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Sommario

La superconduttività è un fenomeno caratteristico di alcuni materiali, nei quali la resistenza
elettrica è nulla al di sotto di una temperatura detta critica, la quale è generalmente
alcuni gradi superiore allo zero assoluto per i superconduttori convenzionali. Negli anni
’50 la teoria BCS (dai fisici Bardeen-Cooper-Schrieffer) ne ha fornito la prima descrizione
miscroscopica: lo stato superconduttivo è descritto come una supercorrente di coppie di
Cooper, uno stato legato di due elettroni che interagiscono attraverso lo scambio di un
fonone.

Negli anni ’80 venne scoperta una nuova classe di materiali superconduttori, nei quali
la temperatura critica sale a temperature superiori di quella di ebollizione dell’azoto. No-
nostante si sia studiato a lungo tale fenomeno, il meccanismo di formazione delle coppie di
Cooper a tali temperature non è ancora chiaro.

In questa tesi si approfondirà lo studio dei cuprati: delle ceramiche a base di composti
di ossido di rame. Questi materiali allo stato drogato sono dei superconduttori la cui tem-
peratura critica sale fino a 100K. La fase superconduttiva è caratterizzata dall’apertura
di una gap energetica, che nei cuprati ha una simmetria d-wave nella prima zona di Bril-
louin. Sono quindi definite due direzioni anisotrope: lungo l’antinodo la gap assume valore
massimo, lungo il nodo è nulla. Lo stato superconduttivo è influenzato da tale gap aniso-
tropa perché l’energia richiesta per rompere una coppia di Cooper dipenderà dal momento
dell’eccitazione che fornisce tale energia.

Lo studio di tale gap è fondamentale per capire i meccanismi microscopici che porta-
no alla formazione delle coppie di Cooper. A questo proposito, la spettroscopia Raman è
uno strumento importante. Negli esperimenti Raman elettronici, le eccitazioni elettroniche
nei solidi sono studiate attraverso lo scattering anelastico della luce, che è descritto dal
cosiddetto tensore Raman. I diversi elementi di tale tensore possono essere isolati selezio-
nando opportunamente la polarizzazione della luce incidente e scatterata. Tale tecnica è
già stata implementata negli anni ’80 per lo studio della gap superconduttiva nei cuprati
all’equilibrio [1].

Per effettuare uno studio dinamico, si deve realizzare una versione risolta in tempo della
spettroscopia Raman. Un’altra tecnica risulta fondamentale per questo scopo: la tecnica
del pump&probe, che prevede di eccitare il materiale attraverso un impulso intenso (pump)
e di studiare il suo rilassamento attraverso altri impulsi più deboli (probe).

Lo scopo di questa tesi è stato quello di combinare lo scattering Raman elettronico con
la tecnica del pump&probe.

Per prima cosa si è sviluppato un modello per il tensore Raman (al terzo ordine) che
tenesse in considerazione anche l’azione del pump, e non solo del probe, come avviene per
il modello al primo ordine. Tale modello permette di studiare le eccitazioni al nodo e
all’antinodo in funzione della direzione di polarizzazione del pump e del probe.

Per testare tale modello si è quindi sviluppato un setup sperimentale che permettesse
di controllare la temperatura, la polarizzazione del pump e del probe, il ritardo temporale
tra l’impulso di pump e gli impulsi di probe, l’energia degli impulsi.
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Le misure sono state prese per due campioni del cuprato Bi2Sr2CaCu2O8+δ (uno op-
timally doped, l’altro underdoped) in diverse regioni del diagramma di fase. Variando i
diversi parametri si è testata la validità del modello al terzo ordine del tensore Raman.

Dai dati raccolti si può concludere che la birifrangenza è una proprietà peculiare del-
la fase superconduttiva, infatti per temperature più alte della temperatura critica i se-
gnali ottenuti sono o nulli o deboli e non presentano nessuna dipendenza dall’angolo di
polarizzazione del probe.

Dai dati ottenuti in fase superconduttiva si può concludere che sia il modello al primo
ordine sia quello al terzo ordine non descrivono complessivamente le misure. Il modello
al primo ordine predice segnale per tutti gli angoli di polarizazzione del probe, ma in
nessuna delle configurazioni studiate (variando il campione e la polarizzazione del pump)
si è ottenuto segnale indipendentemente dalla polarizzazione del probe. Il modello al terzo
ordine invece descrive solo le misure ottenute per il campione underdoped e la polarizzazione
del pump parallela alla direzione nodale. Se questa è parallela all’asse antinodale il segnale
è traslato di 45◦ rispetto a quanto predetto dal modello.



Introduction

Superconductivity indicates a set of properties characteristic of specific materials in which
electrical resistivity abruptly drops to zero under a critical temperature, that is generally
few degrees above the absolute zero in conventional metallic superconductors. A micro-
scopic description of superconductivity was provided by the Bardeen-Cooper-Schrieffer
(BCS) theory in 1957, in which the superconducting state is described as a superfluid
current of Cooper pairs, a bound state of two electrons interacting via the exchange of a
phonon.

Later on, a new class of superconductors was discovered in 1980s, in which the super-
conducting state is reached at temperatures much higher than in conventional supercon-
ductors and usually above the boiling temperature of liquid nitrogen. Although 40 years
have passed, the pairing mechanism in these materials is still unknown. In particular, the
BCS theory cannot explain how Cooper pairs are created at such higher temperatures.

In this thesis, we will focus on cuprates, a class of ceramic materials based on copper
oxide compounds. These systems, upon hole- or electron-doping, show a rich phase diagram
in which superconductivity can endure up to temperatures of 100K.

The superconducting phase is characterized by the opening of an energy gap at the
Fermi energy. While in conventional superconductors the superconducting gap has a s-
wave symmetry in the Brillouin zone, in cuprates the gap is characterized by a d-wave
symmetry, which identifies two anisotropic directions in the Brillouin zone: along the
antinodal direction the gap has maximum value, while it goes to zero along the nodal
direction. This anisotropy in the gap energy influences the superconducting state because
the energy required to break a Cooper pair into two quasiparticles (unpaired electrons)
will depend on the momentum of the excitation that provides this energy.

The study of the anisotropy of the gap is instrumental to understand the microscopic
mechanism that gives rise to electronic pairing in cuprates. This has stimulated in the past
years the development of several momentum-resolved experimental techniques that enable
the investigation of the nodal and antinodal contributions to the macroscopic supercon-
ductivity.

In this regard, Raman spectroscopy established as a powerful tool. In electronic Raman
experiments, the electronic excitations in solids are studied through the inelastic scattering
of light that is described by the so-called Raman tensor. By properly selecting the polar-
ization of the incoming and the scattered light, different elements of the Raman tensor
can be singled out and momentum-resolution can be achieved. This technique was imple-
mented already in the late 1980s for the spectroscopic measurements of the d-wave gap in
cuprates [1]. However, these measurements were performed at the equilibrium and cannot
give any information about the dynamics of the Cooper pair breaking and recombination
in momentum space.

In order to study the dynamics, a time-resolved version of Raman spectroscopy must be
implemented. In this perspective, the pump-probe technique is pivotal. In a pump-probe
experiment, the material is excited by a strong pulse (pump). Then its relaxation is probed
by another weaker pulse (probe) that investigates how the optical properties of the sample
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change during the relaxation time.

The aim of this thesis is to combine electronic Raman scattering experiments with a
pump-probe scheme.

A first challenge of this approach is that its theoretical description cannot be entirely
provided by the usual first-order Raman tensor, which takes into account only the inter-
action with one light beam (the probe). However, in a pump and probe experiment the
action of the pump cannot be ignored. Here, we will develop a model that implements
both the action of the pump and the probe in a third-order Raman tensor. We will rewrite
this tensor considering the symmetries of the cuprates, that belong to the D4h group of
the tetragonal lattice. This model allows us to study the nodal and antinodal excitations
as function of the direction of the linear polarization of the pump and the probe.

In order to test this model, we will assemble an experimental setup that allows us
to control all the freedom degrees we are interested in: temperature, pump and probe
polarization, time delay between pump and probe pulses, photon energy of the pulses.

We perform measurements both in an underdoped and optimally doped sample of the
cuprate Bi2Sr2CaCu2O8+δ in different regions of the phase diagram. By varying the
experimental parameters, we test in which conditions the predictions of the third-order
Raman tensor model are confirmed.
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Chapter 1

Fundamentals of superconductivity

In this chapter we will introduce the essential points to understand superconductivity, a
phenomenon that was observed for the first time by Kammerlingh Onnes in 1911. We will
describe firstly some experimental evidence about superconductors, then we will introduce
the theoretical approach to conventional superconductivity.

We will focus on high temperature superconductivity and in particular on cuprates, like
the samples that we have studied.

1.1 Superconductivity: phenomenological description

Superconductivity is a phenomenon that describes a phase of specific materials in which
electrical resistivity drops suddenly to zero when these materials are cooled under a critical
temperature Tc. This zero electrical resistivity explains the observation of a persistent
electrical current, but can not describe the magnetic properties of these materials. In fact
superconductors are perfect diamagnets. If a weak magnetic field is applied to a sample
that we cooled below Tc, on the surface of the material there are electrical currents. These
surface currents give rise to an other magnetic field that cancels the applied field inside
the superconductor (figure 1.1). This is called the Meissner effect.

So inside the material we have B = 0, a result that can not be derived simply from
zero resistivity ρ = 0. In fact from Ohm’s law, E = ρj, if ρ goes to zero and j is finite,
then E = 0. From Faraday’s law, ∇ × E = −∂tB, we obtain ∂tB = 0, not B = 0. So
the Meissner effect suggests that perfect diamagnetism is a property characteristics of the
superconducting state.

Considering a superconductor at temperature below TC , an other parameter to control
the superconducting state is the intensity of the applied field Ba. In fact, the application

Figure 1.1: Meissner effect. When a superconducting sphere is cooled down in a constant
magnetic field, passing the transition temperature Tc the lines of the magnetic field are expelled
from the inside of the sphere.[4]
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Figure 1.2: (a) Superconductors of type I: Under the critical field Hc they are perfect diamag-
nets, above Hc they are normal conductors. (b) Superconductors of type II: the flux begins
to penetrate in the material at a field Hc1 and there is superconducting electrical properties up to
Hc2. The state between Hc1 and Hc2 is called vortex state. Above Hc2 the sample is a normal
conductor. On the vertical axes there is −M , the negative value correspond to diamagnetism. [4]

of a sufficiently strong magnetic field destroys the superconducting state. Therefore if the
applied field is lower than a critical field Hc the material is a perfect diamagnet, otherwise
the applied field can penetrate the material. There are two types of superconductor that
have different behaviour under the application of a field. The magnetization curve expected
for superconductors of type I is sketched in figure 1.2 (a). Superconductors of type I, mostly
pure samples of many materials, under Hc are perfect diamagnets. Superconductors of
type II have a magnetization curve like the one in figure 1.2 (b). These materials have
superconducting electrical properties up to a critical field Hc2. Between the two critical
fields Hc1 and Hc2 there is B ̸= 0, we say that the Meissner effect is incomplete.

In normal metal the specific heat has the form aT + bT 3 at low temperature (T for the
electronic excitations, T 3 for the lattice vibrations). For temperature below the critical
temperature TC , the specific heat has higher values than in normal phases, then it slowly
decreases. The explanation is that in superconducting state the linear electronic contribu-
tion is replaced by a term of the form e∆/KBT , that vanishes rapidly at low temperature.
This is a characteristic behaviour of a system that has excited levels separated from the
ground state by an energy 2∆. This energy gap is centered about the Fermi energy EF , so
an electron of energy E can be absorbed by (extracted from) the material only if E −EF

(EF − E) is greater than ∆.
This energy gap has a different origin than the energy gap of insulators, in which it

is caused by the electron-lattice interaction. In a superconductor we are interested in the
electron-electron interaction.

1.1.1 London equation

The Meissner effect implies a magnetic susceptibility χ = −1. We saw that put ρ = 0 in
Ohm’s law is not sufficient to explain this effect. We can modify Ohm’s law in order to
obtain the Meissner effect. In normal state we have j = σE. In superconducting state
we postulate that the current density is proportional to the vector potential of the local
magnetic field:

j = − 1

µ0λ2
L

A (1.1)



1.1. SUPERCONDUCTIVITY: PHENOMENOLOGICAL DESCRIPTION 11

where λL is a constant with the dimension of length. This equation is known as London
equation, we can rewrite it considering B = ∇×A:

∇× j = − 1

µ0λ2
L

B. (1.2)

Under static conditions the Ampere-Maxwell law is ∇×B = µ0j, taking the curl of both
sides and using equation 1.2 we obtain :

∇2B =
B

λ2
L

. (1.3)

This equation does not allow a solution uniform in space, in fact if we consider B(r) =
B0 = costant we have that ∇2B = 0 always, so B0 is solution only if it is identically zero.

In a superconducting state the only solution allowed is a field exponentially damped
as we go inside the material. If B(0) is the field at the boundary and, for example, it is
parallel to the boundary, the field inside is

B(x) = B(0)e−x/λL , (1.4)

where the expression for λL is

λL =

(︃
ϵ0mc2

nq2

)︃1/2

(1.5)

for particles with mass m, concentration n and charge q. λL is called London penetration
depth, it measures the depth of penetration of the magnetic field. So an applied magnetic
field will penetrate a sample only within a thickness much less than λL. This equation
explains the macroscopic Meissner effect, but it can not describe the electrodynamics relate
to a superconducting state.

1.1.2 About BCS theory

The basis of a quantum theory of superconductivity was laid by Bardeen, Cooper and
Schrieffer in 1957.

The theory requires a net attractive interaction between electrons near the Fermi sur-
face. This is possible thanks to the lattice-electron interaction: when one electron interacts
with the lattice the result is a deformation of the lattice, then a second electron sees the
deformed lattice and tends to lower its energy. So the second electron interacts with the
first one via the deformation of the lattice, i.e. a phonon (for a representation of this
interaction see figure 1.3). This attractive interaction is possible between electrons with
energies sufficiently close together. The fact that a bound state is created through this weak
interaction is possible thanks to the influence on the interacting pairing of the remaining
N − 2 electrons, because of the Pauli exclusion principle.

Thanks to this attractive interaction between electrons there is a new ground state, that
is superconducting and is separated by a finite energy ∆ from the lowest excited state. The
principal characteristics of the BCS ground state is that the orbitals are occupied by pairs,
not by single particles. Therefore if an orbital with wavevector k and spin up ↑ is occupied
(empty), also the one with −k and ↓ is occupied (empty). These pairs are called Cooper
pairs.

The properties of these pairs, and also of the superconductivity that arises from them,
are encoded in the pair wavefunction Φk, that is an s-wave function, so it is isotropic.
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Figure 1.3: Interaction between two electrons. Considering the pair (k ↑,−k ↓): the first
electron scatters from k to k′ creating a phonon with k−k′; the second electron scatters from −k
to −k′ absorbing the phonon. [6]

1.2 High temperature superconductivity

High temperature superconductivity (HTS) is characterized by a high transition temper-
ature. The BCS theory can not explain how the mechanism of pairing works because at
higher temperatures there are higher energies incompatible with the weak attractive energy
between the two electrons of the pairs.

In this thesis we will examine cuprates, copper oxides high temperature superconduc-
tors.The superconductivity in cuprates was observed for the first time by Bednorz and
Muller in 1986, still today the electronic pairing mechanism in these materials is not un-
derstood.

1.2.1 Cuprates

Cuprates are composed of copper oxide layers that are separated by other insulating planes
of various chemical composition that act as charge reservoirs. In the copper oxide layers
each copper ion is fourfold coordinated to the oxygen ions. The superconducting behaviour
accurs in these CuO2 planes.

The macroscopic properties of cuprates depend on the electronic structure of the CuO2

plane. In the undoped material each Cu atom loses 2e− because of the high electronega-
tivity of the oxygen, so it is left in the 3d9 configuration.

Cuprates at pure state are insulating and antiferromagnetic, in order to see supercon-
ductivity we have to dope them. Through a p-doping we can substitute the cations of the
insulating layers with other cations of minor valency. The consequence is a major presence
of moving holes in the oxygen orbitals. The superconducting behaviour is connected to
the presence of these holes.

A phase diagram as function of the temperature and the doping (p, that indicates the
concentration of the holes) is represented in figure 1.4. In the area enclosed by the red line
the cuprates have superconducting behavior. The critical temperature TC that denotes
the superconducting (SC) phase is maximum at the optimal doping (OP, p ∼ 0.16) and
it decreases for underdoped (UD) and overdoped (OD) samples. For underdoped and
optimally doped cuprates below T ∗ there is a phase, called pseudogap phase (PG), that
has peculiar symmetries and properties not yet well understood. In fact these properties
are not characteristics neither of the SC phase nor the metallic one. Other phases occur
in the phase diagram, we only mention them: for low dopings (p < 0.05) cuprates are
insulating and antiferromagnetics, at high temperatures they are strange metals and for
high dopings there is the Fermi liquid phase.
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Figure 1.4: Phase diagram of cuprates. At very low dopings the cuprates are antiferromag-
netics (yellow area). For the doping increases we have the superconducting phase under the critical
temperature TC (red area), that is maximum at optimal doping. in the underdoped region and
below T ∗ there is the pseudogap phase (blue area), whose boundaries are uncertain at low dopings.
Above T ∗ cuprates are strange metals and increasing the doping there is a transition to the Fermi
liquid phase. [2]

Figure 1.5: d-wave superconducting gap in cuprates. a) Fermi surface in the first Brillouin
zone. b) Amplitude of the d-wave gap in the reciprocal space. [2]

We already said that in BCS theory the consequence of the Cooper pairing is a s-wave
gap, that is isotropic across the first Brillouin zone. Instead in cuprates the gap has a
strong momentum dependence that is consistent with a d-wave simmetry. The gap has
maximum value along ΓM axis (antinodal) and goes to zero along ΓX axis (nodal), as
shown in figure 1.5. This anisotropy influences the superconducting state because the
energy required to break a Cooper pair into two quasiparticles (QP) depends on its mo-
mentum. Superconducting electrons are strongly bond for k parallel to the CuO bond, and
they are not paired for k along CuCu direction. The consequence is that at the antinode
electronics transitions are permitted only if the provided energy is bigger than the SC gap,
at the node all transitions are allowed.





Chapter 2

Experimental techniques

In this chapter we will introduce the experimental techniques used. We will describe the
pump-probe spectroscopy that allows to perform time-resolved measurements to study
electron dynamics. Then we will describe Raman spectroscopy, that permits to study the
excitations in solids through the inelastic scattering of light.

2.1 Pump-probe spectroscopy

Pump-probe experiments allow to study the evolution of optical properties of the sample
during the relaxation time on a sub-picosecond timescale.

The material is excited trough a strong ultrafast laser pulse (pump), that drives the
sample to a non-equilibrium state. Then its relaxation is controlled with other weaker laser
pulses (probe), that are properly delayed in time with respect to the pump. These probe
pulses measures the change of the transmission or the reflectivity of the samples as function
of the time-delay between the pump and probe (figure 2.1). This delay is controlled varying
the optical path of the probe. The electron dynamics we study have characteristic time
of femstoseconds, therefore we need that the time delay between pump and probe pulses
have this duration. In order to do this we need to be able to change the optical path in the
range of micrometers. In fact to a time delay of 10fs correspond a change in the optical
path of 3µm.

It is important that the probe has an intensity minor than the pump in order to not
perturb the system under study, in fact the probe only investigates optical properties of
the sample.

The temporal resolution of the experiment is determined by the duration of the pulses.
The development of ultrafast sources (that produces pulses which duration is less than
picoseconds), allows to study processes like the electron relaxation.

2.1.1 Photoinduced dynamics in superconductors: Rothwarf-Taylor equa-
tions

The reflectivity of the material is proportional to the density of unpair electrons, so we need
a model to describe how this concentration changes during the relaxation time. For this
purpose we will consider the Rothwarf-Taylor model. The lifetime of these unpair electrons
does not depend only by the recombination rate to reassemble the Cooper pairs, we need to
consider also the phonon reabsorption process from ground state. We can summarize the
process of relaxation of photoexcited electrons as follows (figure 2.2). Pump pulse excites
the SC state breaking Cooper pairs releasing quasi-particles QPs (i.e. unpair electrons),
then QPs recombine into pairs. They relax to the ground state if they emit a phonon with
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Figure 2.1: Pump&probe technique: The pump pulse excites the material, the probe pulses,
changing their time delay with the pump, control the relaxation time through the variation of the
reflectivity of the sample.

energy h̄ω > 2∆. The pairs at the ground state can break if they absorbe these phonons
with high frequency. Therefore there is a cyclical process of breaking and recombination
of Cooper pairs. This process end (and the superconductive state is re-established) when
photoexcited particles reach states with energy near the gap, in particular it is terminated
when a phonon decay with energy h̄ω < 2∆. The equations that describe this model are:

dn

dt
= I0 + ηN −Rn2

dN

dt
= −ηN

2
+

Rn2

2
− γ(N −NT ).

(2.1)

n is the population of QPs; N is the population of high frequency phonons, it is N =
NPE +NT , where NPE indicates the photoexcited contributions and NT the thermal. η is
the probability for pair breaking by the absorption of a phonon; R is the QP recombination
rate with the emission of a phonon; I0 desribes the incident pulse. γ describes the loss of
phonons because of the decay of high frequency phonons (h̄ω > 2∆) into phonons of lower
frequency (h̄ω < 2∆). The factor 2 comes from the fact that two QPs are recombined with
an emission of a single phonon.

2.2 Electronic Raman scattering

In this section we will describe the fundamentals of Raman spectroscopy, a technique that
allows to study excitations in solids through inelastically scattering of light. We will employ
quantum mechanics formalism to give a deep insight on the problem [2]. In particular
we will focus on Raman scattering on cuprates, superconductors that we introduced in
the previous chapter, and how to study the d-wave superconducting gap thanks to time-
resolved Raman measurements.

The physicist C.V. Raman in the 1920s observed that a little part of photons (around
1 over 108) scatters inelastically, instead of elastically when light hits a solid. In particular
this inelastically scattering can originated from the coupling of light to electrons (or also
other excitations). Thanks to electronic Raman scattering we can study the electron
dynamics described in the previous chapter and how they differ in different regions of the
Brillouin zone. This is possible selecting the polarizations of the incoming and scattered
photons.
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Figure 2.2: Diagram of the relaxation of photoexcited electrons. (1) Photoexcitations
and creations of unpair electrons, (2) QPs recombine into pairs across the superconductive gap ∆
through (3) emission of high frequency phonons (h̄ω > 2∆), (4) these phonons can break pairs
leading to a cyclical process (blue arrows). When a high frequency phonons decay with energy
h̄ω < 2∆ this process is terminated. [3]

2.2.1 Quantum mechanics description

In quantum mechanics Raman scattering can be interpretated as the creation or the anni-
hilation of an elementary excitation in a solid. The mechanism of Raman scattering can be
described as follows: the incoming light with wavevector ki and frequency ωi interacts with
the electronic system of the material, from the absorption of a photon there is a creation
of an electron-hole pair that brings the system into a virtual state; this pair moves to an
other state creating an elementary excitation with wavevector q and frequency ω; finally
the electron and the hole recombine emitting a scattered photon with ks and ωs (figure
2.3).

Now we will consider the Hamiltonian of N electrons with mass m, charge e and mo-
mentum p interacting with an electromagnetic field described trough the vector potential
Â(ri):

H =

N∑︂
i=1

[︂
pî + (e/c)Â(ri)

]︂2
2m

+HC +HF , (2.2)

where HC is the Hamiltonian of the Coulomb interaction between electrons and HF is the
Hamiltonian of the free electric field. By expanding the kinetic term we obtain:

H =
1

2m

∑︂
i

p̂2 +
e

2mc

∑︂
i

[︂
p̂i · Â(ri) + Â(ri) · p̂i

]︂
+

e2

2mc2

∑︂
i

Â
2
(ri) +HC +HF

= H̃ +H ′
int +H ′′

int,

(2.3)

where H̃ = H0+HF ; H0 =
1
2m

∑︁
i p̂

2+HC is the Hamiltonian that describes the material,
with eingestates defined by H0 |α⟩ = Eα |α⟩, that are labelled by the band index, spin and
orbital quantum numbers.

In electronic Raman scattering the observable is the total cross section for scattering
from electrons illuminated by the incident light. The cross section is the probability that
an incoming photon with momentum qi, frequency ωi and polarization e

(i)
q is scattered

within a solid angle interval (Ω,Ω + dΩ) and an energy interval (ωs, ωs + dωs). We will
consider the differential cross section that we can write through the Fermi’s golden rule:

∂2σ

∂Ω∂ωs
∝ ωs

ωi

1

Z

∑︂
I,F

e−EI/kBT |MF,I |2δ(EF − EI − h̄(ωi − ωs)), (2.4)
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Figure 2.3: Feynman diagram of a one-phonon Raman scattering: k1,2 and ω1,2 are the
wavevectors and frequency of incoming and scattered photons respectively,; q and ω are those of
the elementary excitation created. HA represent the electron interaction with the field, HEL with
the lattice. [7]

where kB is the Boltzmann costant, I and F indicate the initial and final state of the
electronic system with energy EI and EF . 1

Z

∑︁
I,F e−EI/kBT is the probability to have

the system in the jth microstate. |MF,I |2 is the matrix element that determine the light
scattering:

|MF,I |2 = ⟨F ; qs, ws, e
(s)
q |H ′

int +H ′′
int|I; qi, wi, e

(i)
q ⟩ , (2.5)

where H ′
int couples the electron’s current with a photon, H ′′

int couples the electron’s charge
with two photons.

2.2.2 Raman scattering in cuprates

We can simplify the computation of the matrix element MF,I considering the symmetries
of the material, in fact the density fluctuations of the charge are modulated along the
polarization direction of incident and scattered photons. The elements of the Raman
matrix are non-zero only when then system (including incident and scattered photonos,
Raman excitation) is even under the symmetry operations that are characteristics of the
crystal symmetries. So we can consider basis functions of the irreducible point group of
the crystal ϕµ in order to decomposed the Ramam matrix element:

MF,I →
∑︂
µ

Mµϕµ. (2.6)

We will use the Mullikan notation:

• A (B): symmetric (anti-symmetric) with respect to rotation about the principal axis;

• 1 (2): symmetric (anti-symmetric) with respect to plane reflection orthogonal to the
principal axis;

• g (u): symmetric (anti-symmetric) with respect to inversion trough the center.

Most cuprates belong to the D4h group of the tetragonal lattice. The modes can be
odd (u-ungerade) or even (g-gerade) if they change or not sign upon inversion. In order
to rewrite the Raman matrix element we will consider Rµ that are operators projected in
the µ representation:

MF,I =
1

2
[R

(1)
A1g

(exi e
x
s + eyi e

y
s) +R

(2)
A1g

(ezi e
z
s)+

+RB1g(e
x
i e

x
s − eyi e

y
s) +RB2g(e

x
i e

y
s + eyi e

x
s )+

+RA2g(e
x
i e

y
s − eyi e

x
s ) +R

(1)
Eg

(exi e
z
s + ezi e

x
s ) +R

(2)
Eg

(eyi e
z
s + ezi e

y
s)],

(2.7)
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eαi,s indicate the polarization of the incident and scattered photons. In general we can not
measured individually the different irreducible representations with polarizations in the
x − y plane in the D4h crystals. For example, if both incident and scattered photons are
polarized along x̂, the matrix element would be:

MFI
=

1

2
[R

(1)
A1g

(exi e
x
s ) +RB1g(e

x
i e

x
s )], (2.8)

so modes A1g and B1g are simultaneously measured.

We consider incoming light perpendicular to the CuO2 plane, so it has not z-component,
and we work with linear polarized light, therefore from equation 2.7 we can ignore modes
Eg (that could be seen if the incoming light is polarized along ẑ) and A2g (that could be
seen only with circular polarized light). So we can consider only modes A1g, B1g and B2g

that can be re-written respectively in the following form:⎛⎝a
a

b

⎞⎠ ⎛⎝c
−c

⎞⎠ ⎛⎝ d
−d

⎞⎠ , (2.9)

where the first matrix represents the A1g mode, the second B1g and the third A2g. So the
Raman matrix element for our configuration is:

MFI
=

1

2

(︃
RA1g +RB1g RB2g

RB2g RA1g −RB1g

)︃
(2.10)

From now on we will set the x-axis along the CuO bond. Now the purpose is to isolate
B1g and B2g modes: in order to do this we impinge on the samples with photons polarized
along CuCu bond and CuO bond.

In order to study the k-projections of the A and B modes, it is useful to write their
basis functions ϕµ(k) taken from the complete set of the Brillouin zone (BZ) harmonics for
the D4h space group:

A1g −→ 1

2
(cos(kxa) + cos(kya))

B1g −→ 1

2
(cos(kxa)− cos(kya))

B2g −→ sin(kxa) sin(kya)

(2.11)

Each modes corresponds to a different projection in the BZ zone. From figure 2.4 we
can see that A1g mode is total-symmetric, instead B1g and B2g are sensitive to specific
directions in the reciprocal space: scattered light couples to charge excitations along the
axes of the BZ (kx,y = 0) for B1g symmetry, while it couples to excitations along BZ
diagonals (kx = ±ky) for B2g symmetry. In particular, given the d-wave symmetry of the
SC gap (as discussed in the previous chapter), the B1g mode probes the antinodes of the
gap, while the B2g mode probes the nodal regions.

Now we introduce the angles ϕ and α that indicates the polarization of the incom-
ing probe and of the reflected beam. The action of the probe and the analyzer can be
respectively written:

|p⟩ =
(︃
cos(ϕ)
sin(ϕ)

)︃
, |A⟩ =

(︃
cos(α)
sin(α)

)︃
, (2.12)

these states are used to comput the Raman element, starting from the tensor:

MFI =

(︃
a+ c d
d a− c

)︃
. (2.13)
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Figure 2.4: Momentum-dependent sensitivity of Raman modes. The curved lines are the
Fermi surface, the color gradient indicates the amplitude of the d-wave gap: black at the antinodes
and white at the nodes. [2]

Figure 2.5: First order model. Model prediction for equation 2.14. The grey vertical lines
indicate the CuO axes.

In order to obtain the polarization-dependent contribution of each mode:

⟨A|MFI |p⟩ = (cos(α) sin(α))

(︃
a+ c d
d a− c

)︃ (︃
cos(ϕ)
sin(ϕ)

)︃
= A1g cos(ϕ− α) +B1g cos(ϕ+ α) +B2g sin(ϕ+ α)

= A1g cos(∓45◦) +B1g cos(2ϕ± 45◦) +B2g sin(2ϕ± 45◦),

where in the last equivalence we used that in our configuration α = ϕ± 45◦; we make the
difference between the two contributes and obtain:

∆R+ −∆R− ∝ B2g cos(2ϕ)−B1g sin(2ϕ). (2.14)

We obtained a model that describe the D4h symmetry at first order, ignoring the action of
the pump (figure 2.5). If ϕ = 0 + kπ/2 the signal measured is proportional to ±B2g, and,
analogously, it is proportional to ±B1g if ϕ = π/4 + kπ/2.



2.2. ELECTRONIC RAMAN SCATTERING 21

2.2.3 Third-order Raman tensor

In a pump-probe experiment we have to consider also the action of the pump, this can be
done through the third order Raman tensor:

R
(3)
ijkl = Rij

A1g
Rkl

A1g
+Rij

B1g
Rkl

B1g
+Rij

B2g
Rkl

B2g

=

⎛⎜⎜⎝
(︃
a2 + c2 0

0 a2 − c2

)︃ (︃
0 d2

d2 0

)︃
(︃
0 d2

d2 0

)︃ (︃
a2 − c2 0

0 a2 + c2

)︃
⎞⎟⎟⎠

(2.15)

where the indices i, j, k, l = 1, 2, the first two indices indicate the pump polarization, the
other two the polarization of incoming and scattered beam.

We will consider ϕ and α as above and we introduce also θ to indicate the polarization
of the pump, which action is represented by

|P ⟩ =

⎛⎜⎜⎝
cos θ 0
0 cos θ

sin θ 0
0 sin θ

⎞⎟⎟⎠ .

Starting from the action of the pump we get:

R(pump) = ⟨P |R(3)
ijkl|P ⟩ =

(︃
a2 + c2 cos(2θ) d2 sin(2θ)

d2 sin(2θ) a2 − c2 cos(2θ)

)︃
then from the action of the probe we get:

R(probe) = R(pump) |p⟩ =
(︃
(a2 + c2 cos(2θ)) cosϕ+ d2 sin(2θ) sinϕ
d2 sin(2θ) cosϕ+ (a2 − c2 cos(2θ)) sinϕ

)︃
at last the action of the analyzer:

∆R = ⟨A|R(probe) = a2 cos(ϕ− α) + c2 cos(2θ) cos(ϕ+ α) + d2 sin(2θ) sin(ϕ+ α).

With reference to the relations in 2.9, we can write:

∆R(θ, ϕ, α) = A1g cos(ϕ− α) +B1g cos(2θ) cos(ϕ+ α) +B2g sin(2θ) sin(ϕ+ α),

Figure 2.6: Birefringence measurements of the B1g and B2g modes. We select the
orthogonal projections (analyser) of the probe, then we evaluate their difference. The orange
(grey) circles are ions of Cu2+ (O2−).
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Figure 2.7: Third order model. Model predictions for the B1g mode (equation 2.17, θ = 0◦)
and the B2g model (equation 2.18, θ = 45◦). The grey vertical lines indicate the CuO axes.

where in our configuration we select the orthogonal projections through a polarizing beam
splitter, so α = ϕ± 45◦, and we can re-write:

∆R(θ, ϕ, α) = A1g cos(∓45◦) +B1g cos(2θ) cos(2ϕ± 45◦) +B2g sin(2θ) sin(2ϕ± 45◦),

but we are interested in the difference between the two projections (figure 2.6):

∆R+/− = ∆R+ −∆R− ∝ B2g sin(2θ) cos(2ϕ)−B1g cos(2θ) sin(2ϕ). (2.16)

If we put θ = 0, that is polarization of the pump parallel to the CuO bond, B1g can be
isolated:

∆R+/− ∝ B1g sin(2ϕ), (2.17)

instead with θ = 45◦, pump parallel to CuCu bond, B2g can be isolated:

∆R+/− ∝ B2g cos(2ϕ). (2.18)

So including the action of the pump in the model, we can isolate the B1g and B2g modes
separately (figure 2.7). If the pump polarization is parallel to the CuO bond (θ = 0◦) the
B1g is isolated, and we expect signal for ϕ = π/4+ kπ/2, when the probe is parallel to the
CuCu bond. Instead if the pump is parallel to CuCu (θ = 45◦) we isolate the B2g mode,
we expect signal for ϕ = 0 + kπ/2, when the probe is parallel to CuO bond.



Chapter 3

Experimental setup

In this chapter we will describe the experimental setup developed in order to study time-
resolved electronic Raman scattering in cuprates. We will describe all the components
necessary to perform a pump-probe experiment as explained in chapter two.

Then we will briefly give a description of the samples used.

3.1 Setup

The main components of the set up are described in figure 3.1. We use a commercial
laser light source (Pharos, Light conversion) to generate ultrashort pulses (with central
wavelength of 1030nm and duration of 200fs) with a repetion rate of 50kHz (but we will
work with a repetion rate of 5kHz, selecting one pulse over ten). In order to obtain
pulses at tunable wavelengths, we use instruments that exploit non linear optical processes,
like the photon down conversion process, as Optical Parametric Amplification (OPA) and
Difference Frequency Generation (DFG).

In particular we obtain the probe pulses with a non-collinear OPA (NOPA), that allows
to obtain broadband pulses shorter than 25fs and with wavelength centered in 750nm
(broadband probe pulses allow to study the response of the sample in a wide range of
wavelengths). To obtain the mid-infrared pump pulse (17µm), we use Twin OPAs in
combination with a DFG crystal.

The temporal delay between the probe and the pump beams is controlled by a motorized
stage that modifies the optical path of the probe.

In order to isolate the modes of the sample by choice of a specific geometry, as we have
explained in the section 2.2, we need to implement a setup that allows to select different
angles for the linear polarization of the pump and the probe.

In front of the sample there is an half-waveplate ϕ that defines the polarization of the
incoming probe. A second half-waveplate α is placed after the sample and before the
polarizing beam splitter. We use it to realign the reflected beam with the polarization
of the incoming probe. Then we split the beam in its orthogonal projections through
the polarizing beam splitter. The two components are independently diffracted by two
transmission gratings and focused into two linear arrays of silicon photodiodes. With
reference to figure 3.1, detector Ch0 measures the vertically polarized component, while
detector Ch1 the horizontal one.

The polarization of the pump is fixed vertical, so to measure different modes (that
can be isolated stimulating the sample along CuCu or CuO bonds) we need to rotate the
sample (figure 3.2). The orientation of the sample is controlled by a piezoelectric rotator.

In order to control the temperature of samples, these are inserted in a closed cycle liquid
helium cryostat. The cryostat expander is supported by a custom made structure fixed to
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Figure 3.1: Diagram of the experimental set-up: the probe (750nm) is obtained in a non-
collinear OPA, the mid-infrared pump through twin OPAs and a DFG crystal, the temporal overlap
between probe and pump is controlled by a motorized stage. ϕ and α are two half-waveplates that
allow to controll the polarization of the incoming and reflected probe, θ indicates the orientation
of the sample that is controlled by an electric rotator. A polaryzing beam splitter (PBS) splits
the reflected probe into two components that are dispersed by two transmissions gratings and the
focused on two arrays of photodiodes.

Figure 3.2: Configuration of beam polarization and sample. To select B1g and B2g modes
we rotate the sample because the pump has fixed vertical polarization. Through a PBS we split
the reflected probe into two components at ±45◦ (analyzer) and detect them.

the laboratory floor and the cold head is fixed to the optical bench. This solution isolates
the samples from the characteristic vibrations of the expander.

The samples are mounted on a copper plate that is connected to the cold head and
also fixed to the moving part of a piezo-electric rotator. A thermocouple is placed on the
copper plate, in proximity of the samples. It is used to measure the sample temperature.
In order to improve the conductivity of this structure, indium foils are interposed at each
metallic interface. The minimum temperature we can reach for samples is 35K, because
of the piezoelectric rotator and the not perfect conductivity.

The entire structure is enclosed in a vacuum chamber that is provided with a 1-inch
window that allows optical access. Vacuum conditions are matched via a standard turbo
pumping station that allows to reach pressures of 10−7mbar working at ambient tempera-
ture and pressures of 10−8mbar working at cryogenic temperature.

3.1.1 Array calibration

Everytime we adjust the optical alignment it is necessary to perform a wavelength calibra-
tion to establish a relation between the array pixel number and the wavelength of the light
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component impinging on each pixel.
We use a filter with a known spectrum (thorlabs) and place it before the sample. This

filter cuts the central frequencies of the pulses, obtaining a shape with two peaks that we
use as reference points (the red line in figure 3.3). Once the filter is placed, we measure its
spectrum first with an optical fiber spectrometer already calibrated, then with the arrays
of our detection (figure 3.4). In this way we can assign the two peaks to a pixel number
and to a specific wavelength. Through a linear interpolation (figure 3.5) we obtain the
wavelength calibration of the arrays.

Figure 3.3: Action of the thorlabs filter on the pulse spectrum. The blue line is the
transmission spectrum of the filter (thorlabs). The green line is the spectrum of the optical pulse
measured by a calibrated optical fiber. Orange line is obtained by multiplying the filter curve
(blue) for the pulse spectrum (green). It shows a good agreement with the spectrum measured
when the filter is inserted in the optical path of the probe beam (red line).

Figure 3.4: Measurements of the pulse spectrum with the filter in. The blue line is the
spectrum filter measured with the photodiods arrays, the red one is measured with the optical
fiber.
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Figure 3.5: Wavelength calibration of the arrays: linear interpolation between the 128 pixels
of the arrays and wavelengths.

3.1.2 Chopped detection

In order to do a pump and probe experiment we need to collect both the pumped and
unpumped signals. To do this we use an optical chopper, a wheel that mechanically blocks
the pump beams at the frequency of 45Hz. As sketched in figure 3.6, we divide the train
of probe pulses into two groups: N pumped pulses (those probe spectra reflected by the
sample when the pump hit the sample) and N unpumped pulses (reflected when the pump
was blocked by the chopper blade). In particular we measure the intensity of the ith

reflected beams RP,U
i (λ, t) as function of its wavelength λ and the time delay between the

pump and the probe beams t.
In order to understand how the signals change depending on the presence or not of the

excitation of the pump, we are interested in the difference between the pumped RP
i (λ, t)

and unpumped RU
i (λ, t) signals. So the observable is the differential reflectivity normalized

to the unpumped reflectivity:

∆R(λ, t)

R
=

∑︁N
i=1R

P
i (λ, t)−

∑︁N
i=1R

U
i (λ, t)∑︁N

i=1R
U
i (λ, t)

. (3.1)

Figure 3.6: Acquisition of pumped and unpumped signals with the use of a chopper.

3.2 Description of the samples

We worked with two samples of the cuprate Bi2Sr2CaCu2O8+δ (or briefly Bi2212) with
different doping: one optimally doped (OP) with critical temperature TC = 90K and one
underdoped (UD) with TC = 80K. In the OP sample the amplitude of the antinodal gap
is of the order of 70meV.

These cuprates belong to the high critical temperature copper oxide based supercon-
ductors Bi2Sr2Cam−1CumO2m+4+δ. m indicates the number of CuO2 planes in the unit
cell of the material, so in the Bi2212 there are two-planes of CuO2. δ indicates the doping
level. In figure 3.7 we reported the crystal structure of the optimal doped Bi2212.

Referring to the phase diagram studied in the first chapter (figure 1.4) we see that these
samples have three phases varying the temperature. They are superconductors under the
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critical temperature TC . For temperatures that go from TC to T ∗ there is the pseudogap
phase, that is wider for the underdoped sample. Above T ∗ there is the normal phase.

Figure 3.7: The unit cell of Bi2Sr2CaCu2O8+δ [8]





Chapter 4

Measurements and data analysis

In this chapter we will describe the measurements obtained, referring to the technique
discussed in the second chapter.

We will consider the signals collected by the two detectors to study the transition
between the three phases: superconducting, pseudogap and normal phases.

Then we will consider the birefringence map, obtained subtracting the single channel
maps, to study the relaxation electron dynamics in the superconducting phase when the
samples are excited by a pump of energy lower than the energy gap. We will compare
the data collected with the models obtained in the second chapter. We will study first
the underdoped sample, then the optimally doped sample. In order to excite along the
nodal or antinodal direction we will rotate the samples themselves and we will study their
reflectivity varying the angles of the probe pulses.

4.1 Reflectivity map

In the previous chapters we described the pump and probe technique and how to implement
it in an experimental setup. In particular in chapter 3 we described the chopped detection
that allows to distinguish pumped signals from the unpumped. The observable in our
measurements is the differential reflectivity normalized ∆R/R(λ, t) in equation 3.1.

These maps depend on the reflectivity intensity (colormap), the wavelength of the re-
flected probe (vertical axis) and the time-delay between the pump and the probe (horizontal
axis). At time t=0, the pump and the probe beams are temporally overlapped in the sam-
ple. Through the ultrashort probe pulses we can map the relaxation of the samples in a
time range of 5ps.

The color gradient (figure 4.1a) indicates the reflectivity intensity. We have maximum
signal at the overlap, that decreases for positive time. We have weaker signals for low
wavelength. These features can be clearly addressed in figure 4.1b, where we presented
the reflectivity signal only for few selected wavelengths. The transient signal is more
pronounced in the wavelength range 760nm-790nm.

4.2 Temperature measurements

In order to estimate the critical temperature TC and the temperature T ∗ that defines the
pseudogap (PG) phase of our samples we performed a measurement varying continuously
the temperature from 50K to 220K and acquiring a pump-probe trace at each temperature
step. It is not possible to perform this measurement with a unique scan. In fact heating
up the samples the optical alignment is lost because of the thermal expansion. Therefore
we split the measurement into two temperature ranges: the first allows to identify TC ,
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(a) Reflectivity map: the map corresponds to
the signal ∆R/R detected by one array and in-
tegrated over the total number of pulses.

(b) Dependence from the wavelength: each
line corresponds to horizontal cuts of the reflec-
tivity map. Each line represents the time trace
of the transient reflectivity signal with a specific
wavelength.

Figure 4.1

the second T ∗. In figure 4.2 the temperature maps display the transient reflectivity signal
(integrated in the spectral region 777-783nm) as function of the time delay. These maps
are measured on the samples at different temperatures: the solid lines mark the transition
between the superconducting phase and the pseudogap phase (green) and the PG-normal
phase transition (yellow).

Cooling down the temperature, T ∗ is identified by the appearance of a negative signal in
the ∆R/R map, TC when a positive signal appears. From figure 4.2a we can estimate that
for the optimally doped sample T ∗ ≃ 142K and TC ≃ 80K. From figure 4.2b we obtain
T ∗ ≃ 200K and TC ≃ 73K for the underdoped sample. We highlight that the nominal
value of the critical temperature for the OP and UD samples are respectively 90K and
80K. The reason of this incongruity may be in the fact that we are heating the sample
with the laser, whose repetition rate was set at 5kHz for the experiment. To test our
assessment, we repeated the measurement with a lower repetition rate of the laser, 2kHz.
Indeed repeating the temperature scan in the UD sample we see that TC is affected by the
repetition rate (figure 4.3). For repetition rate of 5kHz we already obtained TC = 73K,
for 2kHz we see that the critical temperature increases nearly to 80K.

The effect of the repetition rate is important to understand where the SC and PG
behaviours arises in our sample considering the action of the pulses. We are interested
to make the measurements in the difference phases: to study the SC phase we cool the
sample at T ≃ 35 − 40K, for the PG phase at T ≃ 100K. Doing the measurements with
these temperature values we are sufficiently distant from the transition temperatures. So
we can ignore the heating of the laser beams.

4.3 Birefringence measurements

We have already discussed the single channel map that we obtain by measuring a projection
of the probe (figure 4.1a). Since we are interested in the different behaviour of the two
projections, we build a birefringence map (third panel in figure 4.4) by subtracting the Ch1
map from the Ch0 map. The data provided by these birefringence maps will be compared
with the equation 2.14 (first order) and the equations 2.17 and 2.18 (third order), derived
in the second chapter. For this reason, the upcoming data analysis will be focused on the
birefringence maps only.
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(a) TC (green line) and T ∗ (yellow line) for the
OP sample.

(b) TC (green line) and T ∗ (yellow line) for the
UD sample.

Figure 4.2

(a) Temperature scan with a repetition rate of
5kHz.

(b) Temperature scan with a repetition rate of
2kHz.

Figure 4.3: Effect of the repetition rate of the laser on the critical temperature TC in the UD
sample.

The reflectivity maps depend on the reflectivity intensity, the wavelength of the reflected
probe and the time-delay between the pump and the probe. In order to compare them
with the model given in the second chapter, that depends only on the intensity, we must
integrate the data of the birefringent maps over an appropriate region (third map in figure
4.4). We identify the wavelength range considering the region in which there is signal,
ignoring the contributions near the edge where there is noise because of the low intensity
of the probe beam impinging on the edges of the arrays. On the time axis we consider the
interval that goes from the time in which the pump excites the sample (t=0) to the time
in which the signal starts to lose intensity. We have done this choice for every map in the
following analysis.

4.3.1 Error analysis

To compute the errors on the wavelength axis we consider the "negative" time (when the
sample is in equilibrium) in the single channel maps and we calculate the variance with
respect to zero for each wavelength. Then we obtained the variance for the birefringence
map for each wavelength through the sum of the errors obtained for the single channels.
The errors for each instant on the time axis are equal: we calculate the variance propagation
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Figure 4.4: Birefringence map: The first and second maps correspond to the reflectivity signal
∆R/R collected by the two detectors. The third figure is obtained subtracting the second from
the first.

considering the average of the different wavelength contributions:

σt =

√︂∑︁
i σ

2
i

n
, (4.1)

where σ2
i are the birefringence variances calculated for the n wavelength contributions.

Then we average along the time axis (for m points) obtaining the final error for the map:

σmap =
σt√
m
. (4.2)

Figure 4.5: Variances in function of the wavelength: The blue and orange lines are the
variances calculated with respect to zero for the single channels, considering the "negative" time,
when the sample is in equilibrium. The green line is the variance for the Birefrangent signal.

4.3.2 Comparison between SC, PG and Normal phase

In order to study the dependence of the birefringent signal on the temperature, we perform
the same measurement of figure 4.4 also in pseudogap and normal phases. The measure-
ments presented in figure 4.6 are done in the underdoped sample, with the pump polar-
ization parallel to the CuO axis. In fact in the superconducting (SC) phase we obtained
a positive signal in the region of high wavelengths (760nm-790nm). The signal decreases
starting from 2ps. In pseudogap (PG) phase we have only a short negative signal for high
wavelengths and a weaker positive signal for lower wavelengths at the overlap. In normal
(N) phase there is not signal, except for a weak positive signal at the overlap. So from the
figure it is clear that the signal that we obtained is peculiar of the superconducting phase.
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Figure 4.6: Comparison of the birefringence maps in the SC, PG and normal phase.
Birefringence maps obtained in the underdoped sample with the pump polarization parallel to the
CuO bond, measured at 35K (left), 98.5K (centre) and 295K (right).

4.3.3 Dependence from probe angle

In order to study the relaxation of the sample along the different axes of the sample we
rotate the polarization of the incoming probe (ϕ) and the reflected probe (α) through two
half waveplates. We study the dependence from the probe angle for both the polarization
of the pump. The first half waveplate is placed before the sample and it is rotated by step
of 22.5◦. The second one (analyzer) is placed after the sample and before the polarizing
beam splitter. We use it to realign the reflected beam with the polarization of the incoming
probe.

Figure 4.7 represents a set of measurements done rotating the probe polarization over
a range of 360◦ in the underdoped sample. The polarization angles (ϕ) are reported above
each map (0◦ means that the probe is parallel to the CuO bond). In this case the pump is
parallel to the CuO bond, the wavelength is 17µm and the power is 0.3mW. The measure-
ments are done in the superconducting phase, at T = 50K. There are maximum signals
for probe angles ϕ = kπ/2. The positive and negative signals have same characteristics:
they both have wavelengths in the range 760-780nm and duration of 2ps. For the oth-
ers probe angles there are null signals. Therefore there is a is periodicity of 180◦ in the
measurements.

This periodicity can be seen also performing a polar plot of the birefringent maps
(figure 4.8. We averaged the data of the maps as described in section 4.3 and we plotted
the absolute values of the signals in polar coordinates. From this plot is clear that the
positive signal and the negative signal are symmetric also in amplitude.

Therefore is sufficient study the sample for probe angles in the interval (0◦, 180◦). In the
next chapter we analyze the data collected in the different configurations always considering
this range of angles.

Figure 4.7: Birefringence maps for different probe polarizations. The measurments are
done in the underdoped sample at a temperature of 50K. The pump polarization is along the CuCu
axis.
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Figure 4.8: Polar representation of the birefringence maps. To plot this figure we average
the data in the region described in section 4.3 and then plot their absolute values in polar coordi-
nates.

4.4 Measurements in SC phase: comparison with the models

In this section we present the measurements done in SC phase exciting the two samples with
a pump of energy lower than the gap energy (λ = 17µm). Then we present a comparison
between the data collected and the theoretical model developed in the second chapter. The
main comparison is between the two configurations of the pump polarization: for the pump
parallel to the CuO axis (θ = 0◦) and for the pump parallel to the CuCu axis (θ = 45◦)

4.4.1 Underdoped sample

In figure 4.9a there are the reflectivity maps of the measurements done on the UD sample
with the pump polarization along the CuCu bond (θ = 45◦). The amplitude of the signal
is maximum when the probe is parallel to the CuO bond (ϕ = kπ/2) and is zero when the
probe is along the CuCu bond (ϕ = kπ/4).

In figure 4.9b there is a comparison between the different phases. In PG and normal
phases there are weak signals for all the probe angles that can be explained as noise or
effects connected to the specific phases. We do not know if and how these signals affect
the measurements in the superconducting phase. For this reason we will consider only the
SC data not contained in the region highlighted in grey. Thank to this observation, in
4.9c (where the dashed grey lines individuate the CuO axis) we see that the measurements
agree with the third order tensor model (represented with dashed orange line, B2g mode
in this case). Instead the first order tensor model is not respected because null signals are
not predicted. So the zero birefringence signal suggests that the pump polarization is a
necessary parameter to describe the selection rules in a pump and probe experiment.

The maps in figure 4.10a represented the measurements collected with the pump polar-
ization rotated of 45◦ (parallel to CuO bond). We have maximum signal along the CuO
bond, like the previous case in which the pump is parallel to CuCu bond. Furthermore
we have weaker positive signal also for ϕ = 45◦ and there is not a symmetric negative
signal for ϕ = 135◦, where there is a null signal. For the consideration done in the previous
paragraph about the signals in PG and normal phases, this weaker positive signal can not
be considered zero, in fact it is not contained in the grey region (figure 4.10b).

From the third order model we expect maximum signal for probe angles ϕ = kπ/4 and



4.4. MEASUREMENTS IN SC PHASE: COMPARISON WITH THE MODELS 35

null signal for ϕ = kπ/2, but we have signals at three over four probe angles. In this con-
figuration, the first order model, that does not predict zeros, seems to be more descriptive
of the experiment. But we have a null signal for ϕ = 135◦. So in this configuration neither
of the models can explain the behaviour of the sample excited along the CuO axis.

4.4.2 Optimally doped sample

We consider now the same two configurations but on the optimally doped sample.
In the case of the pump polarization along the CuCu axis (figure 4.11a), we have

maximum signal at probe angles ϕ = 0◦, 90◦ and null signal for ϕ = 135◦. In the second
birefringence map there is a clear positive signal weaker than the maximum signal for
ϕ = 0◦, that can not be explained as noise considering the comparison map 4.11b. The
third order model does not consider the doping as a parameter. So the prediction for the
optimally doped sample is equal to the result for the underdoped sample seen before. So
the third order model can explain the maximum signals and the null signal, but does not
explain the positive signal for ϕ = 45◦. Analogously considerations are done for the first
order model: it predicts signals for all probe angles, but we have signals for only three
angles. Also for this configuration neither the third or first order models are respected.

In the case of the pump along the CuO axis (figure 4.12a) analogously to the UD sample,
there are maximum signals for probe angles ϕ = 0◦, 90◦ and null signals for ϕ = 45◦, 135◦.
The third order model predicts maximum signals where we have null signals and vice versa.
We have signals for two angles over four, so neither the first order model is respected. Also
in this configuration both models can not describe the measurements obtained.

4.4.3 Discussion

In the second chapter we developed two models for the Raman tensor: the first order model
that considers only the action of probe beam and the third order model, implemented to
study time-resolved measurements, in which the action of the pump is considered. In
their derivation, we considered the symmetry properties of the material; in particular we
used two electronic symmetries: B1g and B2g modes, that probe respectively the antinodal
and nodal regions of the first Brillouin zone. The first order model predicts signals at each
probe angle ϕ: it is proportional to B2g for ϕ = kπ/2 and to B1g for ϕ = π/4+kπ/2, where
for ϕ = 0◦ the polarization is considered parallel to the CuO axis. The third order model
predicts instead different behaviour as function of the pump polarization. If the pump
polarization is parallel to the CuO bond, the B1g mode is isolated; the model predicts
signal along the CuCu axis and null signal along the CuO axis. If the pump is parallel
to the CuCu bond, the B2g mode is instead isolated; the model predicts signal along the
CuO axis and null signal along the CuCu axis.

Considering the measurements described in the previous sections and comparing them
with the models, we can make some observations for the measurements done in the super-
conducting phase:

• the birefringent signal is restricted for high wavelengths, in the range 760nm-790nm;

• the third order tensor model well describes the selection rules of cuprates only for the
UD sample in the configuration in which the pump polarization is along the CuCu
axis. The model predicts correctly maximum signals along the CuO axis and null
signals along the CuCu axis;
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• for the OP sample there is a weak positive signal for ϕ = 45◦ when the pump is along
the CuCu axis. This signal is not in agreement with the predictions of the third order
model;

• if the pump is parallel to the CuO axis we obtained the maximum (and the null)
signals shifted of 45◦ with respect to the prediction of the third order tensor model
for both the samples;

• the first order model is never respected because it does not predict null signals. In
fact in all the configurations obtained varying the pump polarization and the doping
of the sample we have null signals.

From these observations we can conclude that neither the models developed describe
the selection rules of our samples.

Nonetheless, the signals that we measured are certainly peculiar of the superconduct-
ing phase because performing the same measurements at different temperatures the data
collected do not depend on the probe angles. Therefore, we can conclude that cuprates
have a birefringent behaviour only below the critical temperature.
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Figure 4.9: Pump // CuCu, UD sample

(a) Reflectivity map

(b) Comparison with the pseudogap and nor-
mal phases.

(c) Comparison with the third order theoret-
ical model (B2g mode)

Figure 4.10: Pump // CuO, UD sample

(a) Reflectivity map

(b) Comparison with the pseudogap and nor-
mal phases.

(c) Comparison with the third order theoret-
ical model (B1g mode)
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Figure 4.11: Pump // CuCu, OP sample

(a) Reflectivity map

(b) Comparison with the pseudogap and nor-
mal phases.

(c) Comparison with the third order theoret-
ical model (B2g mode)

Figure 4.12: Pump // CuO, OP sample.

(a) Reflectivity map

(b) Comparison with the pseudogap and nor-
mal phases.

(c) Comparison with the third order theoret-
ical model (B1g mode)



Conclusions

In this thesis, we focused on an optimally doped and an underdoped sample of the cuprate
Bi2Sr2CaCu2O8+δ. This system is a high temperature superconductor that displays a
superconducting gap with d-wave symmetry. The anisotropic gap defines two axes in
the momentum space: along the nodal direction the gap has maximum value, along the
antinodal it vanishes.

By implementing electronic Raman scattering measurements in a time-resolved pump-
probe scheme, we measured the samples in different regions of the phase diagrams and
studied the Raman-like optical response in different polarization configurations.

In order to interpret the results, we developed a third-order model for the Raman
tensor that, in addition to the standard dependence on the probe polarization, also takes
into account the polarization of the pump. We used this model, together with the first
order model, that does not involve the action of the pump, to study the birefringent data
collected during the measurements at superconducting temperature.

In order to understand if the data collected are characteristic of the superconducting
phase, we performed the measurements also at higher temperature, in pseudogap and
normal phase. In pseudogap phase and normal phase we obtained null or weak signals
for all the probe angles, that can be ascribed to noise or to weak effects connected to
the specific phase. Instead, we obtained clear birefringent signals only below the critical
temperature, so directly related to the superconducting phase.

The measurements disagree with both models developed. In fact in none of the con-
figurations (varying pump and sample) we found a birefringent signal regardless of the
probe polarization angle. This means that the first order model is in contrast with the
measurements. Instead, the third order tensor model well describes the selection rules only
for the UD sample in the configuration in which the pump polarization is along the CuCu
axis. If the pump polarization is parallel to the CuO axis, we obtained maximum signals
shifted of 45◦ with respect to the third order model prediction.

In two configurations (UD-pump//CuO and OP-pump//CuCu) there is a weak positive
signal for ϕ = 45◦, but there is not a symmetric negative signal for ϕ = 135◦. This result
suggests that there might be a breaking of the D4h symmetry because of the action of the
pump. In fact the D4h is characterized by a 90◦ symmetry, but some of the birefringent
signals that we collected have a 180◦ periodicity. Previous studies [9] had proved that in
cuprates there is a 90◦ symmetry breaking, in favor of a 180◦ symmetry like the D2h. In
order to test this option we should write the third order Raman tensor also considering the
modes selected by this symmetry and compare the data collected also with its predictions.

Furthermore, to perform these measurements, we used a pump pulse with an energy
lower than the gap energy and probe pulses of wavelengths in the range of 720-790nm. To
learn more about the symmetry of cuprates and how they respond to photoexcitation, it
might be interesting to perform similar measurements also with pump pulses with higher
photon energy and with probe pulses having a broader spectral content, possibly covering
higher wavelengths where the birefringent signal seems to be more intense.

Finally, also changing the doping of the sample might be useful to study the behaviour



of these materials across the entire phase diagram.
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