission of the coupled sample and subsequently its temper-
ature [156–158]. The illustration of this second scenario is depicted in the right
panel of Figure 5.1B.
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We investigate here the metal-to-insulator transition in the transition metal dichalco-
genide 1T-TaS2 embedded into low energy cavities at THz and sub-THz frequencies.

Firstly, we will review the physics underlying the metal-to-insulator transition in 1T-
TaS2 and show how the onset of metallicity in the system is mapped onto the THz
linear response, which is the employed observable (Chapter 3). We will then report
the experimental evidences which hints towards a cavity-driven control of the phase
transition. In particular, we will show that, while long wavelength cavities (up to ∼ 25

GHz) favour the metallic phase, the coupling with cavities at higher frequencies results
in an effective stabilization of the dielectric charge density wave phase, giving rise to
a peculiar non-monotonic renormalization with respect to the free space material. For
the employed experimental setting, the modification of the effective critical temperature
of the phase transition (∼ 70 K) overcomes the intrinsic hysteresis in the material and
enables a reversible touchless control of the metal-to-insulator phase transition, which
we will prove to be sensitive to the cavity alignment. Moreover, to see whether our
observation could be rationalized within the free energy scenario or within the cavity-
mediated heating scenario, we performed an independent measurement campaign to
address cavity-mediated changes of the sample’s temperature. We will show that the
sample’s temperature measurements within the cavity are qualitatively consistent with
the THz observations. This evidence points towards the Purcell-like scenario (Figure
5.1B, right panel) to be the dominant one in describing the cavity-driven control of the
metal-to-insulator transition in 1T-TaS2. We will conclude the present chapter by pre-
senting the full set of experimental tests performed to demonstrate the cavity-induced
origin of the observed renormalization of the phase transition.

5.2 terahertz spectroscopy of 1T-TaS2 across the

charge ordering transition

Transition metal dichalcogenides (TMDs) have the basic chemical structure MX2, where
M is a transition metal and X a chalcogenide. From the structural point of view, TMDs
form sheets of X-M-X sandwiches, which are weakly bound together by van der Waals
forces. This weak interlayer coupling provides the quasi-two-dimensional character
characteristic of TMDs [159]. The coordination of the metal atom in the sandwich can
take on either an octahedral or trigonal prismatic shape. There are many potential poly-
types resulting from the various sandwich stackings [159], with the most basic being
the pure octahedral (1T) and pure trigonal prismatic (2H) structures.

Among all the quasi-two-dimensional transition metal dichalcogenides, the 1T poli-
type TaS2 (1T-TaS2) is one of the most widely studied in the recent years. The basic
crystalline structure of 1T-TaS2 is depicted in Figure 5.2A. 1T-TaS2 is notable for being
one of the first quasi-2D materials in which a charge-density-wave state (CDW) was
observed [160].

1T-TaS2 exhibits four thermodynamical phases characterized by significant differ-
ences in the charge order and mobility [161], and in the CDW commensuration [162].
This temperature-dependent charge order originates from the competition of Coulomb
repulsion, lattice strain, interlayer hopping, and Fermi surface nesting [163–165].

At high temperatures (T > 550 K) the system presents the features of a simple metal
and no charge-density-wave is present. As 1T-TaS2 is cooled down below T = 550 K,
a CDW distorsion occurs. The charge-density-wave is incommensurate with the under-
lying lattice within the temperature range 550 K > T > 350 K (IC phase). Figure 5.2B
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presents the crystalline structure of the Ta plane. The unit cell of the undistorted and
IC phases is depicted in the upper left corner.

The frustration arising from the incommensurability of the IC state with the under-
lying lattice causes the IC-CDW to transform into a nearly commensurate (NC) struc-
ture at T ∼ 350 K in which patches of commensurately ordered hexagonal-shaped po-
larons are periodically separated by conductive domain walls [163, 166, 167]. Within the
commensurate domain-like regions, the lattice distortion creates polaron clusters of Ta
atoms in the so called "star of David" formation, with each star cluster finding itself at
the corner of a new

√
13a×

√
13a superlattice unit cell (Figure 5.2B).

Figure 5.2: Crystalline structure of 1T-TaS222. A. Octahedral coordination unit forming the S-
Ta-S layers. B. Sketch of the Ta plane. Without the CDW, the unit cell is that shown by the
dashed line in the upper left corner. With the CDW, star-of-David cluster polaron formation
takes place, shown by the solid lines. Arrows show the displacement of Ta atoms and the dashed
line connecting the stars gives the new superlattice cell.

By further lowering the temperature below ∼ 180 K a transition to an insulating state
occurs. The metallic domain walls, related to the discommensuration network of the
CDW regions, disappear and the system becomes a fully commensurate charge-density-
wave (C-CDW) Mott insulator [164]. The illustrations of the melting of the discommen-
surate CDW regions, associated with the metal-to-insulator charge ordering transition,
are presented in the insets of Figure 5.3B.

Importantly, while in the nearly-commensurate CDW phase the metallic response is
determined by domain wall fluctuations, below the critical temperature, in the com-
mensurate CDW phase, domain walls lock to the crystal structure giving rise to an
insulating response [164, 168].

It is worth noting that the free energy landscape of 1T-TaS2 is much more complicated
than the simple free energy sketch of Figure 5.1B: the phase transitions in 1T-TaS2
are multiple and sensitive to the thermal history of the sample. For example, it has
been recently reported [169] that upon heating from the C-CDW phase, an additional
intermediate trigonal (T ) phase with in-plane charge stripes occurs at ∼ 220 K and
persists up to ∼ 280 K, when the NC-CDW is re-established .

We employed time-domain THz spectroscopy to track the temperature dependent
charge order of 1T-TaS2 for different cavity configurations. As described in Chapter 3,
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THz spectroscopy is a powerful tool to track the metal-to-insulator transition associated
to the metallic domain wall suppression since it is able to measure contact-less the
quasi-static dielectric response associated to the presence of free conductive charges
characteristic of a metallic state.

We present in Figure 5.3A the temperature dependent THz linear transmission of 1T-
TaS2 in free space upon heating and cooling, which captures the first order transition
between the NC-CDW metallic phase and the C-CDW insulating phase. The presented
THz transmission measurements have been performed on a ∼ 15 µm thick single-crystal
sample.

Figure 5.3: THz linear spectroscopy of 1T-TaS222 metal-to-insulator transition measured in free
space. A.THz linear transmission spectra in free space at different temperatures across 1T-TaS2
metal-to-insulator transition (temperature scans performed by cooling (upper panel) and heat-
ing (lower panel)). In order to highlight the phase transition each spectrum has been subtracted
from the 280 K THz transmission B. Temperature dependence of the integrated low frequency
transmission (0.2 THz < ω < 1.5 THz), marking the metal-to-insulator transition and its hystere-
sis. The temperature scale indicates the readout of the thermocouple in thermal contact with the
cryostat cold finger. In the insets the time domain THz fields are shown for the metallic and the
insulating phases, together with the illustration of the in-plane lattice modulations characteristic
of the insulating C-CDW phase and of the metallic NC-CDW phase.
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The optical features associated to the phase transition, which are visible within the
THz range, are:

• The increase of the low frequency transmission (∼ 0.2 THz < ω < 1.5 THz) be-
low the critical temperature. This is consistent with a transition to an insulating
behaviour. The Drude-like response of free carriers is indeed reduced in the di-
electric phase, which in turn gives rise to a decreased absorption within the quasi-
static spectral region [170, 171].

• The emergence below Tc of IR-active optical phonons at 1.58 THz, 2.02 THz, and
2.35 THz which are allowed by the symmetry of the fully commensurate charge-
density-wave. As highlighted by the full temperature scans of Figure 5.3A and by
the THz time-domain traces measured in the two phases (insets of Figure 5.3B), the
CDW vibrations are screened by the free carriers and therefore not visible in the
metallic NC phase. As reported in [170], the screened phonon modes are followed
at higher frequencies by a pseudogap-like increase of the optical conductivity
which evolves in a gapped response in the dielectric state.

Importantly, as highlighted in Figure 5.4, the above features, associated to the charge
ordering transition and unveiled by THz transmission, are directly linked to the thermal
evolution of the optical conductivity σ1(ω). The latter is a crucial parameter since it
quantifies the absorptive contribution of the THz excitations to the 1T-TaS2 dielectric
function (Chapter 3), which is strongly affected by the metal-to-insulator transition.

In all the following discussion, we will use the temperature dependence of the inte-
grated low frequency transmission (0.2 THz < ω < 1.5 THz) as a marker which tracks
the charge order dynamics in 1T-TaS2 and hence the metal-to-insulator phase transition
(Figure 5.3B). We prove in Figure 5.5 that the measured low frequency transmission is
mapped directly on the evolution of the Drude contribution to the optical conductivity
σ1(ω), representative of the free carriers response. This comparison clarifies that, at
energies below the lowest-lying phonon, the integrated transmission is indeed a good
indicator of the metallicity of the system and can be hence exploited to track the phase
transition in different cavity configurations.

The full temperature dependence of the integrated low frequency transmission (0.2
THz <ω < 1.5 THz) for the material in free space is shown in Figure 5.3B. The difference
between the results obtained upon heating and cooling the sample in free space marks
the hysteresis associated to the first order phase transition. The phase transition in free
space upon heating from the insulating state occurs at 181 K and at 143 K upon cooling
from the metallic phase. Note that the smooth transition observed could be ascribed to
the presence intrinsic inhomogeneities and strain in the system which smear out the first
order transition [172–174]. A discussion on inhomogeneities, on the waiting protocol
to track the phase transition, and on the determination of the critical temperature is
detailed in Section 5.5 of the present chapter.

We note that the effective critical temperature measured in the employed set-up dif-
fers with respect to the literature value [164] of about 35 K. This difference is attributed
to the difference between the internal temperature of the sample (TS) and the temper-
ature of cryostat’s cold finger (TCF), due to the high thermal dissipation of the silicon
nitride membranes between which 1T-TaS2 is embedded. The membranes makes there-
fore the sample significantly isolated from the ambient radiation. A finite elements
simulation of the membrane’s thermal profile, accounting for the incoherent thermal
load at the sample position, is in quantitative agreement with the measured tempera-
ture shift. Further details on the simulations of incoherent radiation heating within the
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Figure 5.4: Optical conductivity and THz transmission of 1T-TaS222 across the metal-to-
insulator phase transition. A. Real part of the optical conductivity (σ1) measured in free space
upon heating (left panel) and cooling (right panel) the sample from the insulating and metallic
phase, respectively. B. THz transmission measured in free space at different temperatures upon
heating (left panel) and cooling (right panel) the sample. Temperature evolution of σ1 measured
upon cooling the sample from the metallic phase.

Figure 5.5: Hysteretic behaviour of the charge ordering transition in THz transmission and
optical conductivity σ1σ1σ1. A. Low-frequency transmission (0.2 THz < ω < 1.5 THz) upon heating
and cooling the sample. B. Real part of the optical conductivity σ1 integrated in the same
frequency range upon heating and cooling. The hysteretic behaviour of the phase transition is
the same for both the observables.
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cavity will be discussed in Section 5.7 of the present chapter. Despite the measured rigid
shift, we stress that this critical temperature sets the absolute free space reference for
all the cavity-dependent studies, since it is independent of geometrical variations of the
cavity chamber (see Section 5.8.4).

An aspect which is important to highlight here is that a simultaneous measurement
of the actual sample’s temperature inside of the cavity (TS) and THz transmission is not
viable. This is due to both practical and fundamental aspects. On a practical level, the
placement of a physical thermometer within the cavity would absorb the THz pulses
and make the transmission measurements unfeasible. On a fundamental level, any ma-
terial object placed within the optical cavity will perturb the cavity characteristics and
therefore the response of the light-matter assembly. For this reason, we have designed
an experimental protocol in which for the THz characterization we measure the temper-
ature on the support of the sample outside of the cavity which we denote as TCF. Due
to the mismatch between the sample and the cold finger temperature suggested by the
free space measurements (Figure 5.3), we will refer to the critical temperatures detected
through THz spectroscopy as effective critical temperatures (Teffc ). The latter will be de-
fined as the temperature of the cold finger support (TCF) at which the phase transition
is observed for a given experimental configuration. The results of the independent cam-
paign to address the actual sample’s temperature TS, which are crucial to distinguish
which of the two possible cavity-mediated scenarios of Figure 5.1 is dominant, will be
discussed separately.

5.3 cavity-driven renormalization of the phase

transition

We present in this section the results pointing to a cavity renoralization of the metal-to-
insulator transition when the system is resonant to cavities within the sub-THz region.

Figure 5.6 shows the temperature dependent THz linear transmission of 1T-TaS2 in
free space and embedded in the centre of an optical cavity with resonant frequency
ωc = 11.5 GHz and quality factor Q ∼ 4. The details of the quality factor charac-
terization of the sub-THz cavities employed in the experiments are presented in the
"Methods" section of the present chapter (Section 5.5.1).

The comparison in Figure 5.6 highlights that the placement of the sample in such
a cavity results in a shift of the effective critical temperature Teffc for the metal-to-
insulator phase transition, which is observed at 136 K (109 K) upon heating (cooling)
the coupled sample. It should be noted that the cavity-mediated shift in the effective
transition temperature depends on the thermal cycle. Indeed, a renormalization of the
apparent phase transition temperature of 44 K is observed if the critical temperature is
approached from the dielectric state (heating), while a shift of 33 K is obtained coming
from the metallic phase (cooling). Overall, this results in a cavity-mediated shrinking of
the hysteresis of 11 K.

It is important to stress that the effective critical temperature measured within the
cavity is independent from the input intensity of the THz field. The THz field acts
therefore only as a probe for the cavity-coupled system and does not introduce a de-
tectable thermal load at the sample position. We will justify this crucial statement in
Section 5.8.5 by presenting measurements of the coupled cavity probed with different
THz field strengths.
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Figure 5.6: Cavity-driven renormalization of the effective critical temperature of the metal-
to-insulator phase transition. Temperature dependent THz transmission upon cooling (A) and
heating (B) for a sample held in free space (left) and one placed in the middle of the 11.5 GHz
cavity (right). C. Comparison between the hysteresis in free space and within the 11.5 GHz
cavity plotted as the integrated cavity transmission in the range 0.2 THz < ω < 1.5 THz. The
free-space data have been arbitrarily translated along the horizontal axis to overlap with the
cavity integrated transmission. A possible cavity-driven renormalization of the effective critical
temperature of 44 K (33 K) towards lower temperatures is measured upon heating (cooling) the
sample. This results in a cavity-mediated shrinking of the phase transition hysteresis of 11 K.

5.3.1 cavity alignment dependence

In order to show that the observed renormalization of the phase transition (Figure 5.6)
hints towards a cavity-mediated effect, we varied the cavity geometry and measured the
effective critical temperature Teffc as a function of the alignment of the cavity mirrors.
The rationale for this is that any misalignment of the cavity will reduce the photon inter-
action time within the cavity and hence the cavity-driven change of sample properties.
We quantify the cavity misalignment as the sum of the misalignment angles of the two
cavity mirrors θ with respect to the parallel mirrors configuration.

We stress that misaligning the mirrors only slightly modifies the cavity fundamental
frequency (∆ωc ∼ 0.14 GHz/deg) (see Section 5.8.3), but it reduces the quality factor
of the cavity and hence its optical losses. This will subsequently decrease the light-
matter interaction time within the cavity. Figure 5.7A illustrates the THz time domain
fields in the C-CDW phase for different misalignment angles θ. In the dashed box the
THz reflection associated to the cavity round trip is highlighted. We note that upon
misalignment the peak associated to the cavity round trip reduces its intensity. This is
consistent with the decrease of the photon lifetime within the cavity and hence with
the reduction of the quality factor of the bare cavity. The dependence of the cavity Q
factor as a function of the misalignment angle has been estimated in Figure 5.7B. The
estimation has been performed by approximating the exponential decay with a linear
fit.

The temperature dependence of the low frequency THz transmission (0.2 THz < ω
< 1.5 THz integration range) at different mirrors alignment is shown in Figure 5.8A
for the heating and cooling temperature scans. We highlight that changing the optical
losses through the cavity alignment in turn reduces the renormalization of the observed
critical temperature (Figure 5.6) towards the free space value (Figure 5.3).
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Figure 5.7: Variation of the cavity quality factor as a function of the total misalignment angle
of the mirrors. A. THz time domain fields passing through the sample within the cavity for
different misalignment angles θ. In the dashed box we highlight the THz reflection associated to
the cavity round trip. B. Estimated cavity quality factor as a function of the misalignment angle.
The Q factor has been estimated by approximating the exponential decay of the cavity field with
a linear fit.

Figure 5.8: Dependence of the effective critical temperature on the cavity alignment. A. De-
pendence of the metal-to-insulator phase transition as a function of the cavity alignment for
the 11.5 GHz cavity. The hysteretic sweeping curves are plotted for each misalignment angle
θ as the integrated low frequency transmission (0.2 THz < ω < 1.5 THz). B. Estimation of the
effective critical temperature as a function of the cavity alignment. Top panel: effective critical
temperature upon heating (red) and cooling (blue) the sample as a function of the misalignment
angle of the cavity. The shaded horizontal lines indicate the free-space reference. Bottom panel:
corresponding hysteresis. The black shaded line marks the hysteresis measured in the free space
material.
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This effect is quantified in the upper panel of Figure 5.8B where we present the
evolution of the effective critical temperature as function of the cavity alignment for the
heating and cooling temperature scans. We note that, as highlighted in the lower panel
of Figure 5.8B, misaligning the cavity mirrors not only changes Teffc , but also increases
the hysteresis of the metal-to-insulator transition. The latter approaches the free space
hysteresis value when the mirrors are highly misaligned. This further suggests that the
modification of the sample thermodynamics is associated to the boundary conditions
introduced by the cavity environment.

Moreover, in order to further validate the effect of the alignment on the metal-to-
insulator transition, we proved that a switch between the metallic and the dielectric
linear response can be obtained at fixed temperature (TCF) by changing the cavity align-
ment. The results of this test are presented in Figure 5.9A across the heating charge
ordering transition and in Figure 5.9B across the cooling transition. In the first case the
cold finger temperature has been set at TCF = 154 K, while in the latter we set the cold
finger at TCF = 116 K.

The THz linear response measured at fixed TCF at the output of the coupled cavity
validates the dependence of the hysteretic curves on the mirror orientation presented in
Figure 5.8. This can be directly seen in the linear THz response through the emergence
(vanishing) of the CDW phonons (oscillations in the THz time domain) upon tuning θ.

For the quality factors employed in the experiment (Figure 5.7), the phase switch
detected upon tuning the cavity alignment θ is not reversible. This is a consequence
of the fact that, for the explored mirror angles the change of the effective critical tem-
perature upon changing the cavity alignment does not exceed the free space hysteresis
of the material. We show the irreversibility of the phase switch by comparing the THz
fields exiting the cavity in the same alignment condition before and after the sample
has switched the phase. The experimental evidences of the switch irreversibility are
presented in Figure 5.10A (B) in the proximity of the heating (cooling) transition tem-
perature. The THz linear responses exhibit the features of a different phase before and
after the alignment-induced switch. This evidence marks the irreversibility of the pro-
cess for the explored Q factors.
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Figure 5.9: Dependence of the metal-to-insulator transition on the cavity alignment at fixed
temperature. A. Right panel: Low frequency THz transmission as a function of the mirrors
alignment of the 11.5 GHz cavity measured upon heating the sample. The black dashed arrow
indicates the temperature across the heating phase transition employed for this study (TCF = 154

K). Left panel: THz fields detected at the output of the coupled 11.5 GHz cavity at 154 K as a
function of misalignment angle of the mirrors. Transition from the dielectric to the metallic
state is detected passing from the misaligned to the aligned configuration. B. Right panel: Low
frequency THz transmission as a function of the mirrors’ alignment of the 11.5 GHz cavity
measured upon cooling the sample. The black dashed arrow indicates the temperature across
the cooling phase transition employed for this study (TCF = 154 K). Left panel: THz fields at the
output of the coupled 11.5 GHz cavity at 116 K as a function of the mirrors angle. Transition
from the metallic to the insulating state is detected passing from the aligned to the misaligned
configuration.
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Figure 5.10: Phase switch irreversibility upon tuning the cavity alignment. A. THz fields exit-
ing the 11.5 GHz cavity misaligned at the maximum angle (θ = 9.5◦) before and after the phase
switch induced by aligning the cavity (Figure 5.9A). As in Figure 5.9A the cold finger temper-
ature has been set at TCF = 154 K. B. THz fields at the output of the aligned 11.5 GHz cavity
(θ = 0◦) before and after the phase switch induced by misaligning the mirrors (Figure 5.9B). As
in Figure 5.9B the cold finger temperature has been set at TCF = 116 K.

5.3.2 cavity frequency dependence

In order to study how the sample thermodynamics is influenced by the cavity resonant
frequency we fixed the cold finger temperature to TCF = 150 K, and hence within the
hysteresis of the free space material, and tuned the cavity fundamental mode. This char-
acterization is presented in Figure 5.11. The results reveal that the cavity-driven change
of the effective transition temperature Teffc overcomes the free space hysteresis (38 K),
thus enabling a reversible touchless control of the metal-to-insulator phase transition.

Upon reducing the distance between the mirrors, we detected the phase transition
between the metallic and the insulating phase to occur at a cavity frequency of ∼ 25.0
GHz. This is highlighted by the THz time domain traces of the insets of Figure 5.11 by
the screening of the IR-active phonon modes of the C-CDW insulating phase. After the
system has fully switched to the insulating state, we decreased the cavity fundamen-
tal frequency and detected a switch to the metallic phase at a lower cavity frequency
(∼ 13.6 GHz). This therefore results in the hysteretic behaviour of the low frequency
conductance of Figure 5.11 obtained upon reversibly tuning the cavity fundamental
mode.

Figure 5.12 summarises the dependence of the effective phase transition temperature
(heating and cooling) on the cavity resonant frequency. We measured the effective tran-
sition temperature for cavity frequencies ranging from 11.5 GHz until 570 GHz. The
raw temperature hysteretic curves employed for the estimation of the effective critical
temperatures presented in Figure 5.12 are shown in Figure 5.13 upon heating (A) and
cooling (B) the sample. Importantly, the maximum cavity frequency employed lies be-
low the frequency of the lowest IR-active mode of the C-CDW phase (1.58 THz as shown
in the frequency spectra of Figure 5.4). We made this choice in order to disentangle the
effects due to the coupling to the IR-active optical phonons. A full description of the vi-
brational coupling with the CDW excitations across the charge ordering transition will
be presented in Chapter 6.
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Figure 5.11: Reversible cavity control of the metal-to-insulator transition at fixed temperature
(150 K) upon tuning the fundamental mode. The hysteresis as a function of the cavity funda-
mental mode is plotted as the evolution of the integrated low frequency THz transmission (0.2
THz < ω < 1.5 THz). The insets show the evolution of the time domain THz fields exiting the
cavity for different values of the cavity frequency ranging from 50.0 GHz to 11.5 GHz (opening
cavity case) and from 11.5 GHz to 50.0 GHz (closing cavity case), demonstrating the reversible
switching between the two phases.

Figure 5.12: Cavity-driven renormalization of the effective critical temperature as a function
of the cavity resonance. Dependence of the effective critical temperature on the cavity fun-
damental frequency for the heating and cooling temperature scans. The zero-frequency point
represents the free space critical temperature, while the red (blue) dashed line the literature
critical temperature [164] for the heating (cooling) temperature scan. The error bar associated to
each temperature is the standard deviation of the effective critical temperatures estimated for
three consecutive scans.

The results presented in Figure 5.12 show a non-monotonic trend of the effective crit-
ical temperature Teffc with respect to the free-space condition. Indeed, while long wave-
length cavities (up to ∼ 25 GHz) effectively stabilize the nearly-commensurate metallic
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Figure 5.13: Temperature hysteretic curves as a function of the cavity frequency. A. Low fre-
quency THz transmission (0.2 THz < ω < 1.5 THz) for all the cavity frequencies of Figure 5.12

(indicated in legend) measured upon heating the sample. B. Corresponding sweeping curves for
the cooling temperature scans.

phase, the coupling with higher energy cavities results in an effective stabilization of
the insulating C-CDW phase with respect to the material in free space (represented in
Figure 5.12 as the zero-frequency point). Overall, we revealed a shift of Teffc of ∼ 75 K by
moving from the lowest energy cavity employed in the experiment (11.5 GHz) towards
the highest one (570 GHz). The measured modification of the effective critical temper-
ature within the employed cavity frequency range exceeds the hysteresis of 1T-TaS2 in
free space (38 K), thus further validating the reversible control of the phase transition
presented in Figure 5.11.

We note that the cavity mediated Teffc obtained for the cavity with the lowest fre-
quency achievable in the set-up (ωc = 11.5 GHz) is ∼ 30 K below the temperature mea-
sured with THz spectroscopy outside of the cavity (Figure 5.12). This marks an effect
which cannot be rationalized by incoherent cooling associated to the mirror distance
but should rather be associated to the interaction with the cavity-confined field.

Crucially, the exclusion of an incoherent heating mechanism is confirmed by the fact
that the dependence of Teffc on the cavity length is qualitatively similar for measure-
ments with cavity mirror at different temperature. This evidence is in stark contrast
with an incoherent radiation heating scenario which would give opposite trends with
hot and cold cavity mirrors. Measurements with cavity mirrors at different tempera-
tures will be fully discussed in Section 5.8.2.

5.4 discussion

Proven that the observed effect can be related to the peculiar cavity electrodynamics and
cannot be rationalized through incoherent radiation heating, in the present section we
will focus on understanding and discussing if the observations should be rationalized
as a cavity-mediated heating (cooling) or a free energy renormalization (i.e. the two
scenarios presented in Figure 5.1).

To understand which of the two scenario would play the dominant role in the pos-
sible cavity-control of the charge ordering transition it is crucial to have a direct mea-
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surements of the sample’s temperature (TS) within the cavity volume. For this aim, we
performed an independent measurement campaign dedicated to address cavity medi-
ated changes of sample’s temperature. We insert within the cavity a micrometric Cr-Al
junction (see the "Methods" section 5.7.1) custom design to minimize the impact on the
cavity geometry and measure simultaneously TS and TCF in all experimental conditions
in which THz measurements were performed.

A complete discussion of the temperature measurements in all the experimental con-
ditions is presented in Section 5.8. Here, in order to discriminate between the two sce-
narios, we will present, in analogy with the THz transmission results of Figure 5.12,
the dependence of TS on the cavity resonance. Figure 5.14 displays the results of the
temperature measurements performed within the cryogenic cavity for representative
frequencies of the cavity modes.

In Figure 5.14 we plot, for each cavity length, the difference between the temperature
measured in thermal contact with the sample within the cavity (TS) and the temperature
of the cold finger (TCF) as a function of TS. Upon changing the cavity frequency, we
revealed a non-monotonic trend of the differential temperature TS− TCF with respect to
the free space configuration. Indeed, while lower frequency cavities induce a coherent
heating of the sample, the coupling with higher energy cavity modes decreases the local
sample’s temperature with respect to the free space material. By tracking TS at a the
cold finger temperature corresponding to the literature Tc (TCF = 215 K), we revealed
a non-monotonic trend as a function of the cavity frequency (inset of Figure 5.14). This
trend is qualitatively consistent with the THz observations of Figure 5.12. We note that
the observed non-monotonic trend of TS − TCF with cavity frequency depends on the
presence of the sample and it is not observed when the thermocouple is mounted within
the two holding membranes without the sample. We will detail this evidence, which in
turns proves that the observed effect is sample dependent, in Section 5.8.1.

Figure 5.14: Cavity-driven renormalization of sample’s temperature as a function of the cavity
resonance. Difference between the temperature measured on the sample (TS) and on the cold
finger (TCF) as a function of the sample temperature for different values of the cavity fundamen-
tal frequency. Temperatures have been measured upon heating the sample from the C-CDW
phase. In the inset, the effective critical temperature, defined as the cold finger temperature at
which the sample reaches the nominal critical temperature TCF = 215 K, as a function of the
cavity mode.
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We stress that the non-monotonic trend, as well as the quantitative variations upon
sweeping the cavity mode revealed in Figures 5.12 and 5.14, cannot be justified with
an incoherent radiative heating/cooling of the sample. To support this hypothesis, we
performed finite elements simulations of the membrane’s thermal profile (theoretical
details in Section 5.7.2) as a function of the cavity length, repeated the measurements
with mirrors at 290 K, revealing, apart from a rigid shift, a trend which is compatible
with the cryogenic cavity case. Crucially, a decrease of the sample’s effective tempera-
ture (TS) upon closing the cavity, regardless the mirrors temperature, is incompatible
with an incoherent radiative scenario and points towards a cavity-mediated effect. This
evidence will be detailed in Section 5.8.2.

The cavity frequency-dependent hysteresis in Figure 5.8 can be further discussed in
light of the temperature measurements reported in Figure 5.14. By keeping fixed the
cold finger temperature, the local temperature of the sample decreases upon increas-
ing the cavity frequency. Therefore, closing the cavity effectively corresponds to cool
down the sample that is thus driven to the insulating state (blue curve in Figure 5.11).
The effect is reversed when, starting from the insulating state, the cavity frequency is
decreased (red curve). Closing and opening the cavity can be thus interpreted as an
effective coherent temperature scan, therefore leading to the hysteretic behaviour ob-
served in Figure 5.11. Analogously, the alignment dependence presented in Figures 5.8,
5.9 can be linked to a coherent change of the sample temperature induced by the cavity
environment, as it depends on the presence of the sample, regardless of the mirrors
temperature (see Sections 5.8.3, 5.8.2).

Changing the cavity frequency leads not only to a renormalization of the effective
critical temperature, but also to a shrinking of the hysteresis of the phase transition.
This is explicitly demonstrated in Figure 5.15A where we plot the comparison of the
phase transition hysteresis for two different cavity settings at low and high frequency
(ωlow

c = 16.7 GHz and ω
high
c = 337 GHz). The measured changes in the effective

critical temperature observed upon heating and cooling depend therefore not only on
the cavity length, but also on the sample’s thermal history (see also the characteriza-
tions of Section 5.8.1). This marks a scenario in which the coupling to the cavity is
different in the two phases of the material leading to a different cavity driven response.
The observed shrinking of the cavity hysteresis with respect to the free space (Figure
5.6 and Figure 5.14) hints to a plausible scenario in which the coupling between the
cavity modes and the EM-active modes of the metallic state in 1T-TaS2 is the driving
force of the apparent renormalization of the phase transition. Indeed, such coupling is
expected to be different in the two phases displaying a profoundly different dielectric
response. The shrinking of the phase transition hysteresis induced by the cavity envi-
ronment points therefore to a scenario in which the insulating phase is less sensitive to
the boundary conditions of the electromagnetic field.

In order to rationalize the shift of the effective critical temperature Teffc observed ex-
perimentally, we resort to the thermodynamical picture presented in Figure 5.15B where
we schematize the free energies of the metallic NC-CDW phase and of the dielectric C-
CDW phase as a function of the temperature. The crossing temperature between the
free energies of the two phases sets the critical temperature of the metal-to-insulator
phase transition defined as the centre of the first order transition hysteresis. For sim-
plicity, we assume the free energy of the dielectric phase to be weakly dependent on
temperature and subsequently consider the change in temperature of the free energy of
the metallic phase to be responsible for the phase transition. The schematic temperature
dependence of the free energy of the metallic state (Fm) and of the dielectric state (Fd)
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in the low and high cavity frequency case, consistent with the experimental observation
in Figure 5.15A, are plotted in Figure 5.15B.

Figure 5.15: Cavity-driven renormalization of 1T-TaS222 thermodynamics. A. Comparison of
the phase transition hysteresis of 1T-TaS2 within a low frequency cavity (ωlow

c = 16.7 GHz)
and a high frequency cavity (ωlow

c = 337 GHz). B. Schematic temperature dependence of the
free energy of the metallic (Fm) and the dielectric (Fd) phase at the cavity frequencies ωlow

c

and ωhigh
c employed in (A). The activation energy for switching the phase is indicated with

∆. The shift of the apparent transition temperature can be rationalized with a cavity-mediated
renormalization of the free energy of the metallic state (black vertical arrow) and with a scaling
of the sample effective temperature in analogy with the Purcell effect (blue horizontal arrow). C.
Free energy scenario predictions. Calculated renormalization of the metallic free energy ∆Fm as
function of the cavity frequency. D. Purcell-like effect predictions. Predicted temperature ratio
TS
TCF

upon sweeping the cavity fundamental mode. The estimations of the two cavity-mediated
scenarios in (C) and (D) have been calculated at a representative cold finger temperature TCF =

80 K. The cavity frequencies presented in (C) and (D) are normalized by a representative low
energy mode frequency Ω = 15 GHz.

Recalling Figure 5.1, the different coupling of the collective excitations in the material
to the cavity modes can renormalize the effective critical temperature Teffc through two
mechanisms.
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In the first scenario, the hybridization of the cavity modes with the sample could
change the energy spectrum of the collective sub-THz modes in the material. In this
hypothesis, a coupling between the material and the cavity modes, which is different
in the two phases, is the driving force of the renormalization of the phase transition
temperature. In this picture, the shift in the transition temperature occurs through a
decrease of the free energy of the metallic phase with respect to the insulating one,
resulting in a shift of the transition temperature (black vertical arrow in Figure 5.15B).
The experimental observation would thus suggest that lowering the cavity resonance
could cause a decrease of the free energy of the metallic phase and a reduction of the
slope of its temperature dependence, consistent with a cavity-driven shrinking of the
hysteresis.

In order to see whether the free energy scenario could give the right trends, we resort
to a Dicke-based model with a single cavity mode coupled to a continuum absorp-
tion spectrum within the GHz spectral range, where linear conductivity measurements
suggest an increased dielectric response [175, 176]. These sub-THz excitations are tenta-
tively associated to domain wall fluctuations of the discommensurate regions [177, 178]
which freeze as a consequence of the CDW commensuration [166] and hence they are
only active in the metallic NC-CDW phase. We note that the system of domain walls
is charged with respect to the background, and this charge may be hence directly cou-
pled to the transverse electric field of the cavity. The full theoretical description and
derivation of the free energy model can be found in Section 5.6.1.

Importantly, under a harmonic approximation for the low energy modes in the solid,
the free energy difference ∆Fm between the light-matter hybrid and the isolated cavity
and solid can be understood solely in terms of the frequency dependent polarizabil-
ity of the system, irrespective of the microscopic nature of the modes in the solid. In
order to qualitatively illustrate the mechanism, we tentatively model the low energy
spectrum associated to collective domain wall fluctuations as a broad absorption band
centred at Ω, with Ω lying in the GHz range (Ω = 15 GHz) and exploit the model to
extract the free energy renormalization of the metallic phase ∆Fm. Figure 5.15C shows
the dependence of the free energy renormalization of the metallic phase at 80 K as a
function of the cavity frequency when the latter is swept through the spectrum of the
collective mode. The model indicates that the free energy of the metallic state is lowered
upon lowering the cavity frequency, which would be qualitatively consistent with the
decrease of the effective critical temperature upon reducing the cavity frequency, ex-
perimentally observed by THz spectroscopy (Figure 5.12). The overall scale of the free
energy change shown in Figure 5.15C is proportional to the central frequency of the
continuum collective mode Ω and to the total dielectric loss within its absorption band
(α ′′(0)).

For the quantitative estimate of the free energy mechanisms, we stress that the cou-
pling to a single cavity mode gives only a non-extensive contribution to the free energy
[179, 180]. The total effect on the free energy depends on the phase space of the relevant
cavity modes which can be shifted within the spectrum of the low energy collective
modes. Taking into account this phase space factor, extremely large couplings would be
needed for the free energy changes to explain the observed shifts in the phase transition
temperature (see Section 5.6.1 for the quantitative estimation).

In this regard, the phase space restriction is no longer valid in the thermodynamical
coupling scenario of Figure 5.1, in which an open system is considered and thermal
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exchanges between the material, the cold finger and the photon bath are allowed1. This,
together with the experimental evidence that the cavity can coherently heat up or cool
down the sample as a function of the frequency (Figure 5.14) suggests that the second
mechanism in Figure 5.1 has the dominant effect on the phase transition.

Within this thermodynamical framework, the gap between the temperature measured
on the cold finger (TCF) and the sample’s temperature (TS) can be changed through a
cavity control of the electromagnetic density of states at the sample’s position. The re-
shaping of the electromagnetic density of the states driven by the cavity (Figure 5.1B)
can indeed induce a change of the sample’s emission spectrum and hence of its temper-
ature [181] (blue horizontal arrow in Figure 5.15B). For instance, for the studied phase
transition, the short cavities move the electromagnetic modes to higher frequency and
could effectively decouple the electromagnetic active modes from the vacuum, similarly
to the Purcell effect in atomic and molecular physics [13–16]. The sample is in thermal
contact with the cold finger through the Si3N4 membranes, but it is also in thermal
contact with the external photon bath at 300 K. We assume that the thermal transfer
from the cold finger to the sample depends only on the difference between TCF and
TS through a cavity-independent thermal coupling constant. Conversely, the thermal
load on the sample due to the contact with the external photon bath is mediated by the
cavity through a coupling constant KPH−S depending on the cavity geometry (funda-
mental frequency ωc and quality factor Q) and on the sample dielectric loss within the
employed cavity range. In order to qualitatively illustrate the mechanism, we model the
infrared spectrum of 1T-TaS2, as for the free energy model, as a broad continuum ab-
sorption band lying in the GHz range and centred at a representative frequency Ω = 15

GHz, and exploit the Purcell-based model to extract an effective temperature of the
sample TS(ωc,Q) depending on the cavity geometry. Further details can be found in
the theoretical section of the present chapter (Section 5.6.2).

We proved that upon increasing the cavity frequency, i.e. by decoupling the EM active
transitions from the cavity fundamental mode, the cavity induces a coherent cooling of
the sample, whose temperature reaches the cold finger one at high cavity frequencies.
This frequency-dependent trend is shown in Figure 5.15D, where the temperature ratio
TS(ωc,Q)

TCF
is plotted as a function of cavity fundamental mode ωc for a cold finger

temperature TCF = 80 K. Simulations at different cold finger temperatures, among the
ones employed in the experiment, can be found in Section 5.6.2.

The dependence of TS on the cavity frequency predicted by the thermodynamical
coupling mechanism is qualitatively consistent with the trend of the effective critical
temperature observed experimentally with both THz transmission (Figure 5.12) and
temperature measurements (Figure 5.14).

Overall, the scenario in which the presence of the cavity leads to a sample temper-
ature change seems to be the dominant effect. Nevertheless, a quantitative accounting
of the effect could not be reached and it cannot be excluded that the cavity-driven free
energy renormalization participate and makes the effect larger. In this respect it is in-
teresting to observe that both mechanisms, based on the Purcell effect and on the free
energy renormalization of the metallic state, give the correct dependence of the phase
transition on the cavity frequency. This may provide a useful guide for future quan-

1 In this regard, a simple yet effective example that clarifies how the phase space argument no longer
applies for open systems is our daily experience with the sunbeams: sunlight is always absorbed at
momentum q = 0, but this does not prevent objects from getting warm.
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titative theories, which should also take into account the open system as well as the
non-linear interaction between the low energy modes in the solid.
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5.5 measure protocols and data analysis

We present in this section further experimental details about the measurements pre-
sented before. In particular, we will characterize the quality factor of the cavities em-
ployed in the experiments, the waiting time protocol adopted to track the phase tran-
sition and the procedure employed to determine the effective critical temperatures for
different cavity settings.

5.5.1 characterization of the sub-thz empty cavities

In order to estimate the quality factor of the sub-THz cavities employed in the experi-
ments presented in Section 5.3, we characterized the response of the empty cavity, i.e.
when the THz field passes only through the Si3N4 membranes within the mirrors.

Figure 5.16: THz characterization of the sub-THz empty cavities. A. Time domain THz fields
measured at the output of the empty cavity for three representative cavity frequencies ωc indi-
cated in legend. B. Cavity transmission spectra calculated from the fields shown in A. proving
the tunability of the cavity fundamental mode. For the presented measurements, as for all the
measurements presented in the chapter, the thickness of the gold layer on the semi-reflecting
mirrors is dAu = 15 nm.
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As pointed out in the theoretical section 2.1.1 of Chapter 2, the quality factor quanti-
fies the bare optical dissipations within the cavity volume and hence set the coupling
strength between the cavity field and the targeted material excitation.

In Figure 5.16 we plot the time domain THz fields transmitted through the sub-THz
Fabry-Perot cavity (Figure 5.16A) and the corresponding spectral content (Figure 5.16B)
for three representative values of the cavity fundamental mode ωc among the ones
used in the experiment (ωc = 53, 77, 106 GHz). The cavity transmission spectra exhibit
indeed interference Fabry-Pérot modes with a tunable fundamental frequency set by
the cavity length.

For the three representative cavities shown in Figure 5.16 we estimated the quality
factors Q to be 3.3, 3.6 and 3.5 for the 53, 77, and 106 GHz cavity, respectively. The
latter were calculated as the ratio between the fundamental cavity frequency and its
bandwidth defined as the full width half maximum of the transmission peak of the
fundamental mode. This estimation proves that, for all the cavity lengths that we stud-
ied, the bare quality factor (and hence the incoherent photon losses) can be considered
independent on the cavity fundamental frequency.

5.5.2 characterization of the sample thermalization time

In order to prove that all the measurements have been performed in a stationary regime,
we estimated the thermalization time of the sample by delaying the THz acquisition by
different amounts of time. Figure 5.17 shows that no significant variation in the effec-
tive critical temperature and in the slope of the phase transition occurs for ∆t ⩾ 2 min.
All the measured THz traces in the experiment are the result of a 20 minute integra-
tion time at each temperature step with a 5 minutes waiting time before the first THz
acquisition. Therefore, we can safely rule out that the observed inhomogeneous-like fea-
ture of the phase transition is due to a measurement waiting time less than the sample
thermalization and it can be instead likely ascribed to intrinsic inhomogeneities of the
sample, which can smear out the charge ordering transition [172, 173]. Another factor

Figure 5.17: Dependence of the metal-to-insulator phase transition on the waiting time. The
temperature evolution of the low frequency transmission (0.2 THz < ω < 1.5 THz) is plotted for
different waiting times before starting the THz acquisition.
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which could be responsible for the smearing out of the metal-to-insulator transition in
single-crystal 1T-TaS2 samples is substrate strain. Strain plays indeed a large role in the
charge ordering transition, and can shift and broaden the transition temperature sub-
stantially [174, 182]. Additionally, when mounted on membranes, homogeneity of the
temperature, in particularly the in-plane one, may also broaden the transition.

We stress that none of these inhomogeneous-like effects have any bearing on the shifts
of Teffc discussed. In fact, the well-documented sensitivity of the discommensuration
melting transition temperature to external influences speaks in favour of the cavity-
mediated effects being genuine.

5.5.3 determination of the effective critical temperature

In this section we present the method used to extract from the THz transmission data
the effective critical temperatures of 1T-TaS2 in free space and within the THz cavities.

Figure 5.18: Determination procedure of the effective critical temperature of the metal-to-
insulator transition. A. In the top panel the temperature evolution of the integrated low fre-
quency transmission (0.2 THz < ω < 1.5 THz integration range) upon heating and cooling. In
solid line the interpolated evolution. In the lower panel the derivative of the interpolated curve
whose maximum sets the effective critical temperature of the phase transition. B. In the top
panel the temperature evolution of the integrated 1.58 THz phonon transmission (1.53 THz <
ω < 1.62 THz integration range) and its interpolation. In the lower panel the derivative of the
interpolated phonon response across the phase transition.

Figure 5.18A shows the temperature evolution of the integrated low frequency trans-
mission (0.2 THz < ω < 1.5 THz) associated to the onset of the metallicity. Figure 5.18B
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shows instead the temperature evolution of the transmitted spectral weight around
the 1.58 THz phonon integrated in the range 1.53 THz − 1.62 THz. This integration
range corresponds to the phonon bandwidth. In order to estimate the effective critical
temperature at each cavity length, we interpolated the metallic and phononic temper-
ature response and calculated the derivative of the interpolated curve. The obtained
temperature-derivative for the free space sample is presented in the lower panels of
Figure 5.18A and Figure 5.18B for the metallic and phononic response, respectively.

We set the effective critical temperature of the phase transition (Teffc ) to be the maxi-
mum of the derivative of the interpolated curve. The error associated to each Teffc is the
standard deviation of the critical temperatures estimated for three consecutive scans.
The robustness of this procedure is validated by the fact that the effective critical tem-
peratures estimated from the metallic response are compatible with the ones estimated
from the phonon spectral response.

5.6 theoretical models

We present in this section the full theoretical models, developed to describe the two
proposed mechanisms through which the cavity field can act on the phase transition
(Figure 5.1).

5.6.1 free energy picture

In this section we introduce the phenomenological free energy model, providing a qual-
itative estimation of the renormalization of the free energy of the metallic NC state due
to cavity electrodynamics.

Let us consider a solid with given dielectric properties, characterized by the polariz-
ability α(ω), which determines the response of the transverse polarization density of
the electric field, PPP(ω) = ϵ0α(ω)EEE(ω). The polarizability α(ω) is related to the dielec-
tric function ϵ(ω) as ϵ(ω) = 1+ α(ω). A non-zero polarizability implies that there are
modes in the solid which can hybridize with the electromagnetic field, which in turn
leads to a change of the free energy when the system is put within the cavity. In order
to understand the effect of the cavity on the free energy of the system, we evaluate the
difference

∆F = Ftot − Fmat − Fcav (5.2)

between the total free energy of the coupled cavity (Ftot) and the free energies of the
uncoupled solid (Fmat) and of the confined electromagnetic field (Fcav). A key obser-
vation is that, as long as the solid is approximately described by a harmonic theory,
∆F can be determined from the knowledge of the experimentally accessible dielectric
function alone, independent of microscopic details such as the precise nature of the
electromagnetically active modes. In short, the reason is that in a harmonic theory one
can exactly integrate out the modes of the solid, so that the resulting effective action
of the cavity, which then determines ∆F, is given only in terms of the linear response
functions of the matter.

We will make a further simplification in line with the present experimental setting,
and assume that the volume Vm of the solid is small compared to the cavity volume V ,
i.e. Vm

V << 1. This approximation is valid for the experimental setting since the cavities
employed have fundamental frequencies in the sub-THz region, while the sample thick-
ness is ∼ 15 µm. With this approximation, as we will show below, for a single cavity
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mode with fundamental frequency ωc the free energy renormalization ∆F due to the
light-matter coupling (Equation 5.2) is given by ∆F(ωc, T) = Vm

V f(ωc, T), where

f(ωc, T) =
1

π

∫+∞
0

dωα ′′(ω)ω
b(ωc, T)ωc − b(ω, T)ω

ω2
c −ω

2
. (5.3)

In the previous equation b(ω, T) =
(
e

ω
T − 1

)−1
is the Bose function and α ′′(ω) the

imaginary part of the solid polarizability (dielectric loss).
The total free energy change ∆F is a thermodynamically extensive quantity, which

arises from the coupling to a continuum of cavity modes with transverse momentum q

and a discrete mode index n (Figure 5.19). For simplicity, instead of summing Equation
5.3 over all cavity modes ωc ≡ ωq,n, we will first analyse the single mode result
(Equation 5.3) for the lowest cavity frequency (ωc = πc

L , with L the cavity length) to
understand the qualitative functional dependence of ∆F on the temperature and on the
cavity parameters. In order to estimate the order of magnitude of the total effect of
all modes, the result will then be multiplied with a phase space factor that counts the
number of modes Nmode that are affected by the cavity.

Figure 5.19: Free energy model setting. Upper panels: coplanar cavity with a thin slab of matter
(thickness d) inside a cavity of length L. Lower panels: Sketch of the cavity modes dispersion
and of the absorption solid band (green shaded region centerd at ωdiss). As L is increased,
modes are pulled inside and below the absorption band of the solid. The cavity fundamental
mode is indicated with ωc(L).

To analyse the free energy renormalization (Equation 5.3), we assume that the solid
polarizability α(ω) in the sub-THz region, which we tentatively attribute to domain
wall fluctuations [177, 178], gives rise to a broad continuum absorption band that can
be fitted by the response of a strongly damped oscillator:

α(ω) = α(0)
Ω2

Ω2 −ω2 − iωγ
. (5.4)
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Here Ω corresponds to the central frequency of the domain fluctuations mode, γ is the
linewidth, and α(0) is the contribution of the domain wall fluctuations mode to the static
polarizability. The latter also measures the total spectral weight in the absorption band
and therefore serves as a phenomenological measure of the effective coupling strength.
The representative dielectric loss α ′′(ω) due to domain wall fluctuations adopted for
the estimations is presented in Fig. 5.20A. We set a central frequency Ω = 15 GHz and
a frequency damping γ = 20 GHz, so that no significant contribution of domain wall
fluctuations to the solid dielectric loss is present in the THz region (ω > 0.1 THz).

Figure 5.20B shows the dependence of the free energy renormalization of the metal-
lic phase (Equation 5.3) as a function of the cavity frequency ωc when the latter is
swept through the mode centred at Ω. The model indicates that the free energy of the
metallic state is lowered upon lowering the cavity frequency, which is qualitatively con-
sistent with the decrease of the effective critical temperature upon reducing the cavity
frequency observed experimentally. The renormalization of the metallic free energy is
larger for larger temperatures, indicating that it is related to the thermal population of
the low energy mode. We stress that the temperature in the experiment is well above Ω.

Figure 5.20C shows the free energy renormalization as a function of temperature
for different cavity frequencies ωc below and above the resonance ωc = Ω. The free
energy of the metallic phase is lowered and becomes steeper when the cavity frequency
is lowered (i.e. opening the cavity). This trend is consistent with the interpretation of
the experimental observation presented in Figure 5.15B.

It should be stressed, however, that the absolute changes of the total free energy are
expected to be rather small. As mentioned above, the single mode result ∆F(ωc, T) =
Vm
V f(ωc, T) should be integrated over all modes or, for a simple estimate, multiplied

with a phase space factor Nmodes. If the latter is simply taken to account for all the
modes below a certain cutoff ωcut in a volume V , we have Nmodes = V

λ3
cut

, up to

constants of order one. Therefore, the free energy change Nmodes × Vm
V f(ωc, T) per

volume Vm is given by the amount f(ωc, T) per volume λ3cut. The changes of f(ωc, T)
upon modifying the cavity frequnecy are of the order of α(0)Ω (see Figure 5.20), thus
corresponding to an energy density α(0)Ω

λ3
cut

. This value has to be compared with the

condensation energy density of the phase transition, which is Q ∼ 6 J/mm3 ∼ 3.6 ×
1010eV/µm3 [183]. With Ω in the sub-meV range, very large couplings α(0) would be
needed, even with a cut-off λcut in the optical range (which is clearly an upper bound,
as optical frequencies are hardly affected by the present THz cavity setting).

We therefore conclude that although the free energy renormalization in the cavity ∆F
follows the correct trend (lowering the free energy of the nearly commensurate phase as
the cavity is opened), it is not sufficient to explain the experimental observation. While it
will certainly be also interesting to investigate future theoretical interpretations which
go beyond the harmonic theory, this puts more emphasis on the second mechanism,
which is based on an electodynamical control of cavity dissipations, similar to Purcell
effect (Figure 5.1).

Finally, let us conclude this theoretical section with the explicit derivation of Equation
5.3. Let us start from a general harmonic model in which one mode of the electromag-
netic field couples to a continuum of modes in the solid. The Hamiltonian is a general
Dicke-type Hamiltonian:

H =
1

2

∑
a

(
Ω2

a

[
pa +

κγa

Ω2
a

Π

]2
+ x2a

)
+
1

2

(
Π2ω2

q +X2
)

, (5.5)



94 cavity control of the metal-to-insulator transition in 1T-TaS2

Figure 5.20: Cavity-induced renormalization of the free energy of the metallic phase. A. Di-
electric loss spectrum α ′′(ω) (Ω = 15 GHz, γ = 20 GHz) employed for the calculations. The
spectrum has been normalized by the static contribution to the polarizability α(0). B. Renor-
malization of the metallic free energy ∆Fm as a function of the cavity frequency for different
temperatures. The cavity frequencies ωc are normalized by Ω = 15 GHz. C. Renormalization
of the metallic free energy ∆Fm as a function of the temperature for different cavity frequencies
above and below resonance ωc = Ω.

where X and Π are the canonical quadratures of the electromagnetic field, and pa and xa
the quadratures of the modes in the solid. The solid normal modes have frequenciesΩa

in the absence of the coupling to the cavity field. The electromagnetic field quadrature Π
is related to the vector potential (which is spatially homogeneous throughout the solid)
by the relation

Â = n̂

√
1

ϵ0V
Π, (5.6)

where we have indicated with V the cavity mode volume, and with n̂ the polarization
direction. The electric field operator is connected to the vector potential by the temporal
derivative Ê = −∂tÂ. The complete square light-matter coupling in Equation 5.5, with
coupling constants γa, corresponds to a minimal coupling of the modes in the solid
to the vector potential. The coupling between the solid oscillators and the single cavity
mode scales as κγa where κ2 = Vm

V is the volume fraction of the cavity filled with the
1T-TaS2 sample. Note that, as mentioned above, the final result for ∆F will be expressed
in terms of the polarizability, so that the detailed choice of the paramenters Ωa and γa
does not enter.
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The aim is now to calculate the free energy difference ∆F within this model. Denoting
with ηα and η

(0)
α the normal modes energies of the coupled and uncoupled system,

respectively, the free energy difference (Equation 5.2) is simply given by

∆F =
1

β

∑
α

[
ln
(
1− e−βηα

)
− ln

(
1− e−βη

(0)
α

)]
, (5.7)

where 1
β ln

(
1− e−βη

)
is the free energy of an oscillator with frequency η. The η2α are

given by the eigenvalues of the dynamical matrix D corresponding to the Hamiltonian
5.5:

D =


ω̃c

2
κγ1 κγ2 . . .

κγ∗1 Ω2
1 0 . . .

κγ∗2 0 Ω2
2 . . .

...
...

...
. . .

 . (5.8)

Here ω̃c
2 is the shifted cavity frequency ω̃c

2 = ω2
c + κ2

∑
a

|γ2
a|

Ω2
a

as a consequence
of the coupling with the solid degrees of freedom. We determine these normal modes
perturbatively in the solid volume fraction κ2 << 1. The perturbative expansion for the
cavity mode (entry 0 in the dynamical matrix of Equation 5.8) reads

η20 = ω2
c + κ

2
∑
a

|γ2a|

Ω2
a

+ κ2
∑
a

|γ2a|

ω2
c −Ω

2
a

, (5.9)

while for the matter modes we have:

η2a = Ω2
a + κ2

|γ2a|

Ω2
a −ω2

c

. (5.10)

One can then linearize Equation 5.7 in δη, leading to ∆F = κ2
∑

α b
(
η
(0)
α

)
δηα, and

insert the perturbative expressions of the cavity (Equation 5.9) and of the solid (Equation
5.10) eigenmodes. With some straightforward manipulations, this gives the results of
Equation 5.3, with the function α ′′(ω) of the form:

α ′′(ω) = π
∑
a

|γa|
2

2Ω3
a

[δ (ω−Ωa) − δ (ω+Ωa)] . (5.11)

Finally, we need to confirm that this expression (Equation 5.11) is precisely the imagi-
nary part of the polarizability within the model of Equation 5.5. A simple link is made
via the dielectric loss. When the system is driven with a time-dependent field, the ab-
sorbed energy per volume is the time-average of EEE(t)∂tPPP(t). With the above definition
of the polarizability, the loss under a field A(t) = n̂Aωe

−iωt + h.c. is

Γ(ω) = 2ω3ϵ0α
′′(ω)|Aω|2. (5.12)

On the other hand, in the model (Equation 5.5) we can calculate the energy absorption
due to a time dependent classical vector potential, which by means of Equation 5.6 is
introduced by replacing Π → Π+

√
Vϵ0A(t). Fermi’s golden rule (or equivalently the

Kubo linear response formalism [184]) gives

ΓA(ω) = |Aω|22ω
∑
a

|γa|
2χ ′′aa(ω)ϵ0Vκ

2 = Vm|Aω|22ω
∑
a

|γa|
2χ ′′aa(ω)ϵ0 (5.13)
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with χ ′′aa
χ ′′aa(ω) =

π

2Ωa
[δ (ω−Ωa) − δ (ω+Ωa)] , (5.14)

the spectral function of the single mode a. Comparing the two expressions in Equation
5.12 and Equation 5.13, shows that Equation 5.11 is the actual result for the polarizabil-
ity.

5.6.2 control of dissipations through cavity

electrodynamics

In this section we discuss in detail the theory beyond the Purcell-like scenario, i.e. the
scenario in which the changes in the effective critical temperature of 1T-TaS2 could be
related to a control of the sample’s dissipations through the cavity electrodynamics.
In this scenario, the reshaping of the electromagnetic density of states at the sample
position due to the cavity electrodynamics could result in a modification of the sample’s
thermal load and subsequently of its temperature.

In order to estimate the Purcell-based effect, we proceed as indicated in Figure 5.21A.
The sample is in thermal contact with the cold finger through the membranes, but it is
also in thermal contact with the external photon bath at TPH = 300 K. We assume that
the thermal transfer from the cold finger to the sample depends only on the difference
between the cold finger temperature (TCF) and the sample effective temperature (TS).
Conversely, we assume that the thermal load on the sample due to the contact with the
external photon bath is mediated by the cavity, in analogy with the Purcell effect [13–
16]. Under these hypotheses, we can write two rate equations describing respectively
the cavity-independent heat flow between the cold finger and the sample:

QCF−S = KCF−S(TCF − TS), (5.15)

and the cavity-mediated heat transfer between the sample and the external photon bath:

QPH−S(ωc,Q) = KPH−S(ωc,Q)(TPH − TS). (5.16)

In the previous equations KCF−S represents the cavity-independent coupling constant
between the cold finger and the sample, while KPH−S(ωc,Q) the coupling constant
between the sample and the photon bath, which depends on the cavity geometry, i.e.
on the fundamental frequency ωc and on the quality factor Q.

The coupling constant KPH−S(ωc,Q) between the sample and the photon bath can be
expressed as the joint density of states of the solid ρSolid(ω) and of the cavity ρCavity,
with the latter multiplied by the Boltzmann distribution at the photon bath temperature
TPH = 300 K:

KPH−S(ωc,Q) =

∫+∞
0

dωρCavity(ωc,Q)(ω) · ρSolid(ω)e
− ω

KBTPH . (5.17)

Let us model the sub-THz absorption of the sample, as for the free energy scenario
presented in Section 5.6.1, with a continuum broad mode centred at Ω = 15 GHz and
with a spectral linewidth γ = 20 GHz, which we tentatively associate with the domain
wall fluctuations of the non-commensurate regions. Under this hypothesis, the solid
density of state in the sub-THz region can be expressed through the dielectric loss per
unit frequency as:

ρSolid(ω) =
α ′′(ω)

Ω
= α(0)

Ωγω(
ω2 −Ω2

)2
+ (γω)2

. (5.18)
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The multimode cavity density of states takes instead the following form:

ρCavity(ωc,Q)(ω) =

+∞∑
n=0

γcav

(ω−nωc)2 + (γcav)2
, (5.19)

where γcav represents the linewidth of the bare cavity, which is related to the quality
factor Q by the relation Q = ωc

γcav
. The quality factor of the empty cavity is set by the

experimental conditions (see Section 5.5.1).

Figure 5.21: Cavity control of sample dissipations. A. Schematic representation of the ther-
mal loads on the sample determined by its coupling with the cold finger through the cavity-
independent factor KCF−S and with the photon thermal bath through the cavity-dependent
factor KPH−S(ωc,Q). B. Density of states of the solid (peaked at the mode frequency Ω and
of the cavity (peaked at multiples of the fundamental mode ωc). The cavity density of states
is multiplied by the Boltzmann distribution at the temperature of the photon bath TPH = 300

K. C. Dependence of the temperature ratio TS(ωc,Q)
TCF

as function of the cavity frequency for
different temperatures of the cold finger TCF. The renormalization of the absolute temperature
scales with KPH−S(ωc,Q), which is related to the mode oscillator strength. D. Evolution of
the temperature ratio TS(ωc,Q)

TCF
upon tuning the cavity frequency for different values of the

cavity-independent coupling constant KCF−S at a fixed cold finger temperature TCF = 80 K.
The values of the cavity-independent constant KCF−S indicated in the legend are normalized by
KPH−S(ωc,Q) evaluated at ωc = Ω.
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We present in Figure 5.21B a plot of the solid density of state and of the cavity den-
sity of states multiplied by the Boltzmann distribution at the photon bath temperature
TPH = 300 K.

Under stationary conditions, the thermal flow from the cold finger to the sample
QCF−S equals the cavity-mediated heat transfer between the sample and the photon
bath QPH−S(ωc,Q), that is QCF−S +QPH−S(ωc,Q) = 0. At equilibrium, we can sub-
sequently calculate an effective sample temperature TS(ωc,Q), which takes the form:

Ts(ωc,Q) =
KPH−S(ωc,Q)TPH +KCF−STCF

KPH−S(ωc,Q) +KCF−S
. (5.20)

The temperature ratio between the sample and the cold finger TS(ωc,Q)
TCF

as a function
of the cavity fundamental mode is plotted in Figure 5.21C for different cold finger
temperatures. We stress that the renormalization of the sample effective temperature
in the employed cavity frequency range scales with the cavity-solid joint density of
states KPH−S(ωc,Q), and hence with the total spectral weight within the solid absorp-
tion band α(0). Larger cavity-induced renormalization of the sample’s temperature are
hence expected for a larger oscillator strength of the sub-THz collective mode.

We note that, upon increasing the cavity frequency, i.e. by decoupling the electromag-
netic active sub-THz modes from the cavity fundamental mode, the model predicts a
decrease of the temperature ratio TS(ωc,Q)

TCF
consistent with a decrease of the effective

temperature at the sample’s position. In particular, TS tends to TCF at high cavity fre-
quencies, i.e. when the cavity field is far off-resonance with the low energy mode. We
highlight that this trend is qualitatively consistent with the experimental observations
of Figure 5.12 and Figure 5.14.

As marked in Figure 5.21C, the cavity-mediated modification of the sample-photon
bath dissipations is more efficient when the temperature difference between the cold fin-
ger and the photon thermal bath is larger. For a given cavity configuration (frequency
ωc and quality factor Q) the model predicts therefore a greater shift of the sample’s
temperature at lower temperatures. This prediction could therefore qualitatively jus-
tify the cavity-mediated shrinking of the hysteresis (Figure 5.15A, B). Indeed, since
Tcheating > Tccooling, we expect the the Purcell-like effect (Figure 5.21C) to be more effi-
cient at Tccooling with respect to Tcheating, thus leading to an effective shrinking of the
hysteretic behaviour.

In Figure 5.21D we prove that the trend highlighted in Figure 5.21C is qualitatively
independent on the thermal coupling constant between the sample and the cold finger
KCF−S. A change in KCF−S in the employed cavity frequency range acts only as a scal-
ing factor of the cavity frequency trend. The results shown in 5.21D has been calculated
for a representative cold finger temperature TCF = 80 K.

Importantly, we note that the renormalization of the sample effective temperature
induced by the cavity is more efficient when the thermal coupling between the sample
and the cold finger KCF−S is smaller. At very high thermal couplings (KCF−S) we expect
indeed the contribution to the sample’s temperature of the cavity-dependent interaction
with the photon bath, and hence the renormalization of TS, to be negligible.



5.7 methods 99

5.7 methods

In this section we present the experimental details of the temperature measurement
within the cavity and we give the details of the finite elements simulations employed
to analyse the incoherent thermal dynamics inside the cavity. These methods will be
jointly exploited in the next section 5.8 to extensively prove the cavity-induced origin of
the phase transition control.

5.7.1 measurement of the temperature within the cavity

We stressed while presenting the experimental evidences of the cavity-driven control
of the phase transition (Section 5.3) that the temperature indicated in all the reported
measurements is the cold finger readout. When performing THz optical measurements,
this choice is mandatory because any thermosensitive device introduced in the cavity
would not only impede the THz transmission, but also modify the sample environment.
On the other hand, measuring the actual temperature of the sample is crucial to dis-
criminate between the two cavity-mediated scenarios that we proposed (see Section 5.6
for further theoretical details).

Figure 5.22: Cr-Al thermocouple junction sealed within the membranes and in thermal con-
tact with the sample.

To this aim, we directly measured the temperature – both of the membrane and the
sample – in the cavity by sealing of a home-made 20 µm Cr-Al junction within the
membranes. In Figure 5.22 we show a picture of the thermocouple arrangement within
the sample mount. Importantly, in order to not have offsets in the temperature readout,
all the wires connecting the junction to the output of the cryostat head were made of
Cr and Al of ∼ 120µm. The only discontinuity point is represented by the gold male-
female connectors at the output of the sample holder which, as we verified, give no
temperature discrepancy.

We highlight that, in this experimental setting, the THz optical measurements cannot
be performed; it is therefore not possible to monitor the THz response of the sample
as function of its actual (measured) temperature. All the temperature measurements
discussed must be then considered a separate characterization of the temperature of
the sample in a cavity geometry which is nevertheless identical to the one used in all
the THz measurements.
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5.7.2 finite element simulations of incoherent thermal

heating

To estimate the effect of the incoherent thermal radiation within the cavity, we per-
formed finite elements simulations exploiting the COMSOL MULTIPHYSICS software.
By simulating the incoherent thermal load at the membrane position, we are indeed
able to gain insight on the membrane’s thermal profile for different cavity configura-
tions and hence exclude trivial scenarios in which the sample’s temperature is modified
by purely geometrical factors related to the cavity settings.

Let us model the membrane as a grey body having emissivity ϵ, reflectivity ρ, absorp-
tivity α, and temperature T , and let us assume the incoherent radiative properties of the
membrane to be fully described by these four parameters ϵ, ρ, α, T . The net inward heat
flux Q at certain point xxx on the membrane’s surface will be given by the difference be-
tween the total arriving radiative flux G (irradiation) and the total outgoing radiative
flux J (radiosity):

Q(xxx) = G(xxx) − J(xxx). (5.21)

The radiosity J is the sum of the reflected and emitted radiation from the membrane
and can be described through the Stefan-Boltzmann equation as:

J(xxx) = ρG(xxx) + ϵσT4. (5.22)

By imposing now that the membrane is in thermodynamical equilibrium with the
surroundings, i.e. the emissivity ϵ is equal to the absorptivity α, we can rewrite the
reflectivity ρ as:

α = ϵ = 1− ρ. (5.23)

Thus, the net inward radiative flux of the membrane can be expressed only as a function
of G, ϵ, and T as:

Q(xxx) = ϵ
(
G(xxx) − σT4

)
. (5.24)

Equation 5.24 has been used in COMSOL as radiation boundary condition for the mem-
brane’s surface.

The total surface radiation G includes radiation from both the ambient surroundings
and from other surfaces. A generalized equation for the irradiative flux is:

G(xxx) = Gm(xxx) + Famb(xxx)σT
4
amb, (5.25)

where Gm is the mutual irradiation arriving from other surfaces in the modelled geom-
etry, Tamb = 300 K is the temperature of the surrounding environment schematized as
a radiative black body, and Famb is the ambient view factor. The view factor parameter
describes the portion of the view from each point that is covered by ambient condi-
tions. Conversely, Gm is determined by the geometry and the local temperatures of the
surrounding surface boundaries. Including the expression of the irradiation G inside
Equation 5.24, the general expression of the net radiative load at the specific point xxx on
the membrane is:

Q(xxx) = ϵ
(
Gm(xxx) + Famb(xxx)σT

4
amb − σT4

)
(5.26)

This equation has been used by COMSOL to compute the net radiative transfer at
each point xxx of the membrane’s surface [185]. We stress that Equation 5.26 results in
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a linear equation system in Q(xxx) that must be solved in parallel with the heat transfer
equation for the temperature T :

Q(xxx) = −k∇2T(xxx) (5.27)

in order to extract the membrane’s thermal profile T(xxx). In the previous expression k
represents the membrane’s thermal conductivity.

Firstly, we discuss here the simulated thermal profile of a single silicon nitride mem-
brane held in free space. For simplicity we assumed 2D circular geometry for the mem-
brane. We imposed the boundary conditions in order to have the membrane’s edge at
the same temperature of the cold finger. The thermal profile along the radial coordi-
nate of the free space membrane will be hence controlled by the balance between the
membrane’s emissivity ϵ and the thermal load due to ambient black body radiation at
Tamb = 300 K. For the simulations we set the silicon nitride emissivity at ϵ = 0.3 [186],
supposing no wavelength dependence across the mid-infrared spectral range, where
the black-body radiation of the membrane is located for the employed temperatures
(80 < T < 300 K). Figure 5.23 illustrates the simulated thermal profile of the membrane
in free space, together with a cut along the radial direction.

Figure 5.23: Finite elements simulation of the membrane’s thermal dissipations in free space.
A. Simulated 2D temperature profile of the membrane in free space. B. Radial dependence of
the membrane’s temperature held in free space. The cold finger temperature has been set at
TCF = 180 K.

We highlight that by setting the cold finger temperature at the temperature at which
the phase transition in 1T-TaS2 is observed in free space (TCF = 180 K), we can re-
trieve a temperature in the middle of the membrane (and hence at the sample position)
corresponding to the literature Tc [164]. The simulation therefore confirms the assump-
tion that the measured rigid shift of the free space critical temperature (Figure 5.3)
with respect to the literature one has to be attributed to the high thermal impedance
of the Si3N4 membranes between which the sample is embedded. This high thermal
impedance does not hence allow the membranes to efficiently re-radiate the ambient
black-body radiation.
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Figure 5.24: Finite elements simulation of membrane’s temperature as a function of the rela-
tive position of the mirror mounts. A. 3D thermal profile of the membrane for two representa-
tive distances between the mirror mounts (13 mm and 1.0 mm). B. Cut of membrane’s thermal
profile along the radial direction for the two mounts’ distances presented in A. The cold finger
temperature has been set at TCF = 180 K, as well as the mounts temperature.

Importantly, as shown in Figure 5.24, the simulations confirm that the incoherent
thermal load on the membranes is not significantly influenced by the distance between
the cryogenic mirror mounts. This further excludes a trivial scenario in which is the
geometrical variation of the cavity mounts which screens the ambient radiation and
subsequently changes the membrane’s temperature.

5.8 tests for the cavity-induced origin of the

phase transition control

The main experimental evidence reported in this chapter is that the effective critical
temperature of the metal-to-insulator transition in 1T-TaS2 can be modified by tens of
kelvin by placing the sample within a sub-THz cavity. We have demonstrated that the
renormalization of the effective critical temperature depends both on the cavity length
and the cavity alignment (Section 5.3).

The novelty of the experiment, which represents one of the few attempts in the liter-
ature to study how the properties of solid-state complex systems can be modified by
the light-matter coupling, calls for a thorough characterization of the effect with the
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aim of ruling out possible experimental artifacts and trivial scenarios. In particular, the
most straightforward explanation could be that the huge shift of the effective critical
temperature is due to an incoherent radiation heating of the sample, placed within the
cavity and therefore in scarce thermal contact with the cold finger.

In the following, we will detail that this is not the case. By jointly discussing results
of the finite elements simulations and of the temperature measurements, we will give
proves that a coherent light-matter interaction which modifies the cavity electrodynam-
ics may be the dominant effect for explaining our experimental observations.

To facilitate the discussion, we will address specific questions that may arise and
argue how the complementary tests that we carried out hint towards a cavity-mediated
scenario.

5.8.1 does the sample affect the temperature difference

between the cold finger and the cavity center?

In a trivial scenario in which the sample experiences an incoherent radiation heating,
also the membranes are expected to behave similarly in response to the modification of
the cavity parameters. In order to rule out this possibility, we measured the temperature
of the sample and the temperature of just the membranes (i.e., without placing the
sample between them) by means of the thermocouple for different cavity fundamental
modes.

Figure 5.25 presents the results of the temperature measurements performed within
the cavity when the thermocouple is sealed on the sample (Figure 5.25A) and when it is
held just between the two Si3N4 membranes (Figure 5.25B). The temperature measure-
ments, for each cavity setting, are plotted as the difference between the temperature
measured on the sample/membrane (TS/TMembrane) and the one recorded on the cold
finger (TCF) as a function of TS or TMembrane.

We highlight two distinctive trends, characteristic of the presence of the sample:

• The absolute temperature renormalization passing from the lower to higher cavity
frequency is significantly higher on the sample with respect to the membrane. For
the lowest cold finger temperature (TCF = 80 K) we indeed measured a renor-
malization of the sample’s temperature of ∼ 27 K moving the cavity fundamental
mode from 11.5 GHz to 42.8 GHz. Conversely, between the two cavity configura-
tions we measured only a ∼ 9 K renormalization of the membrane’s temperature.

• The temperature renormalization induced by the cavity in the sample is non-
monotonic with respect to the free-space case. Indeed, for high frequency cavities
the sample’s temperature within the cavity is lower with respect to the sample’s
temperature measured in free space. This is qualitatively consistent with the crit-
ical temperature trend as function of the cavity fundamental mode revealed by
THz spectroscopy (Figure 5.12). Conversely, this anomalous non-monotonic be-
haviour is not observed on the membranes, where the membrane’s temperature
measured within the cavity is lower than the free space case for all the cavity
frequencies studied. In particular, we observe that the membrane’s temperature
measured for the larger cavity length (11.5 GHz) approaches the trend measured
in free space.

In Figure 5.25C we present the differential temperature TS − TCF for a fixed cold
finger temperature as a function of the cavity fundamental frequency. To perform this
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length dependent study the cold finger temperature has been set at TCF = 150 K, as for
the THz transmission measurements (Figure 5.11).

As expected from the full temperature scans presented in Figure 5.25A, B we revealed
a renormalization of the sample’s effective temperature of ∼ 18 K by sweeping the cavity
mode from 11.5 GHz to 42.8 GHz. On the other hand, for the same frequency range, we
detected a significantly smaller change in the membrane’s temperature (∼ 5 K).

Figure 5.25: Temperature measurements within the cavity. A. Difference between the temper-
ature measured on the sample (TS) and on the cold finger (TCF) as a function of the sample
temperature. Temperatures have been measured upon heating the sample from the dielectric
C-CDW phase. B. Difference between the membrane temperature and the cold finger tempera-
ture when the thermocouple is held just between the two membranes. C. Difference between the
temperature measured on the thermocouple and on the cold finger as a function of the cavity
frequency for a fixed cold finger temperature (TCF = 150 K). In blue the measurements per-
formed with the thermocouple put on the sample, while in black with the thermocouple held
between the membranes.

A further confirmation that the reported effect is related to the cavity-mediated inter-
action of the sample with the confined field comes from the direct measurement of the
sample’s temperature both in heating and cooling conditions. Should the temperature
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renormalization depend on an incoherent heating, no differences would be expected in
the two scanning conditions. This is in fact what we observed on the membrane (Figure
5.26A) where the difference between TMembrane and TCF is identical when heating up or
cooling down within the cavity. However, the sample’s temperature shows a different
trend for the heating/cooling directions (Figure 5.26B). In particular, while we do not
observe any systematic discontinuity when heating up the sample, a kink at the nominal
critical temperature ∼ 215 K is always present when cooling down the sample at differ-
ent cavity lengths. In the temperature range ∼ 160− 215 K we also observe a constant
temperature difference between the sample and the cold finger. The thermodynamical
meaning of this effect is not clear, but the observation of this hysteretic behaviour, which
is not present on the bare membranes, proves that the effects discussed are peculiar of
the sample.

Figure 5.26: Temperature measurements upon heating and cooling. A. Difference between the
membrane and the cold finger temperature within a 11.5 GHz cavity upon heating (red curve)
and cooling (blue curve). Same as (A) but for the sample’s temperature in three different cavity
configurations. The cavity frequency for each configuration is indicated in the plot title.

5.8.2 does the temperature of the cavity mirrors affect

the sample temperature?

A possible source of incoherent thermal load are the cavity mirrors, whose presence
might affect the temperature of the sample. In order to exclude this incoherent heat-
ing effect, we carried out a characterization of the phase transition shift with cavity
frequency as a function of the mirrors temperature. We made this test by comparing
the cryo-cooled mirrors configuration (Tmirr = 95 K2) with the 290 K mirrors one. The

2 This is the lowest reachable temperature of the mirrors for the present experiment, measured when the
cold finger is at TCF = 80 K.
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relation between the mirrors and the sample’s temperature in the two cases is presented
in Figure 5.27.

Figure 5.27: Temperature of the mirrors in the cryogenic configuration and in the room tem-
perature case. Relation between the cold finger temperature and the mirrors temperature in the
cryo-cooled mirrors configuration and in the 290 K mirrors configuration. The black dashed line
marks the diagonal.

Figure 5.28 shows the temperature dependent THz transmission upon heating 1T-
TaS2 embedded in the middle of cavities with three different frequencies (ωc = 11.5,
21.2, 48.8 GHz). In Figure 5.28A the temperature scans are performed with the cavity
mirrors at 290 K, while in Figure 5.28B they are performed in the configuration with
cryo-cooled mirrors. The dependence of the effective critical temperature on the cavity
frequency is presented in Figure 5.29 for the two configurations.

It is evident that, despite a rigid temperature shift independent on the cavity fre-
quency (∼ 35 K), the effective critical temperature of the phase transition is pushed up
with the 290 K mirrors upon increasing the cavity frequency, displaying a trend which is
analogous to the one measured with the cryogenic mirrors. Crucially, this further hints
that the effective Tc shift is an effect due to the cavity electromagnetic confinement. If
not, in the 290 K mirrors configuration we would have expected to increase the inco-
herent thermal load on the sample upon closing the cavity and hence push down the
apparent critical temperature of the phase transition.

In order to clarify this point, we simulated with the finite elements software COMSOL
the membrane’s thermal profile embedded in three cavities having different lengths.
The employed 3D geometry can be found in Figure 5.30A and Figure 5.31A for cryo-
genic and ambient temperature mirrors, respectively.
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Figure 5.28: Dependence of the phase transition on the temperature of the cavity mirrors
revealed by THz spectroscopy. A. Heating temperature scans for three representative cavity
frequencies (ωc = 11.5, 21.2, 48.8 GHz) in the 290 K mirrors configuration. B. Corresponding
heating temperature scans for the cryogenic mirrors configuration.

Figure 5.29: Dependence of the heating critical temperature on the cavity fundamental fre-
quency for the 290 K and cryogenic mirrors configurations. In blue (red) the effective critical
temperature measured upon heating the sample from the dielectric phase for the cryogenic mir-
rors (290 K mirrors) configuration. The effective critical temperatures have been extracted for
the THz scans of Figure 5.28.
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Figure 5.30: Finite elements simulation of the membrane’s temperature as a function of the
cavity fundamental frequency in the cryogenic mirrors configuration. A. 3D thermal view
of the cryogenic cavity employed for the simulations. B. 2D thermal profile of the membrane
within the cryogenic cavity for three representative cavity frequencies (11.5, 21.4, 75.0 GHz)
employed in the experiment. C. Radial profile of the membranes held within the cryogenic
cavity for different values of the cavity fundamental mode (indicated in legend). The cold finger
temperature (TCF) and the mirrors temperature have been set at 180 K.
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Figure 5.31: Finite elements simulation of membrane’s temperature as a function of the cavity
fundamental frequency in the 300 K mirrors configuration. A. 3D thermal view of the mem-
brane held between the 300 K mirrors. B. 2D thermal profile of the membrane within the 300

K mirrors for three representative cavity frequencies (11.5, 21.4, 75.0 GHz) employed in the ex-
periment. C. Radial profile of the membranes in the 300 K mirrors configuration for different
values of the cavity fundamental mode (indicated in legend). The cold finger temperature (TCF)
has been set to 180 K.
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The radial profiles plotted in Figure 5.30C and Figure 5.31C show that, upon closing
the cavity and thus increasing the cavity frequency, the shielding of ambient radiation
is efficient only with the cryogenic mirrors, whereas in the 300 K mirror case the inco-
herent radiation from the mirror surfaces dominates the thermal load on the membrane.
We stress that this trend is opposite to the one measured by THz spectroscopy (Figure
5.29).

Finite element simulations emphasize that the non-monotonic trend of the phase
transition renormalization revealed by both THz linear spectroscopy (Figure 5.12) and
direct temperature measurements (Figure 5.14) cannot be rationalized within an inco-
herent thermal scenario. Crucially, this evidence is valid for both the cryogenic and
room temperature mirrors configurations. In both the scenarios, the finite elements sim-
ulations predict indeed a modification of the sample’s temperature due to incoherent
heating which is monotonic with respect to the free space value. Indeed, upon reduc-
ing the cavity length the effective sample’s temperature monotonically decreases in the
cryogenic mirrors case (Figure 5.30C), while it monotonically raises within the ambient
temperature mirrors (Figure 5.31C).

Together with THz linear transmission, we characterized the effect of the mirrors
temperature on the phase transition by tracking the sample’s temperature as a function
of the cavity frequency and of the cavity alignment.

Figure 5.32 shows a comparison of the differential temperature between the cold
finger and the sample when the latter is held between the cryogenic cavity (Figure
5.32A) and between the cavity with 290 K mirrors (Figure 5.32B). The measured trend is
qualitatively consistent with the effective critical temperature trend measured by THz
spectroscopy (Figure 5.29). Indeed, despite a cavity-independent shift of the sample’s
temperature due to the different incoherent thermal load, in the 290 K mirrors case the
sample’s temperature is pushed down with a similar trend of the cryogenic mirrors case
upon increasing the cavity frequency.

For the lowest cold finger temperature (TCF = 80 K) and in the 290 K mirrors case
we measured a renormalization of the sample’s temperature of ∼ 31 K by sweeping
the cavity mode from 11.5 GHz to 42.8 GHz, which is similar to the ∼ 27 K measured
within the cryogenic cavity. A similar trend between the 290 K and cryo-cooled cases is
measured by fixing the cold finger at 150 K and tracking the differential temperature
TS − TCF as a function of the cavity fundamental mode (Figure 5.32C). As highlighted
in the comparative plots of Figure 5.32C, the renormalization of the sample’s temper-
ature measured either within the cryogenic cavity and with the 290 K mirrors is not
consistent with the trend measured on the bare membranes, where a ∼ 3 times smaller
renormalization is observed moving the cavity mode at 150 K from 11.5 GHz to 42.8
GHz (black points of Figure 5.32C).

Importantly, we further prove that the cavity-mediated change of sample’s temper-
ature is independent on the mirrors temperature by repeating the misalignment test
with the 290 K mirrors. In Figure 5.33 we present the comparison of the differential
temperature TS − TCF as function of the cavity alignment in the cryo-cooled and in the
290 K mirrors case. We show that, despite a rigid shift due to the incoherent thermal
load introduced by the 290 K mirrors, the renormalization of the sample’s temperature
due to the cavity alignment is ∼ 3.5 times larger than the one measured on the bare
membranes for both the mirrors temperature configurations. This further hints that the
observed effect is ascribable to a selective effect of cavity electrodynamics to the sam-
ple’s thermodynamics.
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Figure 5.32: Temperature measurement within the cavity as a function of the mirrors tem-
perature. A. Evolution of the difference between the temperature measured on the sample (TS)
and on the cold finger (TCF) as a function of the sample temperature in the cryo-cooled mirrors
configuration. B. Differential temperature TS − TCF as a function of the sample’s temperature
measured in the 290 K mirrors configuration. In both cases the temperatures have been mea-
sured upon heating the sample from the C-CDW phase. C. Differential temperature TS − TCF

for a fixed cold finger temperature (TCF = 150 K) as a function of the cavity fundamental fre-
quency. In blue the measurements performed within the cavity with cryogenic mirrors, while
in red with 290 K mirrors. In black, for reference, the differential temperature measured within
the membranes in the cryogenic mirrors configuration.
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Figure 5.33: Temperature measurements within the cavity as a function of the cavity align-
ment for different mirror temperatures. Differential temperature TS − TCF as a function of the
alignment measured for the sample held within cryogenic mirrors (blue) and 290 K mirrors
(red). In black, for comparison, the differential temperature measured on the membranes. For
the present measurements the cold finger has been set at TCF = 80 K.

5.8.3 does the cavity alignment modify the sample temper-
ature?

A further parameter which was shown to affect the effective critical temperature of the
metal-to-insulator transition is the alignment of the cavity (Figure 5.8), which ultimately
sets its quality factor (Figure 5.7). In order to demonstrate that this is not just a pure
geometrical effect, we characterize in the following the response of the sample to the
cavity misalignment.

First of all, we proved that the effective change of the phase transition temperature
due to the cavity alignment cannot be ascribed to a change of the cavity length. In order
to do so, we estimated the change of the cavity frequency at the sample position as
a function of the misalignment angle of the mirrors. Figure 5.34A illustrates the THz
time-domain traces in the C-CDW phase for different misalignment angles θ. In the
dashed box we highlight the THz reflection associated to the cavity round trip whose
temporal distance from the main transmitted peak sets the cavity length. We note that
upon misalignment the peak associated to the cavity round trip not only reduces its
intensity as a consequence of the increase of optical losses (cfr Figure 5.7), but also
exhibits a temporal shift associated to a modification of the cavity length.

The dependence of the cavity frequency shift on the misalignment angle θ and the
corresponding linear fit are shown in Figure 5.34B. We estimated the change of the
fundamental frequency upon tuning the angle θ to be ∆ωc = 0.14 GHz/deg for the
11.5 GHz cavity. This implies that the 11.5 GHz cavity misaligned at the maximum angle
(θ = 9.5◦) has an equivalent fundamental frequency of 12.8 GHz. We therefore set the
cavity frequency at 12.8 GHz and compare the effective critical temperature obtained in
this configuration with the one measured on the sample embedded within the 11.5 GHz
cavity misaligned at θ = 9.5◦. We measured the shift of the effective critical temperature
between the two cavity configurations to be ∆MIS = 21 K. This phase transition shift is
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Figure 5.34: Variation of the cavity fundamental frequency as a function of the total mis-
alignment angle of the cavity. A. THz fields measured at the output of the coupled cavity for
different misalignment angles θ. In the dashed box we highlight the THz reflection associated
to the cavity round trip, which slightly shifts in time upon misaligning the mirrors. B. Relative
shift of the cavity frequency as a function of the misalignment angle obtained from the THz
fields shown in A and corresponding linear fit. C. Comparison between the temperature depen-
dent low frequency transmission (0.2 THz < ω < 1.5 THz) in the 11.5 GHz misaligned cavity
(θ = 9.5◦) and in the 12.8 GHz aligned one. The measured shift of the effective critical tempera-
ture ∆MIS = 21 K quantifies the Tc shift due to cavity misalignment.

due to the cavity misalignment (Figure 5.34C), as it cannot be justified just in terms of
a change in the cavity length.

Furthermore, by means of the finite elements simulations, we proved that the renor-
malization of the effective critical temperature cannot be explained by simply assuming
an incoherent thermal heating. In fact, as shown in Figure 5.35, no temperature shift
of the membrane is expected when the cavity mirrors are in the maximum misaligned
configuration employed in the experiment (θ = 9.5◦).

Finally, in order to verify how the sample’s temperature is affected by the cavity envi-
ronment, we measured TS as a function of the cavity alignment for a cavity fundamental
mode of 11.5 GHz (Figure 5.36). By setting the cold finger temperature to 80 K, we de-
tected a variation of 6.5 K in the sample’s temperature by switching from the aligned
to the maximum misaligned condition. Conversely, we measured only a 1.6 K tempera-
ture renormalization when the thermocouple is held only between the two membranes.
We notice that the measured renormalization of the sample’s temperature is however
smaller than the shift of the effective transition temperature measured by THz spec-
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troscopy (Figure 5.8). This effect can be ascribed to the presence of the thermocouple
which may slightly perturb the local thermal environment of the sample.

Figure 5.35: Finite elements simulation of the membrane’s temperature as a function of the
cavity alignment. A. 2D thermal profile of the membrane within the cryogenic cavity in the
aligned configuration (θ = 0◦) and in the maximum misaligned configuration employed in the
experiment (θ = 9.5◦). B. Membrane’s thermal profile along the radial coordinate for the two
alignment conditions. The cold finger temperature (TCF) and the mirrors temperature have been
set to 180 K.
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Figure 5.36: Temperature measurements within the cavity (11.5 GHz) as a function of the
cavity alignment. In blue the dependence of the difference between the temperature measured
on the sample (TS) and on the cold finger (TCF) as a function of the mirror alignment. In black,
for comparison, the same differential temperature TS − TCF measured on the membranes. For
the presented measurements we set the cold finger at TCF = 80 K.

5.8.4 does the external radiation influence the sample tem-
perature?

In order to prove that the shift of the effective critical temperature upon tuning the
cavity resonance is not an effect merely due to the geometry of the cavity chamber, we
removed the cavity mirrors and tracked the phase transition of the sample in free space
at two different positions of the mirrors mounts (Figure 5.37). For this characterization
we compared the mirrors mounts distance corresponding to a 9 mm (16.7 GHz) cavity
with the one corresponding to a 1 mm (150 GHz) cavity. No significant shift of the
effective Tc (∼ 2 K) is measured between the two configurations. This proves that the
thermal load on the sample is not influenced by the distance from the cryogenic mirrors
mounts, and hence that the effective critical temperature shift upon tuning the cavity
mode (Figure 5.12) cannot be ascribed to a geometrical variation of the cavity chamber.
Therefore, the critical temperatures measured in free space (Figure 5.3) effectively sets
the absolute free space reference for all the cavity-dependent studies.

We also demonstrated that the leading effect is not related to a geometrical screening
of the mid-infrared black-body ambient radiation, whose amount within the cavity can
be geometrically modified by tuning the mirror distance. To rule out this scenario, we
screened with metallic foils the cavity chamber and, by means of the Cr-Al junction,
tracked the differential temperature between the sample and the cold finger as a func-
tion of the cavity frequency. As highlighted in Figure 5.38, a similar temperature trend
is detected in both the shielded and non-shielded configurations. This, together with
the evidence of Figure 5.37, further validates that the reported evidence cannot be sim-
ply explained in terms of a geometrical screening of the ambient black-body radiation
and more likely hints at a coherent light-matter coupling scenario.
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Figure 5.37: Dependence of the effective phase transition temperature on the cavity geometry
(without mirrors). The low frequency transmission (0.2 THz < ω < 1.5 THz) in free space is plot-
ted for two representative distances between the mirrors mounts and the sample. No significant
shift in TC is observed (∼ 2 K).

Figure 5.38: Effect of the shielding of ambient radiation on the sample’s temperature. Differ-
ential temperature between the sample and the cold finger as a function of the cavity funda-
mental mode. Red (green) points correspond to sample temperatures measured without (with)
shielding the cavity environment with metallic foils. The test has been made with the mirrors
temperature set at 290 K.

5.8.5 does the thz thermal load affect the observed tran-
sition temperature?

In order to verify that the phase transition within the cavity is not influenced by the ther-
mal load introduced by the THz radiation, we repeated the same temperature scan with
different intensities of the THz pulses. This was achieved by varying the bias voltage of
the photo-conductive antenna (see Section 3.2.2 for the details on THz generation).

Figure 5.39 shows the cooling temperature scans for the sample within a cavity of
a representative frequency of 36.8 GHz for two different peak strengths of the input
THz field (0.1 KV/cm, and 0.03 KV/cm). A negligible shift of the effective critical tem-
perature (< 1.0 K) is measured, confirming that the employed THz pulse only acts as
probe and does not introduce a detectable thermal load at the sample position. For this
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reason, in order to maximize the signal to noise ratio of the detected THz field, all the
measurements presented were performed at a THz input peak strength of 0.1 KV/cm.

Figure 5.39: Dependence of the metal-to-insulator transition on the THz probing intensity.
Cooling temperature scans for the sample within a cavity of a representative frequency of 36.8
GHz for two different intensities of the THz probing field: 0.1 KV/cm (A) and 0.03 KV/cm (B).
A negligible shift of the effective critical temperature (< 1.0 K) between the two THz intensities
is detected.

A further confirmation of the negligible effect of the THz thermal load on the reported
evidence is given by directly measuring the temperature of the membrane in the absence
and in the presence of the THz field. In Figure 5.40, we plot the temperature difference
between the cold finger and the center of the membrane (measured by means of the
junction). We revealed that, even with the maximum THz intensity employed in all the
transmission measurements (0.1 kV/cm), the temperature difference TMembrane − TCF

changes by less than 1 K.
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Figure 5.40: Dependence of the membrane temperature on the THz intensity. Measured dif-
ference between the temperature of the membrane and the temperature of the cold finger in the
absence (0 kV/cm) and in the presence of THz radiation with two different field strengths (0.03

kV/cm and 0.1 kV/cm).

5.9 conclusions

In summary, our results show that the metal-to-insulator transition in the quantum ma-
terial 1T-TaS2 can be reversibly controlled through low energy THz cavities. In particu-
lar, we reveal that, while long wavelength cavities (up to ∼ 25 GHz) effectively favour
the metallic phase, the coupling with cavities at higher frequencies results in a stabi-
lization of the insulating charge density wave phase. Overall, for the present setting
the effective critical temperature associated to the charge ordering transition in 1T-TaS2
can be shifted by more than 70 K by tuning the cavity resonant frequency. Such a giant
modification overcomes the intrinsic hysteresis in the material and enables a reversible
touchless control of the metal-to-insulator phase transition. The control of the phase
transition is sensitive to the cavity alignment and hence to the optical losses within the
cavity volume. This evidence further validates that the observed effect can be linked to
the cavity electrodynamics.

The modification of the sample thermodynamics depends not only on the cavity ge-
ometry (alignment and fundamental mode), but also on the sample thermal history.
This points to a scenario in which the cavity preferentially couples to the excitations of
one of the two phases (tentatively the domain wall fluctuations of the metallic phase)
and can modify the effective sample temperature in a Purcell-based mechanism or renor-
malize its free energy. The complementary THz transmission and temperature measure-
ments, performed for different cavity settings, point to a scenario in which the coupling
of the material excitations with the cavity field can coherently renormalize the sample’s
temperature. Further studies are needed to provide a quantitative estimate of the cavity-
dependent total radiative heat load experienced by the sample within the THz optical
cavity. As suggested by the described Purcell-like mechanism, an increased sensitivity
in this respect could be provided by cavity design featuring a better thermal insulation
between the sample and the cold finger.

Overall, our results deliver a new control parameter in the rich phase diagram of
complex materials and open the way in the nascent field of cavity quantum materials
[11] for tailoring equilibrium collective properties in correlated systems by engineering
their electromagnetic environment.
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Strong coupling between confined light fields and solid state excitations is creating
increasing attention owing to the potential that such coupling regime offers as a new
tool to control the equilibrium energy landscape of materials [11, 18, 61, 128, 187–190].
In the condensed matter framework, the core aspect that has raised much interest in
light-matter hybrids in the strong coupling regime is the fact that polaritonic states can
be regarded as highly delocalized states. This delocalization arises from the fact that
in complex systems many oscillators many oscillators are placed the cavity mode vol-
ume, and therefore can simultaneously interact with a common mode that can induce
quantum correlations among the spatially separated dipoles.

The macroscopic collective nature of the hybrid light-matter states in the strong cou-
pling limit has resulted in a variety of photonic effects and applications, such as Bose-
Einstein condesation of exciton polaritons [81], low threshold lasing [84], superradiance
[191], spectral control of quantum dot emission [192], and polaritonic enhancements for
spectroscopic analysis [193].

Moreover, recent experiments with organic semiconductors [194] have demonstrated
a dramatic enhancement of charge conductivity when molecules are strongly coupled
within plasmonic cavities. These experiments, together with recent theoretical works
[39, 40, 195], have demonstrated how the dissipative properties of conductive charges
can be controlled by the cavity environment. These evidences has led to the suggestion
that cavity electrodynamics can be exploited also in condensed matter platforms with
the goal of controlling their macroscopic charge transport.

We report here experimental evidences of how the change in the equilibrium charge
transport in the quantum material 1T-TaS2 across its metal-to-insulator transition af-
fects cavity electrodynamics. In particular, we will study the case in which the cavity is
coupled with the Drude excitation associated to the free charges response and compare
it with the configuration in which the cavity field is strongly coupled to the phonons of
the C-CDW insulating phase.

We reveal that when the cavity frequency is tuned in order to be in resonance with the
continuum Drude its quality factor, which quantifies the dissipative rates, is sensitive
to the 1T-TaS2 phase. Indeed, we measured a lifetime of the cavity photons which de-
creases passing from the dielectric to the metallic state. This evidence is consistent with
an increased low frequency optical conductivity associated to a Drude-like response of
the free carriers [161, 170, 171]. We will show that this points to a scenario in which the
free charges couple to the cavity field and subsequently enhance the dissipative rates
within the cavity.

Conversely, when the cavity is tuned resonantly to the IR-active vibrations of the
C-CDW low temperature phase, we reveal the THz signatures of a multi-polariton mix-
ing. The estimated components of the polaritonic wave-functions show that the mea-
sured polaritons of the C-CDW phase have character from all the vibrational resonances
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within the used spectral range as a consequence of the photon-mediated hybridization.
In particular, we detected two weakly dispersive middle polariton states resulting from
the cavity-mediated mixing of two non-degenerate CDW phonons.

The measured Rabi splitting between the hybridized phonons closes across the metal-
to-insulator transition as a consequence of the screening of the free charges. Intriguingly,
near the critical temperature the dissipations in the cavity-coupled system are such that
the weak vibrational coupling regime can be established. This will be proved by the
evidence of a decrease of the quality factor of the coupled cavity when the latter is
tuned across the spectral region of the CDW phonons.

Our evidences further emphasise the crucial role that dissipations play in cavity elec-
trodynamics. In particular, the evidence that changing the dissipative rate of the con-
ductive carriers induces a transition from strong to weak coupling uncovers a new path
[129, 196–199] towards the tuning of the coupling regime in cavity-confined systems.

6.1 coupling with the drude excitation

As discussed in Section 5.2, the low energy physics of 1T-TaS2 is dominated by the
response of the free charges. The latter are responsible of the polaronic-like transport
observed in the non-commensurate CDW phase which gives rise to macroscopic metal-
lic features [164, 200].

The metal-to-insulator phase transition, associated to the melting of the discommen-
suration network of the charge density wave [166, 168, 201], is associated with a signifi-
cant decrease of the Drude-like optical conductivity in the low frequency region. This is
highlighted in Figure 6.1A where we present a comparison between the real part of the
optical conductivity σ1 measured in the insulating and in the metallic phase of 1T-TaS2.
A relative decrease of the quasi-static conductivity of ∼ 40% is detected passing from
the metallic to the dielectric state.

6.1.1 cavity dissipations across the charge ordering tran-
sition

In this section, we experimentally show how the change in the conductive properties of
1T-TaS2 is mapped onto the dissipative response of a cavity strongly coupled with the
Drude continuum excitation.

For this study, the cavity was tuned within the spectral region highlighted in Figure
6.1A (0.3 THz < ω < 1.1 THz). Indeed, within this frequency region, the linear THz
response is dominated by the response of the Drude carriers and no possible polaritonic
interference with the CDW phonons can emerge at low temperatures. We are therefore
in a suitable configuration to study how the Drude-like conductivity affects the features
of a cavity mode strongly coupled with the free carriers.

As presented in Figure 6.1A, within the targeted spectral region the THz fields ex-
iting the coupled cavity present a single decaying oscillating mode characteristic of
the multiple round-trips within the cavity. The decay time of the cavity field sets the
lifetime of the trapped photons and hence the dissipation rate of the cavity-confined
material. The linear transmission of the coupled cavity, corresponding to the THz field
shown in Figure 6.1A, is presented in Figure 6.1B. In the employed frequency region
(0.3 THz < ω < 1.1 THz) the THz transmission of the hybrid system presents there-
fore the features of a single cavity mode, whose linewidth quantifies the dissipations of
the coupled system. Importantly, for the cavity frequencies employed for this analysis,
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Figure 6.1: Selection of the spectral region for the Drude coupling analysis. A. Real part of
the optical conductivity σ1(ω) extracted in the insulating (T = 80 K) and in the metallic (T = 280

K) phase of 1T-TaS2. The dashed box indicates the spectral region associated to the decreased
free electrons Drude conductivity across the metal-to-insulator transition. B. Representative THz
field measured at 80 K at the output of a cavity tuned within the Drude excitation region (dashed
box in A.). C. THz transmission calculated from the THz field presented in B. In the selected
spectral region a single cavity mode is measured.

the THz features of a single cavity mode are detected at each temperature. Indeed, the
fundamental cavity mode lies far below the energy of the lowest CDW phonon. This
ensure the CDW phonons to be screened by the cavity interference and hence exhibit
no features of polaritonic-like coupling with the cavity field.

We present in Figure 6.2 the temperature evolution of a representative cavity mode
within the Drude region (ωc = 0.75 THz) measured upon heating (A, B) and cooling
(C, D) the sample. We note that the metal-to-insulator transition, occurring at ∼ 215 K
upon heating and at ∼ 180 K upon cooling, significantly affects the cavity dissipations.
Conversely, no relevant shift of the mode frequency is observed. This is highlighted in
the THz transmission spectra measured as a function of the temperature (Figure 6.2A,
C). The temperature-dependent spectra reveal that the cavity mode is sharper in the
C-CDW phase, while its linewidth becomes larger when the system switches to the
metallic state.

As highlighted in the time-domain fields of Figure 6.2B, D, the linewidth modification
across the phase transition is directly linked to a change in the photon dissipations
within the cavity. Indeed, the photons lifetime inside the cavity appears shorter when
they are coupled with the Drude oscillator of the metallic phase, whereas a longer
dissipative dynamics is observed in the dielectric phase. This can be seen by comparing
the decay times of the multi-cycle THz fields exiting the coupled cavity. We note that
the dielectric phase better sustains the cavity oscillations, while the increase of the free
charge conductivity, associated to the transition to the metallic state, suppresses the
coherence time within the cavity, leading to a faster dissipation of the cavity field.

Therefore, by studying the coupling with the Drude oscillator (Figure 6.2), we are in
a suitable configuration to map the dissipative response of the free charges of 1T-TaS2
onto the dissipative processes of the cavity photons. In order to highlight this insightful
connection we present in Figure 6.3 the comparison between the temperature evolution
of the cavity linewidth and the average optical conductivity σ1 in the Drude range (0.3
THz< ω < 1.1 THz). The conductivity σ1 has been calculated for the 0.75 THz cavity.
Cavity linewidths have been estimated by fitting the transmission spectra presented in
Figure 6.2 with a Voigt lineshape.
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Figure 6.2: Modification of cavity dissipations in the Drude spectral region of 1T-TaS222. A.
Evolution of the cavity mode tuned in the Drude spectral region of 1T-TaS2 (ωc = 0.75 THz).
The cavity spectra were measured upon heating the sample from the dielectric C-CDW phase.
B. Measured THz fields exiting the 0.75 THz cavity for the heating temperature scan. C. Tem-
perature dependence of the 0.75 THz cavity mode upon cooling the sample from the metallic
NC-CDW phase. D. THz fields measured at the output of the 0.75 THz cavity for the cooling
temperature scan.

Intriguingly, the temperature evolution of the cavity linewidth (Figure 6.3A) exhibits a
discontinuity around 185 K (210 K) upon cooling (heating) the sample. These discontin-
uous jumps in the cavity dissipations are consistent with the temperature dependence
of the average Drude-like conductivity, which marks the charge ordering transition (Fig-
ure 6.3B).

Importantly, the dependence of the cavity dissipative rates on the material phase is
not sensitive to the choice of the cavity frequency within the Drude region (Figure
6.1A). In order to prove it, we detuned the cavity at a different frequency (ωc = 0.5
THz) and mapped the shape of the cavity mode across the metal-to-insulator transition.
The measured THz transmission spectra relative to the 0.5 THz cavity are presented
in Figure 6.4A for the cooling temperature scan. Figure 6.4B presents the temperature
dependence of the cavity linewidth when the latter is tuned at 0.5 THz and at 0.75

THz. We note that, for both frequencies, the cavity linewidth manifests a discontinuity
around the cooling critical temperature (∼ 180 K), which marks the transition to the
insulating state. This evidence supports the robustness of the discussed effect, proving
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Figure 6.3: Comparison between the cavity linewidth and the Drude-like conductivity across
1T-TaS222 metal-to-insulator transition. A. Temperature dependence of the cavity linewidth
(γcav) upon heating (red) and cooling (blue). The fundamental cavity mode is set at ωc =

0.75 THz. B. Corresponding temperature dependence of the low frequency conductivity σ1 in-
tegrated in the frequency range 0.2 THz < ω < 1.45 THz.

that it is related to the change of sample’s conductivity and not to the choice of the
cavity fundamental mode.

Figure 6.4: Effect of Drude response on cavity dissipations for different cavity frequencies. A.
Temperature dependence of a cavity mode tuned ad ωc = 0.5 THz measured upon cooling. B.
Temperature evolution of the cavity linewidth for the 0.5 THz and the 0.75 THz cavity, marking
the phase transition.
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6.1.2 dependence of the coupling on the symmetry of the

cavity mode

In the previous section we have shown that the coupling of the cavity field with the
free charges is significantly affected by the material conductance. The metallicity of the
system induces indeed phase-dependent dissipative rates within the coupled cavity.

In this section we experimentally demonstrate that the measured change of the cavity
dissipations across the charge ordering transition depends on the spatial distribution of
the cavity field.

Since the light-matter interaction within the cavity is governed by the overlap between
the spatially varying cavity field and the material slab [202–204], we expect the coupling
with the Drude excitation to depend on the modal profile within the cavity volume. This
is in analogy with the molecular framework where works [105, 205] have demonstrated
the influence of the spatial overlap between the location of vibrational absorbers and
the optical mode profile of a Fabry-Pérot cavity on the resulting Rabi splitting.

6.1.2.1 Measurements

In order to prove that the phase-dependent modification of the cavity linewidth is sen-
sitive to the mode distribution, we tuned the cavity fundamental mode at a lower fre-
quency (ωc = 0.4 THz). With this choice also the first excited cavity mode (m = 2) lies
within the Drude bandwidth adopted for the analysis (Figure 6.1A). This represents
therefore a suitable configuration to simultaneously track the temperature dependent
coupling of the Drude oscillator with the ground state (m = 1) and with the first excited
cavity mode (m = 2).

As depicted in Figure 6.5A, the spatial overlap of the dipole-like oscillators of the
material with the cavity field is maximum for the ground state mode (m = 1), while it
approaches zero when the second-order mode (m = 2) is coupled. Indeed, the m = 1

mode presents a maximum at the sample position, i.e. the middle of the cavity volume,
while the m = 2 field has a node in correspondence with the 1T-TaS2 position.

The temperature dependence of the THz transmission of the first and second order
cavity mode across the metal-to-insulator transition is presented in Figures 6.5B, C for
the cooling and heating scans. Comparing the effect that the charge ordering transition
has on the ground state and on the second order cavity mode, we note that the line
broadening related to the coupling of the cavity field with the Drude oscillator is mode-
sensitive. Indeed, while the linewidth of the fundamental mode (m = 1), and hence the
photon dissipative rate, is enhanced in the metallic state, no significant change of the
photon lifetime is measured when the first excited mode (m = 2) is coupled to the Drude
oscillator.

Figure 6.6 presents the quantitative temperature evolution of the linewidths of the
first and second mode across the metal-to-insulator transition. The latter have been
estimated by independently fitting the m = 1 and m = 2 cavity resonances with a Voigt
lineshape. We note that only the broadening of the ground state cavity resonance marks
the hysteresis of the phase transition, while no phase transition features are visible
tracking the linewidth of the excited mode.

6.1.2.2 Coupled oscillator analytical model

The relationship between the line broadening of the cavity resonance and the spatial pro-
file of the cavity mode can be rationalized within the coupled oscillator model through
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Figure 6.5: Dependence of the coupling with Drude oscillator on the symmetry of the cavity
mode A. Spatial symmetry of the cavity field in its ground state (m = 1) and in its first excited
state (m = 2). The 1T-TaS2 sample is held in the middle of the cavity volume. B. Temperature
dependent THz transmission for the sample held within a cavity of fundamental modeωc = 0.4
THz. In the left (right) panel the spectra are measured upon cooling (heating) the sample. C.
Selected transmission spectra below and above the critical temperature. The line broadening
due the coupling with the free carriers is measured only for the first cavity mode (m = 1), while
no significant changes on the second mode (m = 2) are detected between the two phases. Left
(rigth) spectra correspond to cooling (heating) temperature scans.

the expression of the space-dependent coupling strength. The latter will be derived un-
derneath. In particular, we will compare the case in which the ground state mode and
the second-order mode is coupled to the Drude oscillator.

For a 3D-confined mode of a cavity resonator, the coupling strength can be derived
from the electric-dipole interaction Hamiltonian (cfr Equation 2.17). The first step is to
quantize the electric field of the mode, so that it is normalized to the vacuum ground
state energy  hω/2 when the field is integrated over the cavity volume [105, 206, 207]:

ÊEE(rrr, t) = eee(rrr)

√
 hω |eeemax|

2

ϵ0
∫
drrr ϵ(ω) |eee(rrr)|2

(
âe−iωt + â†eiωt

)
. (6.1)
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Figure 6.6: Linewidths of the first and second cavity mode across the metal-to-insulator tran-
sition in 1T-TaS222. A. Estimated linewidths of the fundamental (m = 1) and second order (m = 2)
cavity mode for the cooling temperature scan. B. Temperature dependence of the m = 1 and m
= 2 cavity modes measured upon heating the sample. Only the broadening of the fundamental
cavity mode (m = 1) marks the hysteresis of the metal-to-insulator transition.

In the previous expression eee(rrr) is the dimensionless electric field profile of the se-
lected mode, which therefore set the spatial symmetry of the cavity field. The latter is
obtained by solving the Maxwell’s equations with the cavity boundary conditions. The
maximum value of the field is denoted with eeemax, which we will assume as unity in
the following. In Equation 6.1 we denoted with ϵg the "group" frequency-dependent
permittivity of the active medium, defined as ϵg(ω) =

d(ϵ(ω)ω)
dω .

We will model the Drude response of the material as the response of N dipoles of
oscillator strength µ driven in phase in response to the modal electric field. Note that
we will use the term dipole, even if the Drude-like response of the free carriers has
zero frequency. However, free charges can still respond to the cavity electric field and
experience damping in the same way as the bound oscillating charges.

The interaction Hamiltonian in the rotating-wave approximation (Tavis-Cumming
model, Section 2.2.1) between the N Drude oscillators and the quantized electric field
reads:

Ĥint =

N∑
d=1

gc

(
σ̂
†
dâ+ â

†σ̂d

)
, (6.2)

where the sum is extended over all the N dipoles. The spatial dependence of the cou-
pling has been entirely put inside the collective coupling strength gc which, recalling
the expression of the quantized cavity field (Equation 6.1), reads [105]:

gc =

√
 hω

2ϵ0

N

V

∫
drrr |µµµ(rrr) · eee(rrr)|2∫
drrr ϵg(ω) |eee(rrr)|2

. (6.3)

The above expression implies that the coupling can be significantly enhanced by spa-
tially overlapping the dipole positions µµµ(rrr) to the position of the maximum cavity field
eee(rrr). By modelling the cavity employed in the experiment as a co-planar cavity of length
L with an active 1T-TaS2 layer in the middle of the cavity volume having thickness d
and dielectric constant ϵ(ω), the coupling strength of Equation 6.3 can be expressed as
[105]:
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gc =

√√√√  hω

2ϵ0

Nµ2

V

∫d
0 dz |eee(z)|

2∫0
−L/2 dz |eee(z)|

2 +
∫d
0 dz ϵg(ω) |eee(z)|2 +

∫L/2
d dz |eee(z)|2

. (6.4)

Considering cavity modes under s-polarized incident field, only the component of
the electric field perpendicular to cavity axis, eeex, does not vanish. This implies that,
supposing zero penetration depth into the mirrors at the THz wavelengths, the adopted
cavity confines the light only in the transverse direction.

The electric fields of the ground state (m = 1) and of the first excited cavity mode (m
= 2) can be hence expressed along the cavity axis (z) as follows:

eeem=1(z) = cos
(πz
L

)
x̂

eeem=2(z) = sin
(
2πz

L

)
x̂

(6.5)

We note that, while the ground state normal mode is maximum at the cavity center
(z = 0) and even with respect to z = 0, the first excited mode has a node at the cav-
ity center and displays two symmetric maxima at the z = ±L/4 positions. Assuming
no frequency dependence of the sample’s permittivity within the Drude region1, the
coupling equation (6.4) can be integrated for the ground state (m = 1) and for the first
excited cavity mode (m = 2), leading to:

gm=1
c (zs) =

√
 hω

2ϵ0

Nµ2

V

[
d

L
+
1

2π
sin
(
2π

(
zs

L
+
d

2L

))
− sin

(
2π

(
zs

L
−
d

2L

))]
(6.6)

gm=2
c (zs) =

√
 hω

4ϵ0

Nµ2

V

[
2d

L
+
1

2π
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(
4π

(
zs

L
+
d

2L

))
− sin

(
4π

(
zs

L
−
d

2L

))]
(6.7)

In the previous expressions the coupling strength between the Drude oscillators and
the cavity modes have been calculated as a function of the sample’s position zs along
the cavity coordinate z. A map of the coupling strength of the free charges with the first
and second order modes along the cavity axis is presented in Figure 6.7. We stress that
calculations have been made for the same cavity configuration (ωc = 0.4 THz) adopted
in the experiments to map the mode-selectivity of the Drude coupling (Figure 6.5).

We highlight that the analytical calculations of the coupling strengths display a con-
sistency with the experimental results presented in Figure 6.5. Indeed, the collective
coupling strength exhibits a maximum at the cavity center when the dipoles are coupled
to ground state field, while it presents a minimum in the configuration where they are
strongly coupled with the second mode. This space-dependent profile of the coupling
is mapped onto the mode-dependence of the cavity linewidth measured experimentally.
We indeed revealed a line broadening, associated to the coupling between free charges
and the cavity field, only when 1T-TaS2 is coupled to ground state mode. Conversely,
no significant change of the cavity line is detected in the case of the coupling with the
excited mode.

1 This assumption is validated by the measurement of the low energy optical conductivity (Figure 6.1A).
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Figure 6.7: Dependence of the coupling constant of the Drude oscillator on the spatial profile
of the cavity modes. Coupling constant of the Drude oscillator along the cavity coordinate in
dipole strength units (µ). Calculations have been made for the ground state (m = 1) and for the
first excited (m = 2) mode of the 0.4 THz cavity adopted in the experiments.

6.1.3 transfer-matrix simulations across the phase tran-
sition

To further demonstrate that the observed effect is related to the coupling of the cavity
field with the free charges responsible of the Drude response, we exploited the Transfer-
matrix method to simulate the THz transmission spectra across the charge ordering
transition. Transfer-matrix simulations will indeed allow us to model how a change in
the Drude oscillator induced by the phase transition is directly mapped onto the THz
linear transmission of the coupled cavity. The THz transmission is indeed the observable
directly measured in the experiments.

In order to gain insight on both the coupling with the ground state and with the
second-order mode, in the simulations we set the cavity frequency at ωc = 0.4 THz, as
in the experiments. With this choice both the first and second order cavity modes lies
within the bandwidth dominated by the free charges response (∼ 0.3− 1.1 THz).

As in Chapter 4, for the simulations we used the experimentally measured refractive
index of gold [96] and then tuned the thin gold layer thickness to match the linewidth
of the coupled 0.4 THz cavity at 80 K. An effective thickness of the gold layer deff = 2.0
nm was adopted to reproduce the cavity linewidth measured in the C-CDW phase.

To reproduce the coupling of the Drude oscillator with the cavity mode in the two
phases of the sample, we modelled the complex optical conductivity σ̃(ω) in the insu-
lating and in the metallic state of 1T-TaS2 according to the Drude-Lorentz model [161,
170, 171]:

σ̃(ω) =
σ0

1− iωτ
+ iϵ0ω

1− ϵ∞ −

n∑
j=1

Sj
ω2

0j

ω2
0j −ω

2 − iωγj

 . (6.8)

The first term of σ̃(ω) describes the static Drude conductivity, associated to the re-
sponse of the free charges driven by the THz field. Within this framework, the response
of the conductive charges is therefore modelled by the static conductivity σ0, which sets
the zero-frequency response, and by the scattering time τ, which governs the dissipative
dynamics of the driven charges. The term ϵ∞ represents the high-frequency response
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of the dielectric constant. The last term gives the contribution from the jth Lorentzian
oscillator, where Sj is the oscillator strength, ω0j the resonance frequency, and γj is the
linewidth. These Lorentzian terms have been included only in the insulating phase to
model the response of the IR-active CDW phonons. We note that the Drude component
has been included also in the C-CDW conductivity to model the measured flat response
of σ1 at low energy, which is indicative of a Drude-like behaviour [171].

Figure 6.8 presents the complex optical conductivity measured in free space in the
metallic (T = 280 K) and in the dielectric phase (T = 80 K) of 1T-TaS2, together with the
corresponding Drude-Lorentz fits. Both real and imaginary parts of the complex optical
conductivity σ̃(ω) were fit simultaneously with the REFFIT software, which imposes
the Kramers-Kronig relations [208] between the fitted real and imaginary components
of σ̃(ω).

Figure 6.8: Complex conductivity σ̃(ω)σ̃(ω)σ̃(ω) of 1T-TaS222 in the metallic and dielectric phases mea-
sured in free space. A. Real part of the optical conductivity (σ1) of the insulating C-CDW phase
measured at 80 K. B. Real part of the optical conductivity (σ1) of the metallic NC-CDW phase
measured at 280 K. C. Imaginary part of the optical conductivity (σ2) of the insulating phase
at 80 K. D. Imaginary part of the optical conductivity (σ2) of the metallic phase at 280 K. In
the presented plots black dots are the data, while red lines represent the associated fits with the
Drude-Lorentz model for a 15 µm 1T-TaS2 sample in free space.
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j ω0j [THz] γj [THz] Sj

1 1.58 0.110 9.86

2 2.02 0.101 3.05

3 2.35 0.125 2.81

ϵ∞ σ0 [Ω−1 × cm−1] τ [fs]

3.5 52.8 215

Table 6.1: Drude-Lorentz fit parameters for bare 1T-TaS2 in the dielectric phase. The parame-
ters were obtained by fitting the 80 K complex conductivity (Figures 6.8B, D).

The parameters obtained from the simultaneous fitting procedure are listed in Table
6.1 for the insulating C-CDW phase and in Table 6.2 for the metallic NC phase. We note
that in the Drude region, the charge ordering transition is associated with an increase
of the static conductivity σ0 passing from the dielectric to the metallic state, together
with a slightly increase of the Drude scattering time τ. These trends are consistent with
the onset of metallicity in the system and in agreement with previous THz reflectivity
studies [170].

j ω0j [THz] γj [THz] Sj

1 2.85 1.47 26.6

ϵ∞ σ0 [Ω−1 × cm−1] τ [fs]

3.2 85.1 262

Table 6.2: Drude-Lorentz fit parameters for bare 1T-TaS2 in the metallic phase. The parameters
were obtained by fitting the 280 K complex conductivity (Figures 6.8A, C).

Figure 6.9 presents the simulated Transfer-matrix transmission for the 0.4 THz cavity
coupled to the Drude excitation of the metallic and dielectric phase. We highlight that
the Transfer-matrix simulations display a further consistency with the measured spectra
(Figure 6.5) and with the analytical results of the coupled oscillator model (Figure 6.7).
Indeed, the simulated THz transmissions show a consistent broadening of the funda-
mental cavity mode (m = 1) in the metallic phase, while no significant difference of the
linewidth of the second-order coupled mode (m = 2) is detected.

In order to further confirm that the broadening of the cavity mode maps the mode
profile of the cavity electric field, and hence it is related to the spatial overlap between
the Drude oscillators and the cavity field, we simulated the THz transmission as a
function of the sample position (Figure 6.10). We highlight that the simulations have
been performed for the sample in the metallic state, i.e. where we expect the coupling
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Figure 6.9: Transfer matrix simulations of Drude oscillator coupling in the metallic and dielec-
tric phase of 1T-TaS222. Simulated transmission spectra of a cavity tuned in the Drude spectral
region (ωc = 0.4 THz) when the sample is in the insulating state (T = 80 K) and in the metallic
state (T = 280 K). A line broadening of the fundamental mode (m = 1) related to the coupling
with the Drude oscillator is predicted in the NC-CDW phase. Simulations in the two material
states were preformed starting from the static complex conductivities at 80 K (Table 6.1) and 280

K (Table 6.2) measured on the 15 µm 1T-TaS2 sample.

Figure 6.10: Simulated distribution of the cavity field in the metallic phase of 1T-TaS222. A.
Simulated transmission map in 1T-TaS2 metallic phase as a function of the sample position. The
cavity fundamental mode lies in the Drude region and is set at ωc = 0.4 THz. B. Simulated spec-
tra in the configuration in which the sample is put in the middle of the cavity (zs = 0µm) and
at the L/4 position of the fundamental mode (zs = ±81µm). The line broadening is maximum
at the spatial positions corresponding to the maximum cavity field.

with the free carriers, and hence the cavity line broadening, to be maximum. We note
that the simulated THz transmission as a function of the sample’s position maps the
spatial dependence of the coupling constant presented in Figure 6.7. With the Transfer-
matrix formalism we indeed obtained the maximum change of the cavity dissipations
(i.e. the maximum line broadening) in the positions of the maximum coupling within
the cavity volume. These position correspond to the cavity center for the fundamental
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mode (m = 1) and to the ±L/4 positions for the second-order mode (m = 2), where L =
324 µm for the employed 0.4 THz cavity.

6.1.4 dependence of the coupling on the cavity frequency

In order to experimentally demonstrate that the observed broadening of the cavity mode
is related to the coupling with a low energy oscillator (i.e. the Drude oscillator) we
mapped the cavity dispersion as a function of the cavity frequency. The rationale of this
test is that we expect the coupling of the cavity field with the Drude oscillator to be
higher when the cavity frequency is lower, i.e. near to the quasi-static response of the
free charges.

The test has been performed in the NC-CDW phase of 1T-TaS2. We expect indeed
the line broadening of the cavity mode to be maximized in the metallic state (Figures
6.2, 6.3). Moreover, in the non-commensurate phase no polaritonic-like coupling with
the CDW phonons can skew the THz transmission of high energy cavities. This enables
us to cleanly map the broadening of the single cavity mode as a function of the cavity
frequency.

We present in Figure 6.11 the dispersion of the cavity mode in the metallic phase
obtained at 280 K together with THz transmission spectra measured at some selected
cavity frequencies among the ones employed to map the full dispersion.

Figure 6.11: Dispersion of the cavity modes in the NC metallic phase of 1T-TaS222 measured
at 280 K. A. Experimental dispersion of the cavity modes in the NC-CDW phase at 280 K. The
white dashed lines mark the ground state (m = 1) and the first excited cavity mode (m = 2) B.
Selected cavity transmission spectra measured in the metallic phase at 280 K. The spectra have
been vertically shifted for clarity.

In order to quantitative gain insight on the frequency dependence of the cavity line
broadening, we estimated the quality factor Qω = ωc

∆ωc
as a function of the cavity

fundamental modeωc. The quality factor is indeed governed by the cavity losses and its
value can be used to track the frequency dependence of the line broadening associated
to the coupling with the Drude excitation. Note that for frequency-independent optical
losses, we expect the quality factor to be constant as a function of the cavity frequency.
Therefore, in the studied system (Figure 6.2), deviations from the constant behaviour
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has to be linked to a frequency-dependent change of the coupling between the cavity
field and the Drude oscillator.

Figure 6.12: Quality factors of the fundamental and second order cavity modes in the metallic
phase of 1T-TaS222 at 280 K. A. Measured quality factor of the ground state cavity mode (m =
1) at 280 K. B. Measured quality factor of the first excited cavity mode (m = 2) at 280 K. The
quality factors have been calculated from the transmission spectra of Figure 6.11.

The dependence of the quality factor Qω as a function of the cavity frequency is
presented in Figure 6.12A. The linewidths associated to the cavity resonances (together
with the relative errors) have been estimated through a Voigt lineshape fitting proce-
dure. We highlight that Qω is not constant as a function of the cavity frequency and,
intriguingly, it decreases at lower frequencies. This evidence implies that the cavity dis-
sipations are enhanced when 1T-TaS2 is embedded in low frequency cavities.

We note that an opposite behaviour is observed by tracking the frequency dependence
of the quality factor of the second-order cavity mode Q2ω = 2ωc

∆(2ωc)
. We justified this

opposite trend by noting that at high frequencies the linear absorptive contribution to
the dielectric function (σ1) increases in the metallic phase, as highlighted in Figure 6.8B.
This increased linear absorption can lead to an enhancement of the optical losses of the
cavity in the high frequency spectrum, thus justifying the measured trend of Q2ω.

We stress that this scenario cannot justify the trend observed for Qω. Indeed, a mode
broadening of the cavity resonance, due to an increased absorption of the NC phase
at higher frequency, is not consistent with the narrowing of the fundamental cavity
mode measured upon increasing the cavity frequency (Figure 6.12A). We clarify that
the evidence that Q2ω > Qω within all the employed spectral range is a consequence
of the dependence of the quality factor on the mode order (see Section 2.1.1 of Chapter
2 for the full derivation).

The frequency dependence of Qω justifies therefore the presence of a low energy
oscillator associated to the Drude response of the free carriers whose coupling with
the cavity field is responsible of the enhanced dissipations of the coupled cavity. The
enhancement of the cavity dissipations is greater for lower cavity frequencies (Figure
6.12A) thus validating that the observed effect is related to the quasi-static response of
the conductive charges.
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6.2 multimode vibrational strong coupling in the

c-cdw phase

In the previous section we have studied the dissipative dynamics of low energy cavities
tuned in order to be on resonance with the quasi-static excitation associated to the
free carriers. In all the results reported before (Section 6.1) the cavities were tuned
within the Drude region and therefore not in resonance with the CDW phonons of the
commensurate phase.

In this section we analyse in detail the strong coupling of the multi-phonon structure
of the C-CDW phase. Coupling between multiple vibrational resonances and a reso-
nant optical cavity have been already demonstrated in the molecular framework [209–
211] where many sharp vibrational transitions can exist within a narrow spectral win-
dow. However, no evidences of multi-polariton strong coupling have been reported in
condensed-matter complex systems. In these materials phonons can couple with elec-
tronic excitations and induce quantum coherent phases like superconductivity, charge
density waves, ferroelectricity, or ferromagnetism.

6.2.1 measurements

Figure 6.13A reports the THz transmission measured in free space in the C-CDW phase.
The THz spectrum marks the presence of three optical phonons (ω1,2,3 = 1.58, 2.02, 2.35
THz) allowed by the CDW symmetry. A representative empty cavity spectrum within
the spectral range of the phonons is presented in Figure 6.13B.

We expect the strong coupling between the fundamental cavity mode and the three
CDW vibrations to generate 3 + 1 = 4 non-degenerate polaritons: an upper and lower
polariton (UP, LP), together with two middle polaritonic states (P1, P2), resulting from
the photon-mediated hybridization of the CDW phonons. We note that, as in the single
phonon case, the hybridization is associated with the formation of N − 1 dark states
(DS) at each bare vibrational resonance, where we have supposed to have N phonons
at each frequency in the uncoupled material. The dark states are dipole non-allowed
transitions [18, 61] and hence invisible to linear spectroscopy. The scheme of the energy
levels scheme resulting from the multi-phonon hybridization of the CDW vibrations is
sketched in Figure 6.13.

As in the single mode case (cfr Chapter 4), for strong coupling to occur the coherent
energy exchange between the confined electromagnetic field and the CDW modes must
dominate over the bare dissipative processes [18, 27, 32, 212]. This implies that strong
coupling is achieved when the lifetime of the optical and of the CDW excitations are
long enough such that Rabi oscillations can occur. Since the lifetime of an excited state
is related to the homogeneous linewidth (FWHM2) of the transition, the linewidths of
the cavity and of the CDW phonons has to be smaller thanΩij to verify strong coupling,
where we have denoted with Ωij the Rabi splitting between two adjacent polaritons (i
and j). From the transmission spectrum, we estimated the linewidths of the detected
phonons3 to be γ1 = 0.172 THz, γ2 = 0.154 THz, and γ3 = 0.148 THz (Table 6.3).
Moreover, for the employed 15 nm-thick gold layer on the cavity mirrors, we measured
a quality factor of the bare cavity Q = 7.2.

2 Full Width Half Maximum.
3 We note a slight deviation from the linewidths estimated with the Drude-Lorentz fit (Table 6.1) This is

ascribed to the fact that the Drude-Lorentz fit has been performed on a different observable, the complex
optical conductivity, and with a different fitting model, the Drude-Lorentz one.
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Figure 6.13: Energy levels scheme of the multi-polariton hybrdization of the CDW phonons
in 1T-TaS222. A. CDW phonon resonances measured in free space at 80 K. B. Representative
empty cavity spectrum measured at 80 K. The strong coupling between the three phonons and
the single cavity mode results in the formation of 4 non-degenerate hybrid states: an upper and
a lower polariton (UP, LP) and two middle polaritons (P1, P2). The dark states resulting from
the strong coupling are denoted with DS.

i γi [THz] Ωij [THz]

1 0.172 0.496

2 0.154 0.301

3 0.148 0.310

Table 6.3: Estimation of the bare linewidths of the CDW phonons γiγiγi and of the polariton
splitting ΩijΩijΩij. The values presented in the table derive from the fit of the THz transmission
spectra with a multiple Voigt function.

Figure 6.14 presents a representative transmission spectrum of the measured polari-
ton modes. The spectrum has been obtained in a representative cavity configuration in
which the cavity fundamental mode (black dashed line) resonates at the midpoint of
two adjacent CDW vibrations (red dashed line). We note that peaks associated to lower
(LP), upper (UP), and middle (P1, P2) polariton states are visible in the THz transmis-
sion spectrum. Importantly, the splitting between adjacent polaritonsΩij exceeds either
the bare phonon linewidths γ1,2,3 and the bare cavity linewidth (γcav = 0.25 THz). This
evidence validates the strong coupling regime of the CDW excitations.4 The comparison
between the Rabi splittings and the linewidths of the bare phonons, both obtained from
the transmission spectra, is summarized in Table 6.3.

4 We note that, to confirm the strong coupling regime, the values of the Rabi splitting between adjacent
polaritons Ωij have been calculated at a cavity frequency so that the frequency distance between the
polariton branches is minimum. For all the four polaritonic modes the strong coupling condition Ωij >

γi,γcav is valid.
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Figure 6.14: Multi-polariton spectrum measured in the C-CDW phase of 1T-TaS222. Transmis-
sion spectrum (blue, left axis) of 1T-TaS2 at 80 K within a cavity such that the frequency of the
optical mode (black dashed spectrum) is at the midpoint of two C-CDW phonons. The upper
and lower polariton states (UP, LP), together with the 2 middle polariton modes (P1, P2) are vis-
ible in the transmission spectrum. The spectrum of the uncoupled C-CDW phonon resonances
is shown on the right axis in red for reference.

Figure 6.15: Multi-polariton dispersion in the C-CDW phase of 1T-TaS222. A. Experimental
dispersion of the four polariton branches measured in the C-CDW phase at 80 K. The lower
(LP) and upper (UP) polariton energies strongly disperse with the cavity frequency, while no
significant dispersion is measured for the two middle polariton states (P1, P2). B. Measured
THz fields exiting the coupled cavity at 80 K for different cavity frequencies across the phonon
energies.

To further demonstrate the strong coupling regime within the THz cavity and shed
light on the dispersive properties of the multi-polaritons, we tuned the resonance of
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the cavity at 80 K and measured, for each cavity length, the THz fields exiting the cou-
pled cavity. In Figure 6.15A we present the THz transmission for each cavity frequency
across the phonon resonances and the obtained dispersion of the polariton modes. We
highlight two different behaviours of the CDW polaritons as a function of the cavity
mode:

• The lower and upper polaritons (LP, UP) strongly disperse with the cavity mode.
In particular, their energies, corresponding to their maximum transmission, ap-
proach the energy of the bare modes (uncoupled cavity and phonons) in off-
resonance conditions. We indeed note the lower (upper) polariton energy to tend
to the bare cavity resonance at low (high) frequency and to the lowest (highest)
CDW mode at high (low) frequency.

• The energies of the two middle polaritons (P1, P2) do not exhibit a significant
dependence on the cavity frequency. Moreover, the frequencies of the middle po-
lariton states lie in a dark region of the vibrational spectra. Indeed, they are located
in the midpoints of adjacent phonons, where the CDW excitations are not allowed
for the sample in free space.

In order to highlight this different dispersion of the polaritonic modes, we present in
Figure 6.16 some selected transmission spectra measured when the cavity frequency is
tuned across the energies of the CDW vibrations. The evolution of the single transmis-
sion spectra further highlights that while the central frequency of the lower and upper
polariton modes strongly shifts upon changing the cavity resonance, no significant fre-
quency shift is observed for the two middle polariton resonances.

Figure 6.16: Transmission spectra of the hybridized CDW phonons at 80 K. Experimental
evolution of the cavity transmission spectra at 80 K with cavity fundamental modes (indicated
in legend) across the three phonon resonances of the C-CDW phase (ω1 = 1.58 THz, ω2 = 2.02
THz, ω3 = 2.35 THz). The spectra have been vertically shifted for clarity.
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The multi-polariton interference is also visible in the THz fields measured at the
output of the coupled cavity (Figure 6.15B). At low frequencies, i.e. out of resonance
with the CDW modes, the THz fields present indeed a single-decaying oscillatory be-
haviour characteristic of a single cavity mode. Conversely, when the cavity frequency
approaches the spectral region of the CDW vibrations, multiple Rabi oscillations are ob-
served. We note that, due to the multimode nature of the coupling, we do not observe
a single beating modulation of the decaying field, as in the single mode coupling mea-
sured in CuGeO3 (Chapter 4). The multiple modulation structure revealed in Figure
6.15B is inherited by the multi-polariton interference. This originates from the fact that,
in this case, the cavity photons are at the same time coherently exchanging energy with
distinct non-degenerate phonons.

6.2.2 multi-polariton mixing : the quantum model

In order to relate the different dispersive properties of the polaritons (Figure 6.15) to
quantum superposition effects between the bare CDW vibrations and the cavity field,
we resort to the coupled oscillator model in the single photon case (cfr Section 2.2.1).
Indeed, the latter gives insight on the cavity/phonon mixing coefficients of each polari-
tonic wave-functions.

Within the coupled oscillator framework, the full Hamiltonian describing the strong
coupling between the CDW excitations and the single cavity mode can be written as:

Ĥ = Ĥcav + Ĥphon + Ĥint. (6.9)

The Hamiltonian consists of three contribution. The first term describes the uncou-
pled cavity oscillator, having tunable fundamental mode ωc and lifetime ∼ 1/γcav:

Ĥcav =


ωc − iγcav 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 . (6.10)

The second term represents the three uncoupled CDW vibrations detected in the
insulating phase within the employed spectral range:

Ĥphon =


0 0 0 0

0 ω1 − iγ1 0 0

0 0 ω2 − iγ2 0

0 0 0 ω3 − iγ3

 . (6.11)

The free space frequencies of the CDW phonons are indicated with ω1,2,3 and their
respective linewidths with γ1,2,3 (see Table 6.3 for the estimations).

The multimode interaction Hamiltonian under the rotating wave approximation [18,
213] takes the form:

Ĥint =


0 Ω12

2
Ω23
2

Ω34
2

Ω12
2 0 0 0

Ω23
2 0 0 0

Ω34
2 0 0 0

 . (6.12)
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Ωij is the Rabi splitting between the i and the j polaritons, which quantifies the interac-
tion energy of each CDW mode with the cavity field. We highlight that Ωij corresponds
to the minimum energy separation of two adjacent polaritons which occurs when the
frequencies of the uncoupled photon and phonon are equal. The estimated Rabi split-
tings for the three CDW modes observed at 80 K are presented in Table 6.3.

Recalling the Hamiltonian representations of the uncoupled oscillators (Equations
6.10, 6.11) and the expression of the Hamiltonian interaction (Equation 6.12), the full
multimode coupled Hamiltonian H has the following form:

Ĥ =


ωc − iγcav

Ω12
2

Ω23
2

Ω34
2

Ω12
2 ω1 − iγ1 0 0

Ω23
2 0 ω2 − iγ2 0

Ω34
2 0 0 ω3 − iγ3

 . (6.13)

We note that by experimentally changing the cavity length, the dispersive ωc term
of the coupled Hamiltonian can be tuned through the non-dispersive CDW resonances
to control their relative coupling. This will produce the anti-crossing multi-polariton
branches experimentally observed and reported in Figure 6.15.

Importantly, the coupled Hamiltonian 6.13 allows us to quantify the composition of
a given polariton wave-function in terms of a linear combination of the original, uncou-
pled resonances. Knowing the cavity and phononic fractions of the measured polaritons
is indeed crucial to justify the dispersion trends reported in Figure 6.15. Supposing to
have within the cavity volume N excited phonons for each of the three measured CDW
modes, each polariton wave-function |ψPL⟩ can be expressed on the basis of the uncou-
pled phonons/cavity modes as follows:

|ψPL⟩ = Xcav(∆ω)|0, 0, 0; 1⟩+

+ X1(∆ω)

N∑
i=1

|ei, 0, 0; 0⟩+X2(∆ω)

N∑
i=1

|0, ei, 0; 0⟩+X3(∆ω)

N∑
i=1

|0, 0, ei; 0⟩.
(6.14)

Here we have indicated with |0, 0, 0; 1⟩ the purely cavity state, and with
∑N

i=1|ei, 0, 0; 0⟩,∑N
i=1|0, ei, 0; 0⟩,

∑N
i=1|0, 0, ei; 0⟩ the purely vibrational states in which respectively the

first, second, and third CDW phonons are in their excited state |ei⟩. We stress that the
wave-function components must satisfy the normalization condition |Xcav|

2+
∑3

i=1 |Xi|
2 =

1 for each cavity frequency ωc.
The mixing coefficients of each polariton wave-function as a function of the cavity

frequency ωc, as well as the energies and linewidths of the polariton modes, can be
obtained by diagonalizing equation 6.13:

ωc − iγcav
Ω12
2

Ω23
2

Ω34
2

Ω12
2 ω1 − iγ1 0 0

Ω23
2 0 ω2 − iγ2 0

Ω34
2 0 0 ω3 − iγ3



Xcav

X1

X2

X3

 = Ẽ


Xcav

X1

X2

X3

 . (6.15)

In order to validate the accuracy of the model, we firstly exploit it to calculate the
dispersion of the polariton energies and compare them with the energies measured
experimentally (Figure 6.15A). Using for the interaction energies the estimated Rabi
splitting Ωij (Table 6.3), we obtain the polariton dispersion presented in Figure 6.17A.
The measured dispersion of the polariton energies is in agreement with the predictions



140 strong coupling signatures across 1T-TaS2 metal-to-insulator transition

Figure 6.17: Estimated wave-function components of the polariton states of the C-CDW phase.
A. THz vibro-polariton branches for the four hybrid states. The circle correspond to the mea-
sured polariton peaks, while the solid curves show the eigen-energies obtained from the coupled
oscillator model (Equation 6.15) fitted to the measured data. B. Cavity (|Xcav|

2) and phonon
(|X1,2,3|

2) fractions of the polariton wave-functions as a function of the cavity frequency. The es-
timations for the four polaritonic states have been obtained within the coupled oscillator model
(Equation 6.15).

of the coupled oscillator model, thus validating the applicability of the model to the
experimental setting.

The evolution of the cavity/phonon fractions of the four polaritonic wave-functions
upon tuning the cavity fundamental mode is presented in Figure 6.17B. The extracted
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coefficients of the wave-functions show that the four polaritons have character from all
the three CDW modes as a result of the photon-mediated hybridization. Importantly,
we highlight distinct behaviours between the upper (lower) polariton states and the
middle polaritons:

• The lower and upper polariton states (UP, LP) exhibit a strong cavity component
|Xcav|

2 which significantly depends on the cavity fundamental mode. In partic-
ular, the cavity fraction of the lower (upper) polariton tends to 1 at low (high)
frequencies, while it tends to 0 at high (low) cavity frequencies. As highlighted by
the wave-function coefficients, the anti-crossing behaviour of the lower polariton
originates mainly from the coherent mixing of the ω1 CDW mode with the cavity
field. Conversely, the anti-crossing features of the upper polariton are mainly the
result of the mixing between the ω3 phonon and the cavity photons. The mixing
assignation is further justified by the fact that the cavity fraction |Xcav|

2 of LP
crosses the first CDW phonon fraction |X1|

2 at a detuning ωc = ω1. Conversely,
the cavity fraction of UP crosses the third CDW phonon fraction |X3|

2 when the
cavity frequency equals ω3.
We note that, for both the upper and lower polaritons, a uniform mixing among
all the CDW modes is inhibited by their frequency separation in the free space
material.
The significant cavity fraction of the upper and lower polaritons justifies therefore
their strongly dispersive properties reported in the transmission spectra of Figure
6.15.

• The middle polariton states (P1, P2) display a substantially lower cavity fraction
|Xcav|

2 which justifies their non-dispersive behaviour. The quantum model indi-
cates that the middle polaritons result from the cavity-mediated hybridization of
different non-degenerate CDW excitations. In particular, the P1 state results from
the coherent mixing of the ω1 and the ω2 modes, while the P2 state from the
hybridization between the ω2 and the ω3 modes. We stress that both the phonon-
phonon hybridizations are mediated by the cavity field.

6.2.3 lifetimes properties of the multimode polaritons

We highlight that the different dispersive features of the CDW-polaritons are mapped
also onto the evolution of their linewidths, and hence on their lifetimes. As in the single
mode case (Chapter 4), we indeed expect the broadening of the polaritons to depend
on the detuning of the cavity, given that it results from the contribution of the phonon-
s/cavity linewidths weighted by the realtive phonons/cavity fractions [60, 85, 214, 215].

The estimated linewidths of the four polariton modes, defined as the FWHM of the
deconvoluted transmission peaks, are presented in Figure 6.18A as a function of the
cavity fundamental mode. We highlight that, while the linewidths of the lower and
upper polaritons significantly depend on the cavity frequency, the linewidths of the
two middle polaritons does not substantially change upon detuning the cavity. This
evidence can be linked to the strong contribution that the photon wave-function gives to
the LP and UP modes. Indeed, since in our experimental setting the cavity dissipations
dominates over the dissipations of the bare CDW resonances, i.e. γcav > γ1,2,3, we
expect the upper (lower) polariton to get broadened (narrowed) when approaching the
phonons frequencies.

To relate the linewidth evolution of the polariton states to the quantum superposition
of the bare CDW modes with the cavity field, we resort to the coupled oscillator model
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(Equation 6.15) and estimate the polaritons linewidths as a function of the cavity de-
tuning. The results of the analytical model are presented in Figure 6.18B. We highlight
that, despite an absolute shift due to incoherent dielectric losses within the cavity (cfr
Section 4.3.2), the simulated polariton linewidths qualitatively follow the data. This con-
firms that the strong dependence of the UP and LP lifetimes on the cavity detuning is
related to a stronger contribution of the cavity field to their wave-functions. Contrarily,
the lifetimes of the middle polaritons (P1, and P2) display a weak dependence on the
cavity frequency, consistent the low cavity fraction of their wave-functions.

Figure 6.18: Polariton linewidths in the C-CDW phase as a function of the cavity frequency.
A. Measured FWHM of the four polariton modes as a function of the cavity frequency at 80 K.
B. Calculated linewidths of C-CDW vibro-polaritons from the coupled oscillator model. Only
the linewidths of the polaritons having a strong cavity component (LP, and UP) exhibit a strong
dependence on the cavity frequency.
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6.3 temperature-dependent coupling regimes

In the previous section we have studied in detail the hybridization of the vibrational
modes of the C-CDW phase of 1T-TaS2 and proved that a multimode strong coupling
regime can be established at low temperatures. In this section we study how the change
in the conductive properties of the free charges across the metal-to-insulator transition
affect the response of the strongly coupled CDW phonons.

Figure 6.19 presents the cavity dispersion measured at different temperatures across
the charge ordering transition. Dispersions have been obtained by heating the sample-
cavity hybrid from the insulating C-CDW phase. The THz transmission measurements
highlight the following trends:

• The Rabi splitting between the polariton states closes approaching the phase tran-
sition. In particular, the screening of the CDW excitations induced by the free
carriers [170, 171] is mapped differently on the polaritonic resonances. Indeed, at
temperatures in proximity of Tc ∼ 215 K the lower and upper polariton energies
are the most affected by the free charge screening. This evidence will be discussed
in Section 6.3.1. In the metallic phase, the CDW phonons are then completely
screened by the free carriers and no polaritonic features are detected.

• The linewidths of the coupled modes become broader approaching the phase tran-
sition, as shown in Figure 6.19. In particular, at the critical temperature we detect
the signatures of a weak phonon coupling regime. An increase of the dissipative
rates of the coupled cavity is indeed measured when the fundamental mode of
the resonator is tuned within the spectral region of the CDW vibrations. This
change of the cavity dissipations is not associated with a polaritonic-like struc-
ture in the measured transmission spectra, proving that no energy hybridization
occurs among the uncoupled resonances. This evidence validates the hypothesis
of a weak coupling interaction at Tc between the CDW excitations and the cav-
ity field [17, 69, 196, 216, 217]. This evidence will be discussed more in detail in
Section 6.3.2.
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Figure 6.19: Temperature dependence of the cavity dispersion measured across the metal-to in-
sulator transition of 1T-TaS222. Cavity dispersion measured at different temperatures (indicated
inside the plots) across the metal-to-insulator phase transition. The presented transmission maps
have been measured upon heating the sample from the insulating C-CDW phase.
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6.3.1 evolution of the polaritons spitting

The temperature dependence of the dispersion maps presented in Figure 6.19 show
that the Rabi splitting between the polariton modes observed at low temperature is
suppressed across the charge ordering transition. This effect can be rationalized by
the screening of the free charges. In order to highlight more clearly this evidence, we
present in Figure 6.20A the temperature evolution of the THz spectra at a fixed cavity
frequency within the spectral region of the CDW vibrations (∼ 1.5− 2.4 THz). For this
dependence a representative cavity frequency ωc = 2.1 THz has been employed. We
emphasize that the influence of the free charges screening at the phase transition has a
stronger effect on the LP and UP frequencies with respect to the middle polariton ones.

Figure 6.20: Temperature dependent THz spectra for a fixed cavity frequency within the CDW
phonons spectral range. A. Evolution of the THz transmission across the metal-to-insulator
transition for a fixed cavity frequency ωc = 2.1 THz. The spectra have been vertically shifted for
clarity. B. Corresponding THz fields exiting the coupled cavity at different temperatures. The
THz fields and the corresponding transmission spectra have been measured upon heating the
sample from the C-CDW state.

This evidence can be qualitatively rationalized exploiting the results of the coupled
oscillators model (Figure 6.17), which show that the lower and upper polariton wave-
functions exhibit a stronger cavity component. In Section 6.1 we have proved that an
increase of the Drude-like response in the system, induced by the onset of metallicity, is
mapped onto a faster dissipative dynamics of the cavity. We can subsequently relate the
stronger shift of the lower and upper polariton frequencies at the phase transition to an
increase of the dissipative rates of the cavity component of their hybrid wave-functions.
In a simple coupled oscillator model [18, 60, 218] we indeed expect a broadening of
the cavity mode, and hence an increased dissipative rate of the cavity photons, to re-
duce the coupling strength with the targeted excitation and hence the Rabi splitting
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(cfr Figure 4.13). Therefore, the strongest reduction of the Rabi splittings associated to
the lower and upper polaritons (Ω12, and Ω34) can be qualitatively ascribed to an in-
creased coupling of the cavity with the free charges, which results in an enhancement
of the optical dissipation rates (Figure 6.2). The closing of the Rabi splitting could hence
be more evident on the lower and upper polariton modes, given their stronger cavity
fraction.

The screening of the polaritons at the phase transition, related to the coupling with the
conductive charges, is also visible in the time-domain THz fields. Figure 6.20B presents
the THz fields measured across the metal-to-insulator transition, corresponding to the
coupled spectra of 6.20A. We note that the charge screening induces a stretching and
a lower modulation depth of the Rabi oscillations5 near Tc ∼ 215 K. The multiple Rabi
osciillations evolve in a single decaying oscillations in the metallic state, as a expected
from the full screening of the CDW excitations (Figure 5.4).

6.3.2 signatures of vibrational weak coupling regime

In this section we analyse the signatures of phonon weak coupling regime detected at
the critical temperature. We present in Figure 6.21A the evolution of the coupled cavity
transmission obtained upon tuning the cavity mode across the spectral region of the
CDW phonons. Spectra have been obtained at the critical temperature of the charge
ordering transition upon heating the sample from the dielectric phase (Tc ∼ 215 K). We
note that at Tc, as a consequence of the free charges screening, no polaritonic splitting
is revealed across the spectral region of the CDW vibrations.

Nonetheless, we observe a non-monotonic evolution of the linewidth of the coupled
cavity. To highlight this non-monotonic trend we present in Figure 6.21B the estimated
quality factor of the coupled cavity Q = ωc

∆ωc
as a function of the cavity frequency

ωc. The quality factor has been obtained by fitting the cavity transmission peak with
a Voigt lineshape. The quality factor is a crucial parameter to justify the establish of a
weak coupling regime [217], since it quantifies the dissipative rates within the cavity
volume.

We revealed that the quality factor exhibits a minimum when the cavity mode is
swept within the spectral region of the CDW vibrations. This implies that in proximity
of the critical temperature (T ∼ 215 K) the dissipative rates of the coupled cavity are
enhanced in resonance with the CDW excitations. This represents a key signature of
the phonon weak coupling regime, in analogy with the Purcell effect in the atomic and
molecular frameworks [13–16]. We can hence conclude that at Tc the phonon screening
induced by the free charges provokes an increase of the decay rates of the coupled
photons when the latter have an energy compared with the CDW excitations. The effect
revealed in Figure 6.21B is hence consistent with a strong to weak coupling transition
of the CDW vibrations caused by the onset of metallicity in the system.

We highlight that the weak coupling signatures are characteristic of a critical be-
haviour occurring in proximity of Tc. Indeed, they are not detected in the high tem-
perature metallic state, where the THz response is dominated by the free carriers.

To highlight that the weak coupling response is peculiar of a critical behaviour, we
present in Figure 6.22A the THz transmission of a cavity with fundamental mode on
resonance with the CDW modes (ωc = 2.1 THz) measured at Tc ∼ 215 K and in the 280

K metallic state. We note that the line broadening of the coupled cavity is detected only

5 We note, as in Section 6.2.1, that, due to the multimode nature of the coupling, in the C-CDW state we do
not observe a single beating modulation of the decaying field, as in the single mode coupling. Multiple
Rabi oscillations are instead revealed.
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Figure 6.21: Signatures of weak coupling regime near the critical temperature of the charge
ordering transition in 1T-TaS222. A. Transmission spectra measured near the heating critical tem-
perature (Tc = 215 K) as a function of the cavity fundamental mode (indicated in the legend).
The spectra have been vertically shifted for clarity. B. Estimated quality factor in proximity of
Tc as a function of the cavity frequency. A decrease of the quality factor of the coupled cavity is
measured across the spectral region of the CDW phonons (∼ 1.5− 2.4 THz).

at Tc. On the contrary, a sharper resonance is observed at room temperature. This effect
is evident also by looking at the decay times of the time-domain THz fields detected at
the output of the coupled cavity (Figure 6.22B). We note that the coherence time of the
photons within the cavity volume, and hence the decay time of the oscillating THz field,
is reduced at Tc, while it becomes longer in the high temperature phase of 1T-TaS2. The
trend of the photon lifetimes is consistent with a speed up of the dissipation rates at Tc,
peculiar of the vibrational weak coupling regime.

Figure 6.22C shows the quality factor of the coupled cavity as a function of the cavity
frequency, measured in proximity of Tc (Q215K) and in the high temperature metallic
state (Q280K). We highlight two different trends:

• At low cavity frequencies the quality factor is lower at high temperatures with
respect to Tc, i.e. Q280K < Q215K. This trend is consistent with the coupling
with the Drude excitation discussed in Section 6.1), whose effect is to broaden the
cavity line (Figure 6.2), and hence reduce the quality factor. We expect indeed the
coupling with the Drude-like oscillator to be dominant at lower cavity frequencies
(Figure 6.12) and to increase at higher temperatures. The contribution of the free
charges to the THz absorption is indeed higher at lower frequencies and increases
by raising the temperature [170].

• Within the spectral region of the CDW excitations (∼ 1.5 − 2.4 THz) the cavity
linewidth measured at Tc is dominated by the weak coupling features. Indeed, at
215 K we observe a drop in the quality factor which can be associated to the weak
coupling of the CDW vibrations. Conversely, the same trend is not observed at 280

K, where the quality factor is dominated by the coupling with the Drude oscillator.
The coupling with the Drude oscillator causesQ280K to increase monotonically by
sweeping the cavity mode towards higher energies, as discussed in Section 6.1.4.
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Figure 6.22: THz linear response of the coupled cavity in proximity of the critical temperature
and in the high temperature metallic phase of 1T-TaS222. A. Transmission spectra of a cavity with
fundamental mode within the spectral region of CDW phonons (ωc = 2.1 THz) measured in
the high temperature metallic phase (280 K) and in proximity of Tc (215 K). B. Time domain
THz fields at the output of the 2.1 THz cavity measured near the heating critical temperature
(T = 215 K) and in the NC-CDW phase (T = 280 K). C. Measured quality factors at 215 K (blue
points) and at 280 K (red points) as a function of the cavity frequency, when the latter is swept
through the spectral region of the CDW phonons.
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6.4 conclusions

In conclusion, we have demonstrated how the change in the charge dissipations through
the metal-to-insulator transition in 1T-TaS2 affects the cavity electrodynamics. We re-
vealed that the optical dissipative rates within the cavity can be controlled by coupling
the cavity field with the free charges responsible of the Drude excitation. When the
cavity is coupled with the quasi-static Drude osciilator we measured a non-constant Q
factor across the phase transition, mapping the metallicity in the system.

On the contrary, when the cavity is tuned resonantly with the CDW vibrations of the
dielectric phase we detected the THz signatures of a multi-phonon mixing. The Rabi
splitting between the hybrid CDW excitations closes across the charge ordering transi-
tion as a consequence of the screening of the free charges. In particular, THz signatures
of a weak phonon coupling are detected at the critical temperature. Our findings further
emphasize how cavity electrodynamics can be affected by the dissipations and in partic-
ular how the response of the free charge through a model metal-to-insulator transition
affect the cavity properties. Our evidences prove that the free charge screening of bound
vibrational excitations can induce a strong to weak coupling transition, opening a new
path [187, 219–222] to engineer the energy exchange rates in cavity confined systems.
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E L E C T R O N I C C O U P L I N G : C H A R G E
T R A N S F E R H Y B R I D I Z AT I O N I N
S U P E R C O N D U C T I N G Y B C O

7.1 motivation

The idea of using light-matter hybridization to engineer new material functionalities is
emerging as a promising approach in material science. The light confinement in optical
cavities has been mostly used over the last decade to manipulate chemical processes,
demonstrating the possibility of affecting chemical reactivity [33–35] and charge energy
transfer processes [38–41] in a tailored cavity environment.

The effort of using the strong coupling concepts to obtain new material functional-
ities in superconducting Transition Metal Oxides (TMOs) has been somewhat smaller
and by large limited to theoretical proposals. Different works have proposed to use
low frequency THz cavities coupled to vibrational or collective electronic excitations
to manipulate the superconducting order-parameter phase coherence by coupling to
Josephson plasma resonances [43, 46]. Other theoretical works have proposed coupling
to excitations at higher energy comparable to on-site Coulomb repulsion and charge
transfer excitations, and demonstrated that this could induce a long-range interaction
between the electrons and lead to pairing [223–225].

Only recently, the first experimental study of THz cavities strongly coupled to vi-
brational modes in the organic superconductor Rb3C60 revealed a significant increase
of the superconducting transition temperature, interpreted as an enhancement of the
electron-phonon coupling in a BCS-like picture [57]. Intriguingly, in the same work [57],
strong vibrational coupling has been found instead to reduce the critical temperature in
the superconducting cuprate YBCO. This result suggests that, while in BCS-like super-
conductors the electron pairing is mostly affected by the low energy vibrational modes,
in cuprates high energy electronic transitions significantly contribute to the onset of the
superconductivity. Hence, an efficient enhancement of the superconducting transition
could be attained by direct coupling to the electronic degrees of freedom.

The anomalous high-frequency electrodynamics with respect to the standard BCS sce-
nario is one key feature of unconventional superconductors. While in BCS systems the
onset of superconductivity is accompanied by a redistribution of spectral weight only
on the energy scale comparable to the superconducting gap [226], ample evidence is
found in literature that in cuprates drastic changes also occur on the eV-range [227, 228].
In particular, several optical studies have shown that the charge transfer (CT) transi-
tion, i.e., the lowest electronic transition from O-2p orbital to the upper Hubbard band
(∆CT ∼ 2 eV, Figure 7.1), is mostly affected upon entering the superconducting phase
[229–232] and may play a crucial role in the pairing mechanism.
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Figure 7.1: Electronic charge transfer excitation in cuprates. Sketch of the electronic configu-
ration of a CuO2 plane in cuprates. The lowest electronic transition is the charge transfer (CT)
transition from the O-2p orbitals to the Upper Hubbard Band (UHB), as highlighted by the yel-
low arrow.

Here, we explore the possibility of coupling the CT transition in underdoped YBCO
to an optical cavity and see how strong electronic coupling may affect the onset of the
superconducting response.

7.2 design of the ybco-based cavity heterostruc-
tures

We experimentally accomplish the electronic strong coupling by realizing YBCO-based
heterestructures that sustain modes resonant to the charge transfer excitation. Based on
Transfer-matrix simulations, we designed the heterostructure sketched in Figure 7.2A.
The cavity consists of a reflecting layer of LaNiO3 (LNO) grown on a thick LaAlO3

(LAO) 5 x 5 mm substrate. A thin epitaxial YBCO film is placed between two insulating
layers of CeO2 and laid on LNO. Finally, a semi-reflecting layer of Ag with variable
thickness closes the cavity heterostructure. A top layer thickness of 5 nm, 10 nm, and
15 nm has been employed for the present experiments.

The thickness of the top Ag layer ultimately sets the quality factor Q of the cavity,
which gives an indication on how strongly the targeted electronic transition is coupled
to the cavity mode. The thicker the semi-reflecting layer, the longer will be the lifetime of
the photons trapped in the cavity and so the stronger the coupling to the CT transition
is expected to be. This is shown in Figure 7.2B, where we calculate the reflectivity of the
cavity for different Ag layer thicknesses, neglecting the absorption term of the YBCO
film.

Transfer-matrix simulations show that, even in the cavity with the lowest quality fac-
tor, a strong coupling regime can be established due to the high oscillator strength of
the CT transition (Figure 7.3). To demonstrate this, we show in Figure 7.3A the absorp-
tion of the hybridized charge transfer transition inside the cavity as a function of the
thickness of the top silver layer. The Rabi splitting of the charge transfer oscillator in-
creases with higher quality factors of the cavity. Importantly, for all the Ag thicknesses
employed in the designed heterostructures (5 nm, 10 nm, and 15 nm) the Rabi splitting
is greater than the intrinsic linewidth of the CT oscillator in free space (Figure 7.3B).
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Figure 7.2: Design of the YBCO-based cavity heterostructure. A. Sketch of the electronic con-
figuration of a CuO2 plane in cuprates. The lowest electronic transition is the charge transfer
(CT) transition from the O-2p orbitals to the Upper Hubbard Band (UHB), as highlighted by the
yellow arrow. B. Sketch of the fabricated heterostructure. C. Transfer-matrix simulation of the
reflectivity of the heterostructure in B. for different thicknesses of the Ag top layer (neglecting
the absorption of the YBCO layer). The mode sustained by the cavity is resonant to the CT tran-
sition in YBCO [233], denoted by the Lorentz-like shape.

This indicates that a strong coupling regime can be established in all the three cavities
analysed in this study.

In order to estimate the quality factors of the designed cavities, we evaluated the
FWHM of the reflectivity dip corresponding to the hybridized CT excitation in YBCO
after the subtraction of a linear background (Figure 7.4). The estimated quality factors
reported in the plot are calculated by dividing the peak energy of the CT oscillator
(hν = 1.78 eV) by the FWHMs calculated for each cavity configuration.

Proven that a strong coupling of the CT electronic excitation could be established in
the designed heterostructures, we carried out a comparative study of the superconduct-
ing response in YBCO enclosed in cavities with 5, 10 and 15 nm-thick Ag layer.

In order to avoid artifacts, we deposited different amounts of Ag on different areas of
the same heterostructure (Figure 7.5A, Sample A). To study how the cavity environment
possibly modifies the onset of superconductivity, we left a portion of the heterostructure
free of silver ("No Ag" in Figure 7.5A, Sample A) and used it as a reference. Moreover,
we realized a second heterostructure (Sample B in Figure 7.5A), completely identical
to Sample A, but without the second CeO2 and Ag layers. This YBCO-terminated het-
erostructure serves as reference for the characterization of the superconducting tran-
sition temperature in free space, which has been measured to be approximately 58 K
through transport measurements (Figure 7.5B).
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Figure 7.3: Transfer-matrix simulations of the hybrid YBCO-based cavity. A. Simulated ab-
sorption of the hybrid heterostructure cavity as a function of the thickness of the Ag top layer.
B. Simulated hybridization of the YBCO charge transfer oscillator in the three cavities studied.
The CT oscillator absorption in free space of a 100 nm-thick YBCO film on a LAO substrate is
shown in yellow dashed line for reference. The dielectric functions of all the layers are taken
from the literature [96, 233–236].

Figure 7.4: Estimation of the quality factor of the designed heterostructures. Simulated reflec-
tivity of the three heterostructures fabricated after the subtraction of a linear background. The
dashed lines denote the FWHM of the refelctivity dip associated to the resonance of the charge
transfer transition in YBCO.
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Figure 7.5: Heterostructures preparation. A. Pictures of the samples. Sample A is the
CeO2/YBCO/CeO2/LNO/LAO heterostructure on which Ag layers having different thick-
nesses were deposited (5, 10 and 15 nm thick). We labelled "No Ag" the portion of the het-
erostructure free of Ag. Sample B is the YBCO/CeO2/LNO/LAO heterostructure. B. Transport
measurement on Sample B, revealing the onset of superconductivity at Tc ∼ 58 K.

7.3 three pulse optical measurements

7.3.1 characterization of the non-linear response of the

superconducting phase

Due to the presence of the insulating CeO2 and Ag layers, transport measurements
are not viable in the closed cavities. For this reason we characterize the onset of the
superconducting response through time-domain optical spectroscopy.

As the superconducting gap is related to the total number of excitations, the photo-
injection of free quasi-particles by means of ultrashort laser pulses results in a time
dependent non-linear perturbation of the gap. To reveal the superconducting transition,
we leverage on this non-linearity by using a three-pulse scheme.

We drive the sample out-of-equilibrium through the subsequent photo-excitation of
a blue pump pulse (P) (3.1 eV) and a mid-infrared push-pulse (p) (75 meV), delayed in

time by ∆t, and we record the broadband transient reflectivity
(
∆RPp

RPp

)
in the visible

range (1.3 - 2.2 eV). Further details on the experimental set-up and on the acquisition
system can be found in Section 7.4.1 and in Ref. [237].

By measuring the optical response of the sample when independently photo-excited

by the blue pump
(
∆RP
RP

)
and the push mid-IR

(
∆Rp

Rp

)
we can single out the non-linear

response in the superconducting phase by direct subtraction:

∆∆R

R
=
∆RPp

RPp
−
∆RP
RP

−
∆Rp

Rp
. (7.1)

This approach has proved effective in determining the superconducting temperature in
other members of the cuprate family, for example in single-crystals Y-BSCCO for which
the critical temperature was known through complementary equilibrium measurements
(see Figure 7.11B of Section 7.4.1 of the present chapter).

In the following, we demonstrate how the emergence of a non-linear signal in the
YBCO heterostructures is an optical fingerprint of the superconducting phase. Crucially,
we will show that the onset temperature for the non-linear optical response coincide
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with the discontinuity in the resistivity measurement in the free space YBCO, thus
validating the optical technique as a mean to track the superconducting condensate.

Figure 7.6: Optical measurements by three-pulse scheme performed on free space YBCO
(Sample B). A. Time-resolved maps obtained below the critical temperature (T = 15 K) on Sam-
ple B. In the left plot the spectrally resolved reflectivity induced by the single action of the blue
pump (∆RP

RP
), while in the middle plot the one induced by the action of the push MIR pulse

(∆Rp

Rp
). On the right, the spectrally resolved non-linear signal due to the combined pump-push

action at T < Tc at the overlap (∆t = 0). B. Same plots presented in A. above the critical tem-
perature (T = 75 K), marking the change in the non-linear reflectivity (right plot). C. Thermal
evolution of the 1.35 eV component of the probe obtained exciting the sample with only the
pump or push pulses (left and middle maps) and exciting it with the combined pump-push
action (right map). The differential non-linear signal ∆∆R

R marks the superconducting phase
transition.

Figures 7.6A, B report the broadband time resolved maps obtained from the three-
pulse experiments on free space YBCO (Sample B) above and below the critical temper-
ature estimated from the transport measurements (Figure 7.5B).

Each map represents the transient reflectivity of the broadband probe as a conse-
quence of the single action of blue pump (left map) and of the MIR push (middle
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map). The broadband non-linear reflectivity, resulting from the simultaneous action of
the pump and push pulses is presented in the right plots of Figures 7.6A, B for the
sample above and below Tc, respectively. We note that the optical features associated
to the superconducting condensate are not visible in the transient response due to the
photo-excitation of the single pump and push pulses (left and middle plots of Figures
7.6A, B). Conversely, a strong difference above and below Tc emerges by looking at the
non-linear photo-excitation of the superconducting condensate (right plots of Figures
7.6A, B).

Figure 7.7: Temperature dependence of the non-linear optical signal for YBCO in free space
(Sample B). A. Time and temperature dependent non-linear reflectivity at hν = 1.35 eV mea-
sured in free space YBCO (Sample B). B. Temperature dependence of the fit parameters for the
two-dimensional map in A. The parameter a(t) weights the superconducting contribution to
the non-linear signal, while b(t) the high-temperature one. The crossing temperature has been
exploited as a marker of the critical temperature (grey dashed line).

In order to determine the onset of the superconducting phase in the YBCO-based
samples we therefore chose a photon energy within the broadband probe for which
we expect the non-linear reflectivity to significantly change (hν = 1.35 eV) and track
its temperature dependence. On the basis of the transport measurement in Figure 7.5B,
we focused our investigation in the temperature range from 15 to 75 K. We stress that
also the transient reflectivity of this single component does not significantly change in
the superconducting phase when the system is excited independently by the pump and
the push pulses. Conversely a strong modification of its transient non-linear reflectivity
∆∆R
R is observed upon entering the superconducting phase (Figure 7.6C, right map).
The reflectivity map of the non-linear 1.35 eV signal ∆∆R

R measured in the free space
YBCO (Sample B) is shown in Figure 7.7A as a function of the sample temperature and
of the delay between the simultaneous photo-excitation of the pump and the push, and
the arrival of the broadband probe. The differential signal undergoes a clear change in
sign from positive to negative when the temperature is increased.

In order to give a qualitative estimate of the crossover temperature we fitted the time-
dependent differential signal at a defined temperature T (d(T)) as a linear combination
of the lowest and highest temperature pump-probe traces, dlow = d(T = 15K), and
dhigh = d(T = 75K), respectively, according to the equation:
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d(T) = a(T)dlow + b(T)dhigh. (7.2)

The temperature dependence of the fit parameters a(T) and b(T) is shown in Figure
7.7B for the free space YBCO sample (Sample B). According to Equation 7.2, we identify
the crossing between the two curves as an indication of the superconducting transition,
which occurs at Tc = 52 K.

We stress that the observed discontinuity of the temperature-dependent differential
signal does not depend on the choice of the photon energy of the probe. Moreover, the
robustness of the fitting procedure is validated by the fact that the estimated crossover
temperature occurs always at Tc = 52 K for all the probe’s spectral components (see the
characterizations presented in Section 7.4). We note that the optically-estimated critical
temperature in Sample B is lower than the one measured through transport measure-
ments (Tc = 58 K). This discrepancy is explained by considering the local heating of the
sample due to the combined pump and the push photo-excitation. This statement is sup-
ported by similar measurements reported in Section 7.4, which show that the estimated
crossover temperature can be further lowered by increasing the pumping fluences.

7.3.2 effect of the cavity of the superconducting optical

response

After having established the optical observable which maps the onset of superconduc-
tivity in the YBCO-based sample, we present in this section the effect of the presence of
the cavity on the superconducting optical response. We conduct this comparative study
on Sample A (Figure 7.5), by comparing the optical response of the uncapped portion
("No Ag") with the sample’s portions terminated with the Ag layer. In this way a direct
comparison between the free space and the cavity-confined response can be conducted
and avoid artifacts due to a different deposition process of the underlying YBCO film.

Figure 7.8 presents the differential signal ∆∆R
R measured in the uncapped YBCO

heterostructure ("No Ag") and in the YBCO film enclosed within the cavity with the 10

nm-thick Ag top layer.
In the uncapped sample a non-linear optical response similar to the free space sample

(Figure 7.7) is observed. Note that the lower critical temperature determined in the
uncapped YBCO sample (Tc = 38 K) with the respect to the free space configuration
could be related to a different growing process of the two samples (A and B).

In spite of qualitative differences with respect to the signal measured in the uncapped
YBCO heterostructure (Figure 7.8A) that could be ascribed to a modified equilibrium
dielectric function in the cavity, the onset of a temperature-dependent non-linear signal
is present also in the 10 nm Ag-terminated sample. By performing the same analysis
described above (Figure 7.7B), we can identify the critical temperature to be 78 K in this
cavity-confined sample, as can be seen by the evolution of the a(T) and b(T) parame-
ters presented in Figure 7.8B. This result suggests that the non-linear response that we
associate to the superconducting condensate in YBCO can possibly survive at higher
temperatures in the cavity-confined material.

We plot in Figure 7.9 the results of the analysis of the three-pulse optical measure-
ments carried out on the uncapped YBCO sample and on the cavity-confined het-
erostructures, with the estimation of the critical temperature from the non-linear re-
flectivity. Note that, due to the higher reflectivity of the cavity with the 15 nm-thick Ag
layer and to its low penetration depth, optical measurements were not suitable in this
sample.
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Figure 7.8: Temperature dependence of the non-linear optical signal in the uncapped YBCO
heterostructure and for the YBCO in the cavity confined heterostructure A. Temperature evo-
lution of the differential signal for the uncapped YBCO ("No Ag" portion of Sample A) and
corresponding temperature dependence of the fitting parameters a(T) and b(T). B. Non-linear
signal measured in the cavity-confined structure ("10 nm Ag" portion of Sample A) as a function
of the temperature and respective evolution of the fitting parameters a(T) and b(T). The grey
dashed lines in the right boxes mark the estimated critical temperatures. Differential signals in
A. and B. have been both extracted, as for the free space sample (Sample B, Figure 7.7), at a
probing wavelength hν = 1.35 eV.

We highlight that also in the cavity heterostructure capped with 5 nm Ag the signal
associated to the superconducting condensate could survive at higher temperatures. For
the 5 nm Ag cavity structure we estimate indeed a critical temperature (Tc = 70 K) sim-
ilar to the 10 nm Ag configuration, and hence greater than the uncapped configuration
(Figure 7.9).

Lastly, we note that also the recovery time of the photo-excited quasi-particles of the
superconducting state can possibly be affected by the cavity environment. This effect
can be seen by comparing the dynamics of the non-linear reflectivity ∆∆R

R of the super-
conducting phase measured in the uncapped YBCO ("No Ag", Sample A) with the one
measured in the cavity confined heterostructures. These measurements are presented
in Figure 7.10, where the non-linear signals measured below Tc (20 K) in the different
heterostructures are compared. We highlight that a longer lifetime of the non-linear sig-
nal, which can be associated to a longer lifetime of the photo-excited superconducting
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Figure 7.9: Estimation of the critical temperatures in the uncapped and in the cavity-confined
YBCO samples. Temperature dependence of the fitting parameters a(T) and b(T) in the un-
capped YBCO ("No Ag", Sample A) and for the cavity confined structures ("Ag 5 nm" and "Ag
10 nm", Sample A). The crossing temperature between a(T) and b(t) marks the estimated critical
temperature.

Figure 7.10: Non-linear signals in the superconducting phase. Non-linear reflectivity (hν =

1.35 eV) measured in the superconducting phase (T = 20 K) of the uncapped YBCO ("No Ag")
and of the cavity-confined YBCO ("Ag 10 nm", and "Ag 5 nm"). A longer recovery dynamics of
the excited quasi-particles is revealed in the cavity-confined systems.

condensate [108], is measured in the cavity-confined YBCO ("Ag 10 nm", "Ag 5 nm",
Sample A).
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7.4 methods

In the previous section we have highlighted the main effects that the cavity confinement
may have of the superconducting-like optical response in YBCO. We notice indeed that
the optical non-linear response associated to the superconducting condensate can possi-
bly survive at higher temperatures in the cavity-confined material and that the recovery
times of the excited quasi-particles may be also affected by the cavity environment.

This section is dedicated to a more extensive description of the optical set-up em-
ployed for the time-resolved three pulse experiment and to a detailed validation of the
proposed analysis of the optical signals to track the superconducting dynamics.

7.4.1 experimental set-up

Figure 7.11A shows a simplified sketch of the optical experiment designed to track the
superconducting response of the YBCO heterostructures.

The samples are simultaneously photo-excited by a pump blue pulse ("P", hν = 3.1
eV) and a push mid-infrared pulse ("p", hν = 75 meV) (Figure 7.11A).

The pump is obtained by Second-Harmonic Generation (SHG) in a β-barium borate
(BBO) crystal from the output of a Non-collinear Optical Parametric Amplifier (NOPA,
Orpheus-N by Light Conversion), pumped by the Light Conversion Pharos System (1.2
eV, 400 µJ/pp, 50 kHz). The temporal duration of the pump is measured by Frequency-
resolved Optical Gating before SHG to be 18 fs. Cross-correlation between the pump
and the probe pulse is used to estimate the temporal duration of the pump at the
sample, which is approximatively 50 fs.

The push pulse is generated by Difference Frequency Generation (DFG) in a GaSe
crystal by mixing the near-infrared outputs of two OPAs (Orpheus TWIN by Light
Conversion), also pumped by the Pharos Laser. The temporal duration of the push is ∼

150 fs, as estimated by push-probe cross-correlation.
The samples are probed by a broadband white-light supercontinuum (1.3-2.2 eV) ob-

tained by Self-Phase Modulation (SPM) in a sapphire crystal, which is pumped by a
small fraction (∼ 1 µJ/pp) of the Pharos output. After SPM, the probe is collimated and
the residual component of the generating 1.2 eV-light is filtered out by a short-pass filter
(edge at 950 nm). A small portion of the probe beam is routed around the sample and
used as a reference. The reference and reflected probe beams are collected by a pair of
linear arrays of silicon photodiodes (NMOS, Hamamatsu). The readout is digitalized by
a custom-made ADC which allows pulse-by-pulse acquisition up to 50 kHz.

The polarizations of the pump and the push are kept parallel, whereas the probe is
cross-polarized. The samples are glued on a copper substrate and mounted in a closed-
cycle He-cryostat (by Advanced Research Systems).

Two optical choppers are placed along the optical paths of the pump and the push
beams, and made running synchronously at 40 and 20 Hz, respectively. By referencing
the blockage of the pump and the push with two photodiodes, we can sort the reflected
broadband probe pulses into the following groups:

• RPp(hν, tWL, T): referenced-reflectivity of the sample photo-excited by both the
pump and the push.

• RP(hν, tWL, T): referenced-reflectivity of the sample photo-excited just by the
pump.
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• Rp(hν, tWL, T): referenced-reflectivity of the sample photo-excited just by the
push.

• Ru(hν, tWL, T): referenced-reflectivity of the sample at the equilibrium.

Here hν is the probe energy, tWL is the temporal delay between the synchronous pump-
push photo-excitation and the probe, and T is the sample’s temperature.

Figure 7.11: Experimental configuration employed for the time-resolved studies. A. Sketch of
the three pulse experiments. The sample is photo-excited by the simultaneous interaction with a
blue pump (3.1 eV) and a mid-infrared push (75 meV) pulse. The transient change in reflectivity
is measured by a white-light supercontinuum (hν = 1.3-2.2 eV) in a wide temperature range. B.
Temperature dependence of the differential reflectivity measured on optimally-doped Y-BSCCO
[237]. A photon energy hν = 1.57 eV has been selected within the broadband probe.

The differential non-linear signal discussed in Section 7.3 has been calculated as:

∆∆R

R
(hν, tWL, T) =

RPp − Ru

Ru
−
RP − Ru
Ru

−
Rp − Ru
Ru

, (7.3)

where, for the sake of clarity, we have omitted the dependence from hν, tWL, T on the
right side of the equation.

To test the suitability of the method to track the superconducting transition in copper
oxide compounds, we measured the differential non-linear signal ∆∆R

R in an optimally-
doped Y-BSCCO single-crystal. The sample was grown according to the procedure de-
scribed in [238] and the superconducting transition was studied by susceptibility mea-
surements (Tc = 96 K). We show in Figure 7.11B the differential reflectivity as function
of the temporal delay and the sample temperature upon simultaneous (∆t = 0) photo-
excitation by a pump (1.44 eV) and a push (75 meV) pulse. We plot here the transient
response at hν = 1.57 eV, but the choice of the spectral component within the probe
bandwidth does not affect the result. The superconducting phase is clearly character-
ized by the presence of a negative differential signal which undergoes an abrupt change
upon entering the pseudogap phase. This evidence further validates the choice of the
non-linear reflectivity as a probe to track the superconducting onset in the studied het-
erostructures (Section 7.3).
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7.4.2 detalied analysis of the optical measurements

As explained in the Section 7.3, we estimated the transition temperature in the het-
erostructures by performing a linear fit of the time and temperature dependent differ-
ential reflectivity, as:

d(T) = a(T)dlow + b(T)dhigh, (7.4)

where d(t) is the time-dependent signal at temperature T (one row of the colour map
in Figure 7.11B), dlow and dhigh are the time dependent signals measured at the low-
est (15 K) and highest (75 K) temperature, respectively. In this way, the temperature-
dependent coefficients a(T) and b(T) effectively weight the contributions of the super-
conducting and the high-temperature response at a given temperature T . Despite the
simplicity of the approach, this procedure qualitatively reproduces the data and cap-
tures the onset of the superconducting phase (Figure 7.12).

Figure 7.12: Fitting procedure of the non-linear optical signal. A. Differential reflectivity mea-
sured on the YBCO-terminated heterostructure (Sample B) at hν = 1.35 eV. B. Corresponding
fit, according to Equation 7.2. C. Temperature-dependence of the fit coefficients a(T) and b(T),
whose crossing marks the critical temperature.

We stress that the discontinuity in the temperature-dependent differential signal,
which marks the superconducting transition, does not depend on the choice of the spec-
tral component within the white-light broad bandwidth. Figure 7.13 shows the same
analysis performed in Figure 7.12C for different probe photon energies. The crossing
between the two curves, that is associated to the onset of superconductivity, occurs al-
ways at the same critical temperature for probe photon energies ranging from 1.35 eV
to 2.2 eV. This proves that the discontinuity in the temperature-dependent differential
response is a ubiquitous feature within the visible spectral range and can be considered
as a robust indicator of the superconducting transition.
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Figure 7.13: Fitting procedure of the non-linear signal as a function of the wavelength within
the white-light probe. Temperature-dependence of the fit coefficients a(T) and b(T), which
weight the superconducting and the high-temperature contributions (respectively) to the optical
differential response, in the YBCO-terminated heterostructure (Sample B) at different photon
energies within the bandwidth of the white-light probe.

7.4.3 fluence-dependence of the non-linear signal

As discussed in Section 7.3, the critical temperature optically estimated in the YBCO-
terminated heterostructure (Figure 7.7, Tc = 52 K) is slightly lower than the one revealed
through transport measurements (Figure 7.5B). We argue that this discrepancy could be
due to the local heating of the sample as an effect of the double photo-excitation.

To check the validity of this claim, we have performed a measurement under similar
experimental conditions as the one presented in Figure 7.7 and shown in Figure 7.14A
for direct comparison, but with increased fluence of both the pump and the push photo-
excitation (Figure 7.14B).

By following the same fitting procedure, it is clear that the crossing between the a(T)
and b(T) curves is shifted to lower temperatures (Tc = 47 K). This indicates that we
operate in a regime in which the non-linear photo-excitation by the pump and the push
is not only responsible for a dynamic perturbation of the superconducting condensate,
but eventually leads to its slightly quench, resulting in an effective decreased of the
superconducting critical temperature.
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Figure 7.14: Comparison between the differential signals measured on the YBCO-terminated
heterostructure (Sample B) at low and high fluence excitation. A. The pump fluence is set to
0.15 mJ/cm2 and the push to 0.06 mJ/cm2. B. Both the pump and the push fluences are raised
to 0.18 mJ/cm2. On the right side of each color-coded map, the outcome of the fitting procedure
is plotted, together with the indication of the estimated critical temperature.

7.5 conclusions

In these chapter we have explored the possibility of coupling the charge transfer tran-
sition in underdoped YBCO to an optical cavity and studied how the cavity environ-
ment may affect the superconducting response. Our preliminary measurements, based
on the three-pulse pump-probe technique, suggest that the non-linear optical response
associated to the superconducting condensate, which is visible up to ∼ 35 K in the un-
capped material, may survive up to ∼ 70 K in the cavity-confined heterostructures. This
evidence is associated with a change of the recovery time of the photo-excited quasi-
particles in the superconducting phase, which appears longer in the cavity-confined
systems.

We stress that the evidences currently in hand cannot be considered conclusive to
claim a possible cavity-induced modification of the superconducting transition tem-
perature and further comparative magnetic techniques, like SQUID magnetometry, are
needed. SQUID-magnetometry is indeed a well-established technique to characterize
the Meissner effect in superconductors.

As a follow up, we present our preliminary SQUID measurements performed at the
IFW Laboratories in Dresden. We performed measurements cooling down to 4 K the het-
erostructures at different intensities of the magnetic field (Hext = 5, 10, 20, 100, 1000 Oe),
oriented along both the in-plane and out-of-plane directions of the superconducting Cu-
O planes. A determination of the critical temperature can be obtained by recording both
the zero-field-cooled (ZFC) and field-cooled-warming (FCW) magnetization curves of
each sample. We summarize in Figure 7.15 the preliminary results of the SQUID mea-
surements on all the samples examined at Hext = 20 Oe parallel to the Cu-O plane.

The Meissner effect is clearly detectable in the bare YBCO-terminated heterostructure
(Sample B) and occurs at Tc ∼ 59 K. This result agrees with the transport measurement
(Figure 7.5B) and the optical measurements (Figure 7.7) and proves the suitability of the
SQUID technique for studying the superconducting transition in the heterostructures.
However, when additional layers are deposited on the YBCO film, the interpretation
of the SQUID measurements becomes more challenging. Due to the small thickness of
the YBCO film (100 nm), the measured magnetic moments are of the order of 10−9

emu; moreover, spurious magnetic contributions from the CeO2 and LaNiO3 layers
lead to an artificial splitting of the ZFC and FCW curves at high temperatures, which
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Figure 7.15: SQUID in-plane measurements in the cavity YBCO-based heterostructures.
Temperature-dependent magnetization in the zero-field-cooled (ZFC) and 20 Oe field-cooled-
warming (FCW) configurations for the YBCO in free space (Sample B) and for the cavity het-
erostructures (Sample A).

hinders the isolation of the superconducting contribution. For these reasons, further
complementary techniques, like microwave absorption (MWA), will be needed to isolate
the superconducting response in the cavity-confined heterostructures.

These preliminary results will serve therefore as background for future studies where
the dependence of the superconducting response within the cavity will be explored also
as a function of the YBCO thickness.



8
C O N C L U S I O N S

The hybridization between light and matter in the weak and strong coupling regime,
which can be obtained by placing materials into optical cavities resonant to phonons or
electronic excitations, can determine the onset of macroscopic functionalities which are
proper of the "light-matter hybrid" and are different from those of its constituents. The
light-matter cavity hybrids can be considered as highly delocalized states where long
range interactions in the material can be triggered by the common interaction of all the
material’s emitters with a single extended cavity mode. For this reason, exploring the
weak and strong limit of light-matter interaction within optical cavities is emerging in
the last years as a promising tool to control collective properties in quantum materials
[11].

In present doctoral thesis we have focused on the experimental possibility of engineer-
ing the vacuum electromagnetic field by mean of terahertz and sub-terahertz to control
collective properties in correlated materials. To reach this aim, we have developed a
unique set-up suitable to study the strong and weak coupling regimes between a tun-
able optical cavity mode in cryogenic environment and low energy excitations, such as
phonons or charge fluctuations. The uniqueness of the built set-up lies in its capability
of tuning the cavity resonance at cryogenic temperatures, thus enabling to target differ-
ent low energy collective modes and study how their coupling with the cavity field may
affect the material’s macroscopic properties.

We firstly studied the vibrational strong coupling regime in CuGeO3 at low tempera-
tures. CuGeO3 is a dielectric material exhibiting a strong optical-active phonon within
the THz range, and hence an ideal benchmark wherein to test the set-up. The strong
coupling of the vibrational excitation led to the formation of phonon-polariton modes
which we experimentally observed in the time domain as a normal mode beating and
mapped their frequency-dependent avoided crossing features. Moreover, we varied the
cavity temperature and proved that the line changes of the bare CuGeO3 phonon are
mapped in a thermal modification of the linewidth and frequency of the vibro-polariton
lines. The thermal modification of the optical phonon line led to an enhanced Rabi split-
ting at high temperatures, qualitatively consistent with a decrease of the bare phonon
lifetime.

Afterwards, we investigated the metal-to-insulator transition in the charge density
wave (CDW) material 1T-TaS2 embedded within THz and sub-THz cavities. We re-
vealed that, while long wavelength cavities favour the metallic phase, the coupling with
cavities at higher frequencies results in an effective stabilization of the dielectric CDW
phase. Overall, for the employed experimental setting, the effective critical temperature
associated to the phase transition could be tune by more than 70 K, overcoming the
free space hysteresis and enabling a reversible control of the metal-to-insulator transi-
tion. Importantly, we proved the control of the phase transition to be sensitive to the
alignment of the THz cavity and hence possibly related to the peculiar cavity electrody-
namics. We rationalized our experimental evidences in a scenario in which the cavity
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field is preferentially coupled to one of the two phases of 1T-TaS2 and can be used to
coherently modify the sample’s temperature with a Purcell-like mechanism.

We then examined the effect of the coupling of 1T-TaS2 phases with higher energy
cavities (above ∼ 400 GHz). We revealed that when the cavity is tuned below the phonon
modes of the commensurate CDW phase, and hence in resonance with the continuum
Drude, its quality factor is sensitive to the material’s phase. Indeed, we measured a
lifetime of the cavity photons which decreases going from the insulating to the metallic
state. We rationalized this evidence in a framework in which the free charges, responsi-
ble of the Drude-like behaviour, couple to the cavity mode and modify its lifetime.

When the cavity is tuned resonantly to the IR-active vibrational modes of the insulat-
ing phase we revealed a multiple polariton mixing. The estimated components of the
polaritonic wave functions showed that the measured polaritons of the CDW phase have
character from all the vibrational resonances as a consequence of the photon-mediated
hybridization. In particular, we detected two weakly dispersive middle polariton states
resulting from the cavity-mediated mixing of two non-degenerate phonons. Intriguingly,
we detected a closing of the Rabi splitting between the hybridized phonons across the
metal-to-insulator transition due to the onset of metallicity, reaching the weak-coupling
limit near the critical temperature.

Finally, motivated by the strong connection found between the onset of superconduc-
tivity in cuprates and the charge transfer (CT) transition, we explored the possibility of
coupling the CT excitation in underdoped YBCO to an optical cavity and see how strong
electronic coupling may affect the pairing mechanism. Our very preliminary studies,
based on the three-pulse pump-probe technique, showed that the optical features asso-
ciated to the superconducting condensate are modified by the cavity environment and
may possibly survive at higher temperatures in the cavity-confined structures.

In conclusion, the presented experiments show how cavity electrodynamics can play
a role in the intricate equilibrium physics of different quantum materials, potentially
providing a new tool to engineer their cooperative properties.

We note that for the Fabry-Pérot cavities employed in the present thesis the energy
and momentum conservation limits the coupling between the cavity modes and col-
lective dispersive excitations to the zone center (k = 0). As a future perspective, we
will propose to overcome this limitation by introducing on the sample surface periodic
metallic nanostructures. In this way the combined action of the tunable cavity mirrors
and the nanostructured sample surface will enable the coupling of the cavity mode to
specific excitations at arbitrary momentum [239].
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[97] Jenő Sólyom. “Optical Properties of Solids.” In: Fundamentals of the Physics of
Solids: Volume 2: Electronic Properties. Ed. by Jenő Sólyom. Berlin, Heidelberg:
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