




Abstract

In this Thesis we develop and characterize the Femtosecond Covariance Spectroscopy
technique. This is an approach to spectroscopy that aims at exploiting the informa-
tion encoded in ultrashort light pulses by nonlinear light-matter interaction processes.
We consider each transmitted spectrum of a series of repetitions as a unique realiza-
tion of the experiment and exploit the nonlinear spectral mixing by calculating the
covariance between the frequency resolved intensities. In this work we validate the
technique on impulsive stimulated light scattering in a benchmark material, α-quartz,
using ultrashort near infrared laser pulses randomized with a pulse shaper. With trans-
mission measurements we retrieve the vibrational spectrum of the sample. The ex-
perimental evidence is supported by a theoretical quantum model accounting for the
self-heterodyned nature of the inelastic light scattering experiment, resulting in off-
diagonal covariance signals. The technique is also applied to time resolved experi-
ments, described in the framework of quantum optics. An intense pump pulse excites
the vibrations to a coherent state, and a set of properly time delayed randomized probe
pulses explore its evolution through the spectral correlation. Finally we show that the
technique is based on a simple yet general and powerful concept which can be adapted
to different wavelength ranges and interaction processes.
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1 ■ Introduction

In the work presented in this Thesis, we use light to investigate matter. As as
a matter of fact, we follow this procedure on a daily basis, observing the world,
as light, reflected by objects around us, enters our eyes. The human eye is a
detector, and we could simplfy its description by comparing it to a camera. The
pupil’s diameter is adjusted to limit the amount of light entering the eyeball,
whose changing shape allows to optimize the focus of the image onto the retina,
where photo-receptor cells, rods and cones, are triggered and send electrical
signals to the brain. The light we see has interacted with the objects around
us: even if a broad sunlight spectrum reaches the Earth’s surface through the
atmosphere, objects will typically absorb or transmit a large portion of its com-
ponents, reflecting the rest. This linear response of an object is what we see
and call "colour". Just as it happens with a camera, where a finite exposure
time is used to properly impress an image onto the film, the eye accumulates
light for a finite time interval before sending an image to the brain [1, 2]. We
experience the importance of this mechanism whenever, for instance, we look
at, or photograph, stars in the night sky.

It is logical to adopt an approach similar to vision when using light to per-
form a measurement. We expose our detector to light reflected or transmitted
by a sample for a time interval long enough to obtain a measure of the sam-
ple response. In this case, we say that the detector integrates light over some
time window. In the framework of ultrafast spectroscopy, laser light pulses are
employed as a probe. They have a broad spectral bandwidth, and a fixed phase
relationship between the components guarantees their coherent sum in short
wavepackets [3, 4]. The pulses are produced with a fixed time distance between
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2 CHAPTER 1. INTRODUCTION
each other, therefore integrating over time means averaging over repetitions of
the experiment. Even when a single shot acquisition is possible, it is common
to perform many repetitions of an experiment to average the spectra, to in-
crease the signal to noise ratio.

The electric field of a light pulse can reach a very high amplitude, comparable
to that found between nuclei and electrons in an atom [5]. This can give rise,
in a medium, to nonlinear processes, prompted by the mixing of electric fields at
different frequencies and mediated by the sample nonlinear response. Through
these interactions one can, for instance, access excited states of a complex ma-
terial, whose properties and dynamics unveil information about the interplay
between different degrees of freedom. Interactions in nonlinear media enable,
as well, to produce ultrashort pulses in a laser [6].

The spectral signatures of a nonlinear interaction can be very weak, as they
are related to a small cross section, and are often overcome by linear effects.
As a consequence, when performing an experiment with the aim of revealing
such a tiny signal, noise is seen as a limitation to eliminate. It is common to
put much effort into mitigating as much as possible the amount of experimen-
tal noise, and to feed the average with as many iterations of the experiment as
possible. In doing so we are discarding spectral features which are unique to
each repetition, which, from an alternative perspective, could be considered as
measurements under different conditions. From this point of view, the devia-
tion of a measured value from its average is source of additional information
[7]. In fact, if treated properly, noise can assist processes [8, 9] and amplify or
reveal signals [10]. In this perspective, the average value is no longer a suitable
analytical tool to treat the data, and higher order momenta of the data distri-
bution are needed [11–13].

To change the paradigm of average based spectroscopy, it comes as a great
advantage that a nonlinear process necessarily involves several spectral compo-
nents within the pulse bandwidth. In a scattering experiment, this manifests
as a mutual dependence of the spectral weight at different points within the
spectrum. This coupling, imprinted in the light pulse by the interaction, can be
revealed in the form of a statistical correlation. Therefore, in this framework,
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only statistical momenta beyond the average are able to convey information on
the process.

In this Thesis, we establish this new paradigm under the name of Femtosec-
ond Covariance Spectroscopy (FCS), that aims at revealing the low energy lev-
els of a sample exploiting the correlations imprinted in a light pulse. To validate
the technique, we apply it on a transparent sample, α-quartz. The pulses are
inelastically scattered by the sample vibrational modes, that have been stud-
ied in the past by means of traditional techniques. The scattering results in a
global shift of the average transmitted spectrum with respect to the input one,
therefore it is not possible to distinguish the contribution of different vibra-
tional modes, nor their symmetry. In FCS instead, the measured single shot
spectra are input to a suitable statistical tool. We employ a normalized covari-
ance, the Pearson correlation coefficient ρ, as a two dimensional function of
the frequency resolved intensity. We will show that the correlation coefficient
carries plenty of information on the interaction process. In the following, we
will use ρ as a novel tool to analyze the measured data and extract the sample
low energy vibrational spectrum.

■ Reading guide

The Thesis is structured as follows. In Chapter 2 we present the theoretical
tools necessary to describe a third order inelastic light scattering interaction.
The chapter is divided in two parts. First, we discuss single pulse experiments,
with a fully quantum model that allows to calculate the total transmitted field.
Moreover, the role of a stochastic spectral phase is discussed and predictions
are made on the resulting covariance, computed on randomized pulses before
and after their interaction with a sample. This model was developed in collab-
oration with the group of S. Mukamel (University of California at Irvine) [14].
The second part of the chapter describes double pulse experiments, in which a
first intense pulse excites the sample out of equilibrium, and the variably de-
layed pulse probes the material. Within the language of quantum optics, we
describe the dynamics of the average transmitted intensity. At the end of the
chapter, we calculate the expected time, frequency and symmetry dependent
response from the sample under consideration, α-quartz. The work reported
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in this part of the chapter stems from a collaboration with the group of F. Be-
natti (University of Trieste) [15].

The various experimental techniques employed, and the setup built to per-
form the measurements is discussed in Chapter 3. We outline the principles of
functioning of the laser, then we describe the pulse shaper, a versatile device
that allows to randomize the pulses, and the single shot detectors. Then we
present the optical parametric amplification setup, that was employed to fre-
quency convert the pump pulses for a subset of the experiments. At the end of
the chapter we describe the frequency resolved optical gating technique, used
to measure the duration of ultrafast pulses.

In Chapter 4 we present single pulse experiments on α-quartz and discuss
the results. With the pulse shaper, we modulate randomly the spectral phase
or amplitude of each pulse, along the whole spectral bandwidth or portions of
it. We retrieve the low energy vibrational modes of the sample. We show the
similarities and differences between the vibrational spectra obtained within the
different regimes, with a focus on the effect on the signal lineshape. We then
study the effect of the application of an average phase jump and of the ran-
domization of selected points within the spectrum. We discuss the appearance
of the vibrational features in a cross correlation coefficient. The measurements
shown in this chapter and in second part of Chapter 5 were performed with An-
gela Montanaro [16] and Jonathan Tollerud, respectively a Master student and
a PostDoc in our group at the time of the experiments.

In Chapter 5 we show and discuss the results of experiments conducted with
pairs of ultrashort pulses on α-quartz. We begin with double pulse experiments,
in which both the pump and the probe pulses are spectrally coherent, and we
measure the average transmitted probe spectrum. The vibrational features are
retrieved, as they modulate the average response in time. The signal strength
is tested by varying the pump or probe fluence, and their relative polarization.
These measurements were carried out and analyzed with Filippo Glerean [17], a
former Master student in our group. Then we show the results obtained apply-
ing a covariance based detection when randomizing the probe pulses. We find
that the correlation due to the vibrational modes evolves in time, oscillating.
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The strength of this signal is studied in the main modulation configurations
adopted in Chapter 4.

Finally, in Chapter 6, we consider the adaptation of the technique to differ-
ent experimental schemes. We start by showing results on a complex material,
CuGeO3. Then we discuss the application of the covariance based detection to
an experiment conducted at a Free Electron Laser, where noise is intrinsic to
the generation of X-ray pulses, which inherit a stochastic structure. Finally we
present a simulation used to investigate the potential results of a covariance
based detection in a inelastic X-ray scattering process involving electronic lev-
els in CuGeO3.

In Appendix A, we discuss the properties of the correlation coefficient. In
Appendix Bwe provide some additional details on the analytical tools of Chapter
2, to aid in the comprehension of the models. In Appendix C we briefly describe
the calibrations of the pulse shaper.
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2 ■ Inelastic light scattering

The field of nonlinear optics deals with phenomena which occur when light
with very high intensity interacts with a material. It was made possible by
the invention of the laser and currently represents a very active research field,
being pushed forward by frequent technological developments [3]. Light fre-
quency conversion, amplification, time compression [4] are only a few of the
techniques stemming from this field which are now common to the whole con-
densed matter and quantum optics physics world, sometimes changing the way
in which a spectroscopy is performed. It follows that the interaction between
matter and light is described using a number of different analytical approaches,
relying on the proper approximations depending on the context.

A laser produces high intensity beams, able to drive nonlinear processes that
can be exploited to unravel the properties of a material. Of the possible pro-
cesses taking place during a nonlinear interaction, we will focus on inelastic
scattering, when light transmitted or reflected off a sample is frequency con-
verted following an energy exchange with the material. This process is called
Raman scattering [18]. As we will discuss in this Chapter, the scattered ra-
diation contains specific information on the material. In fact, a number of
non-destructive different applications are based on the Raman effect, exploit-
ing its chemical sensitivity to study surfaces, reaction dynamics, photochemical
processes, in a wide range of both soft and condensed matter materials, or to
frequency convert the radiation [19–22].

When using infrared, visible or ultraviolet light as a means to retrieve the
vibrational properties of a solid, the technique is often referred to as vibra-

7



8 CHAPTER 2. INELASTIC LIGHT SCATTERING
tional spectroscopy. We will describe materials whose ionic equilibrium po-
sitions form a microscopically ordered structure. The normal frequencies of
the ionic motion depend on the lattice type as well as on the strength of the
chemical bonds involved, and fall in the Terahertz (THz) range. It is possible
to probe the vibrational modes with visible and near-infrared radiation even
if the ions cannot be driven directly by such electric fields. In fact, the latter
oscillate hundreds or thousands of times per second and can only couple with
the material’s electrons. Nonetheless, the electronic potential is determined
by the ionic structure, so that the electronic response is necessarily carrying
information on the lattice.

We will discuss the process in the framework of ultrafast spectroscopy, a
technique using broadband pulses to excite and investigate matter. When this
is the case, the nonlinear mixing of the components results in an effective field
that can resonantly drive the vibrations. This process is usually referred to as
stimulated Raman scattering (SRS) [23] and will be the focus of the first section
of the chapter. Several variations of this technique have been proposed, which
use combinations of pulses with different duration or frequency content, as
Femtosecond SRS (FSRS) [24], coherent Anti-Stokes Raman scattering (CARS)
[25] or coherent Stokes Raman scattering (CSRS) [26, 27]. Moreover a SRS ex-
periment can be carried out in combination with microscopy [28, 29], multiple
wave mixing techniques [30], even with a single pulse whose properties are
appropriately modified [10, 31].

We must also take into account that the duration of an ultrashort pulse is
orders of magnitude shorter than the period of one vibrational oscillation. This
means that the effective driving field can excite the vibrations coherently, in
other words in phase. To investigate the dynamics of such excitations, a dif-
ferent time delayed pulse is used as a probe. This pump-probe experiment is
called, in this context, Impulsive Stimulated Raman Scattering (ISRS) [32–34]
and will be the subject of the second part of the chapter. We will make use of
classical and quantum formulations, providing different levels of accuracy and
depth of description.
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Classical description

We consider the interaction of an electric field E(t) with the electrons of a solid.
We define their field-induced displacement from the equilibrium position as
r(t) and calculate the established electric dipole moment as �(t) = −e ⋅ r(t), where
e is the electron charge. By adding up all the N electric dipoles per unit volume,
we get the macroscopic polarization of the material

P (t) = N�(t), (2.1)
which we rewrite in terms of the electric field as

P (t) = �0�E(t), (2.2)
where �0 is the dielectric permittivity of vacuum and the susceptibility of the
material � encloses the sample contribution to the optical response. For the
sake of simplicity, we have taken P (t) and E(t) to be scalar.

When the incident field is weak with respect to the field binding the elec-
trons to the nuclei, the force exerted on the electrons can be approximated by
a harmonic perturbation, and the dependence of r(t) on E(t) will be linear. To
stronger fields correspond larger displacements, thus anharmonic effects be-
come more significant and corrections have to be made by including higher
orders of the field [5]. Hence we expand P (t) in powers of �E(t):

P (t) = �0
[

� (1)E(t) + � (2)E2(t) + � (3)E3(t) + ...
]

≡ P (1)(t) + P (2)(t) + P (3)(t) + ... (2.3)
The relationship between P (t) and E(t) defines an interaction as linear or non-
linear. Each order of the expansion describes different effects, whose relative
magnitude is governed by the strength of the product of n incoming fields and
the amplitude of the ntℎ-order susceptibility. The linear term describes, for in-
stance, absorption, while the second term is related to sum and difference fre-
quency generation in materials in which � (2) is non-vanishing due to the lattice
symmetry. The effects that take place during an inelastic light scattering ex-
periment result from the third-order contribution to the nonlinear polarization
P 3(t), whose relationship with the driving field is depicted in Figure 2.1.

Once an expression for P 3(t) is computed, directly observable features can be
predicted. We are searching for a signal originating from a perturbation in the
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Figure 2.1: Third-order nonlinearity between the driving field and the induced po-
larization due to anharmonic contributions. Weak and strong electric fields are indi-
cated by black and grey solid lines, respectively. When intense electric fields are applied,
the polarization profile no longer matches the sinusoidal profile of the incoming field.
Adapted from [5].

electronic polarizability due to the presence of the nuclear motion. Assuming
that the driving frequency is far from any electronic resonances, we can express
the electric dipole moment �(t) in terms of the electronic polarizability �(t) and
then expand the latter in a Taylor series of the nuclear coordinate Q(t):

�(t) = �E(t) = [�0 +
(

��
�Q

)

0
Q(t) + ...]E(t), (2.4)

where the magnitude of the first order correction to the polarizability (��∕�Q)0
can be interpreted as the coupling strength between nuclear and electronic co-
ordinates.

In order to work out a simple expression for the resulting polarization, we
assume that the vibrational motion can be described by a damped harmonic
oscillator with resonance frequency !V . For the sake of simplicity, we shall
consider a single harmonic nuclear mode, but the extension to multiple modes
is straightforward. We also consider only a pair of spectral components inside
the bandwidth of the pulse, which we model as plane waves Ei(t) = Aie−i!it + c.c.
(i = 1, 2). The pulse is such that !1, !2 >> !V and we take !1 > !2. If the fields are
sufficiently intense for nonlinear effects to take place, the electron cloud will
experience oscillations at the fundamental frequencies and also at the difference
frequency Ω = !1−!2. The process will be thus ruled by the following equations
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of motion:

⎧

⎪

⎨

⎪

⎩

d2Q(t)
dt2

+ 2 dQ(t)
dt

+ !VQ(t) =
F (t)
m

F (t) ∝
(

��
�Q

)

0

[

fe−iΩt + c.c.
]

(2.5)

where  is the damping constant, m the reduced mass of the nuclear oscillator,
and f the force amplitude. The analytic solution of Equation 2.5 [5] yields the
time-varying nuclear displacement

Q(t) ∝
(

��
�Q

)

0

fe−iΩt

!2V − Ω
2 − 2iΩ

+ c.c. (2.6)

The nuclear mode is thus driven into resonance by the combined action of the
two incoming fields. The amplitude of the nuclear displacement is directly
proportional to the amplitude of the driving fields and to the coupling strength
between the electronic and the vibrational degrees of freedom. Furthermore,
nuclear oscillation are resonantly enhanced when Ω = !V .

The modulation of the nuclear coordinate affects the optical properties of the
material. Combining equations 2.1, 2.4 and 2.6 we compute the polarization of
the material following the excitation:

P (t) = N[�0 +
(

��
�Q

)

0
Q(t) + ...][E1(t) + E2(t)] =

= PL + P (!1)e−i!1 + P (!2)e−i!2 + P (!2 − Ω)e−i(!2−Ω) + P (!1 + Ω)e−i(!1+Ω)

≡ PL + P (3)

(2.7)

which contains a linear contribution due to the constant polarizability �0, and
a nonlinear contribution due to P (3) (the third-order nonlinear term due to the
driven oscillation and proportional to (��∕�Q)0) [5]. In P (3) we recognize two
frequency components shifted from the incoming ones. They are retained in
the measured signal, which is generated by the nonlinear polarization and can
be calculated using Maxwell’s equations [35]

Es(l, t) =
2�i
n
(

!s
)

!s
c
lP (3)(t) sinc

(Δkl
2

)

ei
Δkl
2 (2.8)

with Δk ≡ |

|

ks − k′s|| the wavevector mismatch between the signal and the incident
field and n

(

!s
) the equilibrium refractive index at the signal frequency.
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When employing broadband pulses, the sidebands (fourth and fifth terms

of Equation 2.7) overlap with the rest of the pulse; moreover the process takes
place for multiple pairs of frequencies within the bandwidth of the pulse. For
this reason it is experimentally challenging to distinguish the signal in trans-
mission experiments with broadband pulses. This experimental configuration
has, nonetheless, the advantage of providing an intrinsic amplification of the
signal. In fact the total detected intensity is the superposition of the signal
field Es(t) with the field within the pulse spectrum at the same frequency of the
signal, E0(t). The total intensity resulting from the sum reads

I(t) =
n
(

!s
)

c
4�

|

|

E0(t) + Es(t)||
2 =

= I0(t) + Is(t) + 2
n
(

!s
)

c
4�
ℜe

[

E⋆
0 (t) ⋅ Es(t)

]

.

(2.9)

Since the signal intensity Is(t) is usually much weaker than the intensity of
the field at the same frequency, I0(t), the second term in Equation 2.9 can be
neglected. I0(t) is estimated as the incident intensity, therefore the meaning-
ful contribution to the signal is the interference term, which is linear in the
polarization. Within several experimental configurations adopted in nonlinear
optics, an external reference field, the local oscillator, is overlapped to the signal
to heterodyne it. In our particular case, the local oscillator coincides with the
driving field. For this reason the signal is said to be self-heterodyned.

2.1 ■ Single pulse interaction

As mentioned above, a n+1 process is commonly described as a two step process.
First, the sample is exposed to n fields, which induce a ntℎ order polarization in
the material. In the second step, the nonlinear polarization acts as a source,
generating the signal, which is revealed by an external local oscillator. In the
present case, the local oscillator is part of the incident field. This peculiarity of
the experiment is conveniently described by developing a theoretical frame-
work in which the n+1 fields involved in a � (n) process, including the signal,
are treated on the same level. We will use a fully quantum approach, in which
both the light field and the vibrational fields are quantized. In particular, the
sample is described in terms of energy levels, rather than susceptibilities, in
order to formulate the nonlinear wave mixing process in terms of transition
amplitudes between the material quantum states. Using such a scheme, we
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establish a clear picture of the underlying microscopic processes [36–38]. Be-
cause of the fact that in most practical cases the sample quantum state is not
accessible, it is studied by means of the density operator ρ̂ and the density
matrix ρ (the matrix representation of ρ̂). This operator allows to associate a
probability to each of the sample possible quantum "pure" states. Through ρ̂,
we calculate the expected value of any operator, and its time evolution. In par-
ticular, to perform the latter task, the time evolution of the density operator
needs to be calculated. This is obtained through the Liouville - Von Neumann
Equation (Equation B.6), that can be recast in the same form of a Schrödinger
equation, therefore treated using the powerful formalism of quantum mechan-
ics. To perform this transformation, we introduce the Liouville space, whose
elements are the the so called superoperators, defined by their action on Hilbert
space operators (Equation B.7). Once this notation is introduced, we can switch
to the interaction picture in the Liouville space. A further description of this
analytical tools is given in Appendix B.

The quantized electric field is completely described by a wavefunction, de-
noted by |ΨF ⟩. The expectation value of the electric field is ⟨ΨF |Ê(r, t)|ΨF ⟩, where

Ê(r, t) = ̂(r, t) + ̂†(r, t) (2.10)
is the optical electric field operator, whose positive-frequency component reads
(in cgs units)

̂(r, t) =
∑

s

(

2�ℏ!s
v

)1∕2

âse
i(ks⋅r−!st). (2.11)

We have indicated by v the quantization volume and by âs (â†s) the boson annihi-
lation (creation) operator of the mode s, which satisfies the boson commutation
relation

[

âs, â
†
s′

]

= �ss′ (2.12)
The action of the bosonic operators on the field is defined as follows:

â†s
|

|

|

ΨsF (n)
⟩

= n1∕2s
|

|

|

ΨsF (n + 1)
⟩

âs
|

|

|

ΨsF (n)
⟩

=
(

ns − 1
)1∕2

|

|

|

ΨsF (n − 1)
⟩

(2.13)

where ns is the photon occupation number of the mode s. We assume the field
to be, initially, in a coherent state |

|

ΨC⟩ = A0e
∑

s â
†
s�s
|0⟩ with A0 = exp

(

−
∑

s
|

|

�s||
2
),

where �s is the eigenvalue of the photon annihilation operator on the coherent
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state (

âs ||ΨC⟩ = �s ||ΨC⟩
), and |0⟩ is the vacuum state. The expectation value of

the positive frequency term of the field is then:

(r, t) =
∑

s

(

2�ℏ!s
Ω

)1∕2

�se
i(ks⋅r−!st) (2.14)

The photon occupation number operator ̂ is defined as
̂ ≡

∑

s
â†s âs (2.15)

Because of the fact that the index s runs over frequency modes within the band-
width, the eigenvalue of ̂ is the total number of photons (for all modes).

The total Hamiltonian of a molecule interacting with an optical electric field,
assuming that the magnetic degrees of freedom are negligible and the coupling
happens only through the electric charges, reads

Ĥ = ĤM + ĤF + Ĥint (2.16)
where ĤM represents the free unperturbed molecule, ĤF the field degrees of
freedom, and Ĥint the interaction between the molecule and the field. The elec-
tric field Hamiltonian is ĤF =

∑

s ℏ!sâ
†
s âs [39].

The interaction term represents the energy required to establish an electric
dipole in the material, in classical terms U (t) = −�⃗ ⋅ E⃗(t). The electric dipole
operator �̂ reads

�̂ = V̂ + V̂ †, (2.17)
with V̂ † (V̂ ) being the creation (annihilation) operator of an excitation, written,
in the dipole approximation1 as

V̂ =
∑

a

∑

b>a
�ab|a⟩⟨b|. (2.18)

Neglecting the fast oscillating terms (Rotating Wave Approximation, RWA), we
finally compute the interaction Hamiltonian

Ĥint(t) = ̂(t)V̂ † + ̂†(t)V̂ . (2.19)
1Dipole approximation: when the optical wavelength is much greater than the sample dimen-

sions, the field can be considered constant across the sample.
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In the quantum approach under consideration, and in the interaction picture, a
self heterodyned signal is obtained as the net change in the number of photons
between the initial (i) and the final (f) states [38]

S ≡ ∫ dt d
dt
(̂ )� = ⟨̂ ⟩f − ⟨̂ ⟩i. (2.20)

In the last Equation, (…)� denotes the expectation value with respect to the to-
tal density matrix of the system (a trace as in Equation B.3), while ⟨…⟩ is an
ensemble average over the non-interacting density matrix. Using perturbation
theory (…)� can be expanded in terms of ⟨…⟩.

We denote by the subscript H operators in the Heisenberg picture. In this
space the density matrix is constant, and the time derivative in Equation 2.20
can be evaluated as

d
dt
(̂ )� ≡

⟨ d
dt

̂H

⟩

=

⟨

∑

s

i
ℏ

[

Ĥint(t), â
†
s,H âs,H

]

⟩

. (2.21)
We have used the Heisenberg equations of motion, which make use of the to-
tal Hamiltonian, but in this case only the commutator with Ĥint survives. By
substituting the expression of the interacting Hamiltonian (Equation 2.19) and
that of the electric field operator (Equation 2.11), we obtain an equation for
commutators between bosonic operators, which can be rewritten as:

S = 2
ℏ
ℑm∫ dt

(

̂†(t)V̂
)

� (2.22)
Equation 2.22 can be further manipulated to obtain a more explicit expression
[37] by considering the perturbative expansion (Equation B.21) of the time de-
pendent density operator (whose evolution is ruled by Equation B.13).

We express the Hamiltonian in the last Equation as a combination of "left"
and "right" Liouville space superoperators [38], which are defined by the action:

ÂLX̂ ≡ ÂX̂

ÂRX̂ ≡ X̂Â
(2.23)

where on the right-hand side the operators Â and X̂ are in the Hilbert space.
The linear combinations "+" or "-" superoperators can be constructed as

Â± ≡ 1
√

2

[

ÂL ± ÂR
]

. (2.24)
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Because of the equivalence Â− ⇔ A, we rewrite the Hamiltonian in Equation B.13
as a "-" operator. Combining the new notation to the evolution of the density
operator, Equation 2.22 becomes:

S = 2
ℏ
ℑm∫ dt

⟨

̂†L(t)V̂L(t) e
− i
ℏ ∫ t−∞ d�

√

2int−(�)
⟩ (2.25)

where int− is the "-" superoperator corresponding to Ĥint (Equation 2.19) and
the time dependence of the dipole superoperator comes from the transforma-
tion to the interaction picture. ̂†L is the negative frequency component of the
electric field operator and V̂L the positive frequency component of the electric
dipole operator, both expressed in the "left"/"right" Liouville representation.

We are interested in the spectrally dispersed signal S(!), representing the
frequency resolved intensity. To calculate S(!), we Fourier transform the negative-
frequency component of the electric field operator and then add a frequency
gating �(! − !̄). By substituting !̄ → ! we get:

S(!) = 2
ℏ
ℑm∫ dtei!t

⟨

̂†L(!)V̂L(t) e
− i
ℏ ∫ t−∞ d�

√

2int−(�)
⟩ (2.26)

By using Equation 2.4, we can write the non-resonant polarization (with re-
spect to electronic absorptions) in terms of the polarizability �(t):

S(!) = 2
ℏ
ℑm∫ dtei!t

⟨

̂†L(!)̂L(t)�L(t) e
− i
ℏ ∫ t−∞ d�

√

2int−(�)
⟩ (2.27)

The last equation (as well as Equation 2.25) is a general expression for a het-
erodyned signal in the fully quantum approach, applies to both spontaneous and
stimulated signals, and contains all orders in the fields. The different terms in
the perturbative expansion represent the various possible optical signals. In the
following, we shall ignore spontaneous emission and consider only stimulated
scattering [38]. We perform a perturbative expansion of Equation 2.27, by con-
sidering the explicit action of the time ordering operator  . Since the 0tℎ-order
contains only one light-matter interaction (�L), it vanishes when traced over
the non-interacting density matrix. We thus expand Equation 2.27 to the first
order as:

S(!) = 2
ℏ
ℑm∫ dtei!t

⟨

̂†L(!)̂L(t)�L(t)
(

− i
ℏ

√

2
)

∫

t

−∞
d�int−(�)

⟩

(2.28)
By recalling the definition of the "-" superoperator (Equation B.7), the first-
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order contribution to the signal splits into two terms:
S(!) = 2

ℏ2
ℜe∫ dtei!t

⟨

̂†L(!)̂L(t)�L(t)
[

∫

t

−∞
d�int,R(�) − ∫

t

−∞
d�int,L(�)

]⟩

≡ Sa(!) − Sb(!)
(2.29)

The first term (Sa) involves interactions from both the left and the right, while
the second one (Sb) only interactions from the left. We can calculate them
using the Closed-Time-Path-Loop (CTPL) representation, a diagrammatic ex-
pansion that is most suitable when the signal is expressed in the frequency
domain [37]. The diagram on the left in Figure 2.2 represents the energy loss
of the electric field while the one on the right represents its energy gain [32].

Figure 2.2: CTPL diagrammatic representation of the stimulated Raman scattering
process. The diagram a) and b) represent the term Sa(!) (Stokes process) and Sb(!)
(Anti-Stokes process) respectively.

We start by calculating Sa:
Sa(!) =

2
ℏ2
ℜe∫ dtei!t

⟨

̂†L(!)̂L(t)�L(t)∫

t

−∞
d�int,R(�)

⟩

= 2
ℏ2
ℜe∫ dtei!t

⟨

̂†L(!)
[

∫
d!1d!2
(2�)2

e−i(!1+!2)t̂L
(

!1
)

�L
(

!2
)

]

×

× ∫

t

−∞
d� ∫

d!3d!4d!5
(2�)3

e−i(−!3+!4+!5)� ̂†R
(

!3
)

̂R
(

!4
)

�R
(

!5
)

⟩

(2.30)

where in the second step we have substituted the expression of the interaction
Hamiltonian in terms of � and Fourier transformed both the electric field op-
erators and the polarizabilities. Since the average ⟨…⟩ is performed over the
unperturbed density matrix, we can now separate the sample degrees of free-
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dom (denoted by �) from the field ones (denoted by �):

Sa(!) =
2
ℏ2
ℜe∬

d!1d!2d!3d!4d!5
(2�)5

⟨

̂†L(!)̂L
(

!1
)

̂†R
(

!3
)

̂R
(

!4
)

⟩

�
×

×
⟨

�L
(

!2
)

�R
(

!5
)⟩

� ∫ dtei(!−!1−!2)t ∫

t

−∞
d�e−i(−!3+!4+!5)�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≡I

(2.31)

The average over � does not include the stochastic degrees of freedom over
which our covariance-based analysis is performed, it refers only to the light
field.

We can now separately solve the integrals over t and �:
I = ∫ dtei(!−!1−!2)t

(

lim
→0

ie−i(−!3+!4+!5)t

−!3 + !4 + !5 − i

)

= i lim
→0∫ dte

−i(−!3+!4+!5+!1+!2−!)t

−!3 + !4 + !5 − i

= i lim
→0

2��
(

!1 + !2 + !4 + !5 − !3 − !
)

−!3 + !4 + !5 − i

(2.32)

We span the polarizability in the energy eigenstates of the material. We con-
sider a two-level system (the vibrational ground state is denoted by |g⟩, while
the excited one by |e⟩) with energy difference ℏΩ. The term involving the po-
larizability is then given by:

⟨

�L
(

!2
)

�R
(

!5
)⟩

� = Tr
(

�
(

!2
)

�̂�
(

!5
))

= Tr
(

�
(

!2
)

|g⟩⟨g|�
(

!5
))

=
⟨

e ||
|

�
(

!2
)

|

|

|

g
⟩⟨

g ||
|

�
(

!5
)

|

|

|

e
⟩

= |

|

|

�ge
|

|

|

2
(2�)2�

(

!2 + Ω
)

�
(

!5 − Ω
)

(2.33)

where in the last step we have expressed the average in the Kramers-Heisenberg
(KH) form (a generalized Fermi golden rule) [37]. We have denoted by �ge the
polarizability transition amplitude between the two states. The generalized
KH form allows to recast heterodyne optical signals in terms of the scattering
amplitudes rather than the standard nonlinear susceptibilities. The equivalence
of the two formulations is discussed and demonstrated in [37]. We prefer to take
the KH approach as it reveals the process from the point of view of the sample.
By solving the Dirac deltas, we get the final expression for Sa:

Sa = lim→0

2 ||
|

�ge
|

|

|

2

ℏ2
ℑm∬

d!1d!2
(2�)2

⋆(!)
(

! + !1 − !2
)

⋆
(

!1
)


(

!2
)

−!1 + !2 + Ω − i
(2.34)
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where we have replaced the electric field operators with their expectation values
(Equation B.2), since we detect intense fields (i.e. fields in a classical regime).
The term Sb can be evaluated similarly, with the term involving the polarization
being

⟨

�L
(

!2
)

�L
(

!5
)⟩

� =
⟨

g ||
|

�
(

!2
)

|

|

|

e
⟩⟨

e ||
|

�
(

!5
)

|

|

|

g
⟩

= |

|

|

�ge
|

|

|

2
(2�)2�

(

!2 − Ω
)

�
(

!5 + Ω
)

(2.35)

since all the operators act from the left in Sb. By recombining the two terms,
we get:

S(!) = lim
→0

2 ||
|

�ge
|

|

|

2

ℏ2
ℑm∬

d!1d!2
(2�)2

⋆(!)
(

! + !1 − !2
)

⋆
(

!1
)


(

!2
)

×

×
[

1
!2 − !1 + Ω − i

− 1
!2 − !1 − Ω − i

]

(2.36)

We apply the Sokhotski-Plemelj theorem
lim
→0

1
! − i

=  1
!
+ i��(!) (2.37)

to explicitly calculate the terms within the square brackets. We introduced
the symbol  for the principal value. Equation 2.36 should now be split into
four distinct integrals, two involving the principal values and two involving the
Dirac deltas. However, since ⋆(!)(! + !1 − !2)⋆(!1)(!2) is smooth and even
around the poles of the integrand function, the principal values vanish when
the integration over !1,2 is performed. Therefore, by considering the action of
the Dirac deltas only, we get the final expression of the signal:

S(!) =
|

|

|

�ge
|

|

|

2

ℏ2
ℜe∫

d!′

2�
×

×
[

⋆(!)(! + Ω)⋆
(

!′
)


(

!′ − Ω
)

− ⋆(!)(! − Ω)⋆
(

!′
)


(

!′ + Ω
)]

(2.38)

The equation above should not be confused with the total frequency resolved
intensity we measure in the experiment. Recalling that we have worked out
S(!) starting from Equation 2.20, S(!) does not probe any background: the sig-
nal in Equation 2.38 accounts only for intensity fluctuations from the average.

We have not yet discussed the temperature dependence of the system. If
the sample has a finite temperature, two more processes must be considered,
since the system can be initially either in the ground state or in the vibrationally
excited one. This is the physical meaning behind the Stokes and anti-Stokes
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processes: when the sample is in the vibrational ground state, it can only take
energy from the pulses; conversely when the excited state is populated, energy
can be given to the pulses. If we assume the system to be at thermal equilib-
rium of inverse temperature �, the temperature dependence can be included by
considering the thermal population given by the Boltzmann factor:

⎧

⎪

⎨

⎪

⎩

pg =
1

1+e−�ℏΩ for the ground state
pe =

1
1+e+�ℏΩ for the first excited state (2.39)

The Anti-Stokes contribution is identical to 2.38 with a minus sign, as the
substitution Ω → −Ω must be made. The overall signal, including the thermal
factor pge(�) = pg − pe, reads:

S(!; Γ) =
|

|

|

�ge
|

|

|

2
pge(�)

ℏ2
ℜe∫

d!′

2�
×

×
[

⋆(!)(! + Ω)⋆
(

!′
)


(

!′ − Ω
)

− ⋆(!)(! − Ω)⋆
(

!′
)


(

!′ + Ω
)]

(2.40)
In the above equation we have introduced Γ, which includes all the field param-
eters that can be tuned in the experiment. Note that this equation is consistent
with the fact that, if the temperature is infinite, the Stokes and Anti-Stokes
processes contribute equally and the variation of the number of photons is zero.

2.1.1 ■ Intensity measurement of randomized pulses

We start from the expression for the frequency dependent signal in Equation
2.40 that is expected when the SRS process takes plase. This expression has
general validity for a single pulse experiment with classical fields. We will now
calculate the signal when the electric fields have a random spectral phase, a
crucial ingredient in our approach.

We consider the a slow transition towards the stochastic state, by assuming
the random spectral phase to have a Gaussian correlation function:

⟨

'
(

!1
)

'
(

!2
)⟩

∝ e−
(

!1−!2
Δcorr

)2 (2.41)
where �(!i) is the spectral phase at frequency !i and ⟨…⟩ denotes the average
over repeated measurements. The correlation length of the phase fluctuations,
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Δcorr, can be experimentally controlled. This quantity sets an inferior limit for
the frequency correlation that can be revealed, thus represents the spectral res-
olution of the method. In the following we will consider Ω≫ Δcorr, so that '(!i)
and '(!i ± Ω) can be safely considered as statistically independent variables.
This treatment is not limited to Gaussian correlation functions only: it could
be generalized to any kind of decaying correlation functions whose scale is de-
fined by a characteristic length.

Under these conditions, we can rewrite the signal by explicitly splitting each
factor  into its envelope E(!) and its spectral phase '(!). By gathering the phase
factors of each four-field product and taking the real part of the formula, we
get:
S(!; Γ) = |

�ge|
2pge(�)
ℏ2

∫ d!′

2�
×

×
[

E⋆(!)E(! + Ω)E⋆ (!′
)

E
(

!′ − Ω
)

cos() − E⋆(!)E(! − Ω)E⋆ (!′
)

E
(

!′ + Ω
)

cos(�)
]

(2.42)
where we have defined the following phases:

⎧

⎪

⎨

⎪

⎩

 = '(! + Ω) − '(!) + '
(

!′ − Ω
)

− '
(

!′
)

� = '(! − Ω) − '(!) + '
(

!′ + Ω
)

− '
(

!′
)

(2.43)

We can now compute the average signal, which we measure by taking the
mean over the subsequent repetitions of the transmission experiment, each
pulse having with a unique random spectral phase. Since we have assumed
that Ω ≫ Δcorr, the average values of cos() and cos(�) vanish (and so does the
average value of the signal) unless  and � are both zero, in formulae unless:

⎧

⎪

⎨

⎪

⎩

!′ = ! + Ω for the first sum
!′ = ! − Ω for the second sum (2.44)

We can thus write the average transmitted signal as:

⟨S(!; Γ)⟩ =
|

|

|

�ge
|

|

|

2
pge(�)

2�ℏ2
{

|E(!)E(! + Ω)|2 − |E(!)E(! − Ω)|2
} (2.45)

where the average is calculated over the stochastic degrees of freedom, included
in the distribution Γ. Equation 2.45 correctly describes the spectral (red or blue)
shift due to the inelastic scattering [32]. As we mentioned in the introduction,
when the pulse spectrum is broad, as is the case for ultrashort pulses, similar
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shifts involve all the spectral components within the pulse bandwidth, so that
it is not possible in general to retrieve the vibrational excitation spectrum.

We now calculate explicitly the frequency covariance on the transmitted
field, with respect to the stochastic degrees of freedom, and get a sense of what
to expect from the experiment. We start by the average of a product of signals:

⟨S
(

!i; Γ
)

S
(

!j ; Γ
)

⟩ = |
�ge|

4p2ge(�)
ℏ4

∫ d!′

2�
∫ d!′′

2�

⟨[E∗(!i)E(!i + Ω)E∗(!′)E(!′ − Ω) cos  ′i − E
⋆(!i)E(!i − Ω)E∗(!′)E(!′ + Ω) cos �′i ]

[E∗(!j)E(!j + Ω)E∗(!′′)E(!′′ − Ω) cos  ′′j − E
∗(!j)E(!j − Ω)E∗(!′′)E(!′′ + Ω) cos �′′j ]⟩

(2.46)

where we have used the expression of the signal in Equation 2.42. We have
introduced the symbols sr and �sr , where the subscript r = (i, j) refers to the pair
of frequency factors !i,j on which the average is calculated, and the superscript
s = (′, ′′) refers to the corresponding integration variables. The product within
the angle brackets gives rise to four distinct terms

a) ⟨

cos  ′i cos 
′′
j

⟩

= 1
2

⟨

cos
(

 ′i + 
′′
j

)

+ cos
(

 ′i − 
′′
j

)⟩

b) ⟨

cos �′i cos �
′′
j

⟩

= 1
2

⟨

cos
(

�′i + �
′′
j

)

+ cos
(

�′i − �
′′
j

)⟩

c) ⟨

cos  ′i cos �
′′
j

⟩

= 1
2

⟨

cos
(

 ′i + �
′′
j

)

+ cos
(

 ′i − �
′′
j

)⟩

d) ⟨

cos �′i cos 
′′
j

⟩

= 1
2

⟨

cos
(

�′i + 
′′
j

)

+ cos
(

�′i − 
′′
j

)⟩

(2.47)

where we have used the Werner formula for the product of cosines. Equation
2.46 thus splits into eight terms. Each term in Equation 2.47 yields delta func-
tions upon averaging: we focus on those that can be satisfied simultaneously
by multiple terms. Respectively, equalities in a) and b) and in c) and d) give
rise to the conditions:

i) ⟨

cos
(

 ′i − 
′′
j

)⟩

= �
(

!′′ − !′
)

�
(

!j − !i
)

ii) ⟨

cos
(

 ′i + �
′′
j

)⟩

= �
(

!′ − !′′ − Ω
)

�
(

!i − !j + Ω
)

(2.48)

The terms which contribute with contractions of type i) are trivial, since repre-
sent an autocorrelation. Instead, contractions of type ii) represent a correlation
between pairs of frequencies separated by Ω. We explicitly calculate the signal
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coming from the contributions of kind ii):

⟨

S
(

!i; Γ
)

S
(

!j ; Γ
)⟩

 ′i+�′′
=

|

|

|

�ge
|

|

|

4
p2ge(�)

ℏ4 ∫
d!′

2� ∫
d!′′

2�
�
(

!′ − !′′ − Ω
)

�
(

!i − !j + Ω
)

E∗
(

!i
)

E
(

!i + Ω
)

E∗
(

!′
)

E
(

!′ − Ω
)

E∗
(

!j
)

E
(

!j − Ω
)

E∗
(

!′′
)

E
(

!′′ + Ω
)

=
|

|

|

�ge
|

|

|

4
p2ge(�)

ℏ4
|

|

|

E
(

!i
)

E
(

!i + Ω
)

|

|

|

2

∫
d!′

(2�)2
|

|

|

E
(

!′
)

E
(

!′ − Ω
)

|

|

|

2
�
(

!i − !j + Ω
)

(2.49)
We remind that two frequencies whose distance is smaller or comparable to
Δcorr are statistically dependent, therefore the signal around the "lines" !i = !j
and !i = !j ± Ω is blurred (in other words the deltas above should be consid-
ered as having a finite width)2. In any case, the key concept resulting from the
discussion above is that the distances between the components giving rise to
non vanishing features in the correlation match the vibrational frequencies
of the sample. Therefore, by simply scaling one frequency axis to the central
value of the probe spectrum, one can directly map the correlation coefficient to
the sample vibrational spectrum.

It is important to characterize the frequency correlations of the reference
pulses, those that do not interact with the sample. The comparison allows to
discriminate the sample induced signals. We introduce here a phenomenolog-
ical model that describes the randomized pulses and allows to comprehend the
measurements we will show in the following chapters. It is of utmost impor-
tance to take into account, in the model, the role of the intensity detection to
reproduce the experimental results. Since we use detectors with a finite fre-
quency resolution, we consider a frequency gating G(! − !), extending over a
spectral region centred around !. The spectral extension of the gating is set by
the size of the photodiode arrays pixels. We write the intensity measured by
the pixel centred at ! by considering the superposition of the fields within this
region, as:

I(!) = ℜe∫ d!′d!′′G
(

!′ − !
)

G
(

!′′ − !
)

E⋆ (!′
)

E
(

!′′
)

e−i['(!′)−'(!′′)] (2.50)
2The ± sign has been considered here since the cross-correlation signal is symmetric under

the exchange i↔ j. This symmetry can be also retrieved by evaluating the term �′i +
′′
j in Equation

2.47, which yields � (!′ − !′′ − Ω) � (!i − !j + Ω).
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where ' (

!′
) and ' (

!′′
) are the randomized spectral phases, and the integration

variables !′ and !′′ span the spectral size of the pixel. We assume that the field
amplitudes and the spectral phases vary slowly across the gate. This assump-
tion corresponds to considering the correlation length of the phase fluctuations
(Δcorr) larger than the pixel size, so that it is expected that the phase does not
change within a single pixel. We consider only the value of the fields at the
central frequency ! and consider the phase at the same point, Φ(!), as the dif-
ference between the phases of the superposed components. To evaluate it we
expand the phase to its first order around each point and get:

'
(

!′′
)

− '
(

!′
)

≈
(

!′′ − !′
) )'
)!

|

|

|

|!
≡ Φ(!) (2.51)

The intensity measured by the pixel centred at ! is:
I(!) = ℜe

[

E⋆(!)E(!)eiΦ(!)
]

= |E(!)|2 cos[Φ(!)] (2.52)
whose positivity is guaranteed by the fact that we assume Φ(!) to be small.
Equation 2.52 clearly highlights that phase fluctuations are mapped into am-
plitude ones, as a consequence of the detection procedure.

We can now write the average of a product of intensities measured at two
distinct pixels centred at !1 and !2 as:

⟨

I
(

!1
)

I
(

!2
)⟩

= I
(

!1
)

I
(

!2
) ⟨

cos
[

Φ
(

!1
)]

cos
[

Φ
(

!2
)]⟩ (2.53)

We recall that we have assumed a Gaussian correlation between distinct spectral
phases (Equation 2.41), which results in a non-zero correlation also between
their derivatives Φ(!1) and Φ(!2). We thus expect the cross average to have a
different behaviour when !1 and !2 lie within the correlation length and when
they don’t:

⟨

I
(

!1
)

I
(

!2
)⟩

−
⟨

I
(

!1
)⟩ ⟨

I
(

!2
)⟩

=

⎧

⎪

⎨

⎪

⎩

(1 − �212) if |

|

!1 − !2|| ≲ Δcorr

0 if |

|

!1 − !2||≫ Δcorr
(2.54)

In the last equation, to be consistent with the treatment of the sample beam, we
have calculated the average of a product after subtracting to each intensity its
average, and defined �212 ≡

⟨

cos
[

Φ
(

!1
)]

cos
[

Φ
(

!2
)]⟩

−
⟨

cos
[

Φ
(

!1
)]⟩ ⟨

cos
[

Φ
(

!2
)]⟩.

We recall that points in the spectral phase whose distance is greater than the
correlation length, are statistically independent, thus ⟨

cos
[

Φ
(

!1
)]

cos
[

Φ
(

!2
)]⟩
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can be factorized as ⟨

cos
[

Φ
(

!1
)]

⟩⟨cos
[

Φ
(

!2
)]⟩, which vanishes.

Equation 2.54 is the key to interpret the correlation coefficient from the ref-
erence light pulses. Note that, even if we have discussed here only the role of
the detectors, the results we obtained are valid for any instruments introduc-
ing discretization effects. The interference effect taking place on the photodi-
ode arrays reveals the randomization applied onto the spectral phase, which
would be concealed measuring the intensity with an infinitely frequency re-
solving detector or within a non frequency resolved scheme. Each measured
reference intensity spectrum, as can be inferred from Equation 2.52, is charac-
terized by noisy spikes, whose amplitude, average width and position is directly
determined by the unique random spectral phase introduced. The correlation
coefficient calculated on such spectra is, as a consequence, able to reveal the
actual statistical relationship between the spectral components. The result of
a simulation is shown in panel a) of Figure 2.3, where we employed a set of
phase randomized intensity spectra to calculate the coefficient �. The map is
zero for all of the pairs of components outside the diagonal, whose width is
directly proportional to the correlation length.

A different approach was taken to calculate the covariance of two frequency
dependent intensities when the spectrum is measured after the sample. Within
a fully quantum model we were able to directly obtain an expression for the self-
heterodyned scattering signal. The field spectral phase is explicitly accounted
for in the formula, therefore the calculation for the average of a product of two
points within the spectrum, Equation 2.49, necessarily is affected by the phase
distribution, meaning that fields which are farther than Δcorr give a vanish-
ing signal, unless they are coupled by the scattering process. This coupling is
revealed by the presence of sidebands, offset from the diagonal, in the corre-
lation coefficient. This can be seen in the plot of panel b) of Figure 2.3, where
we report � calculated on a set of simulated randomized pulses. The particular
relationship between pairs of coupled spectral components at the phonon fre-
quency distance holds along the whole spectrum, as a consequence we expect
the correlation features to show up as lines (not, e.g. dots).

The spectra transmitted by the sample are processed by the discrete detector
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Figure 2.3: Correlation coefficient � calculated on a) reference and b) transmitted
pulses using Equations 2.45, 2.54 and 2.49. We note the presence of the diagonal in
both plots and of offset sidebands in b) (the value of the phonon shift is arbitrary in the
calculation for the Figure).

as well, therefore the measurement reveals a noisy intensity profile, as we will
show in Chapter 4. This effect allows, similarly to what happens to the reference
correlation coefficient, to remove from the map the global pulse fluctuations.
Nonetheless, the background of � could still be affected by the global statis-
tical properties of the pulses, and retain a large scale structure. In Figure 2.3
we have an example of this effect: the spectral shift introduced by the inelas-
tic scattering process determines "blocks" of positive and negative correlation
(the reason for this behaviour is explained in Appendix A). This results in a
relatively small offset in the correlation value. At a closer inspection of Figure
2.3, we find that the sign of the correlation signal is in agreement with the sign
of the global correlation. This hints to the possible interpretation of the sign of
the sidebands as an information on the nature and frequency directionality of
the underlying scattering process.

We have seen how the information on vibrational levels of a sample, in-
teracting with noisy light in an inelastic scattering process, is mapped onto
characteristic sidebands in the frequency dependent correlation coefficient. In
the following we will focus, instead, on the description of the time evolution
of the sample properties and of the light quantum state after the interaction,
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with the aim, in the near future, to merge the description of a time resolved
experiment with that of a noise based acquisition.

2.2 ■ Double pulse interaction

We start this section going back to the intuitive classical picture of the begin-
ning of the Chapter, showing how, properly choosing the boundary conditions,
the system of Equation 2.5 can describe both pump and probe in a double pulse
experiment. As sketched in Figure 2.4, a first, very intense pump pulse finds
the sample at equilibrium and excites coherent vibrations. A weaker pulse, the
probe, variably delayed in time, finds the crystal out of equilibrium and further
interacts with it.

Figure 2.4: Scheme of the time ordering of the interactions of the pump and probe
light pulses with the crystal.

The ultrashort light pulses, propagating along the z direction, can be de-
scribed by the superposition E(t′) =

∑

! E(!)e−i!t
′ + c.c. denoting the time and

space coordinates as t′ = t − n(!)
c
z. Introducing a tensor notation (with indices

i, j, k) to denote the vector components, we write the induced polarization as
Pi = �ijEj , (2.55)

where �ij is the polarizability tensor, which we use to calculate the energy re-
quired to establish the polarization in the dipole approximation

V = −P ⋅ E = −�ijEiEj (2.56)
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The polarizability tensor can be expanded up to the first order as a function of
the vibrational amplitude Qk around the equilibrium polarizability �0ij (as done
in Equation 2.4):

�ij(Qk) = �0ij +
[(

��
�Qk

)

|Qk=0

]

ijk
Qk (2.57)

As we did in Section 2, we consider two generic components !1,2 in the band-
width of the pulse. The electric fields exert a force on the charges that can be
derived as
Fk(t′) = −

dV
dQk =

(

��
�Qk

)

ijk
EiEj =

=
(

��
�Qk

)

ijk

(

∑

!1

Ei(!1)e−i!1t
′ + c.c.

)(

∑

!2

Ej(!2)e−i!2t
′ + c.c.

) (2.58)

We make two simplifying assumptions: we neglect the damping and only con-
sider one normal vibrational mode with frequency Ω.

We know that the nonlinear coupling in the material determines a mixing of
the components within the pulse bandwidth. When the condition !1 − !2 = ±Ω

is fulfilled, the driving is resonant with the vibration and is most effective.
Considering such pairs of frequency and the field real parts we get

Fk(t′) =
(

��
�Qk

)

ijk

∑

!

(

Ei(!)Ej(! − Ω)e−iΩt′ + Ei(!)Ej(! + Ω)e+iΩt′ + c.c.
)

=

=
(

��
�Qk

)

ijk

(

∑

!
Ei(!)

(

Ej(! − Ω) + Ej(! + Ω)
)

)

(

e+iΩt
′ + e−iΩt′

)

=

= 2
(

��
�Qk

)

ijk

(

∑

!
Ei(!)

(

Ej(! − Ω) + Ej(! + Ω)
)

)

cos
(

Ωt′
)

=

≡ fk cos
(

Ωt′
)

(2.59)

Thus the force is a sinusoidal function of time with frequency Ω and amplitude
fk = 2

(

��
�Qk

)

ijk

(

∑

!
Ei(!)

(

Ej(! − Ω) + Ej(! + Ω)
)

)

(2.60)
The differential equation describing the dynamics of the vibrational amplitude
Q(t′), approximated by the solution of a harmonic oscillator, forced by the pulse,
is thus:

d2Q(t′)
dt2

+ Ω2
dQ(t′)
dt

= F(t′)

= fk cos
(

Ωt′
)

(2.61)

where in the last line we have used Equation 2.60. A general solution is derived
in Appendix B (Equation B.32) considering that the forcing takes place for a
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very short time �, representing the pulse duration.

We calculate the solution for the interaction with the pump

Qk(t′) =
�f pumpk

2Ω
sin(Ωt′) (2.62)

being f pumpk Equation 2.60 calculated on the pump field, with the following initial
conditions for the vibrational amplitude

⎧

⎪

⎨

⎪

⎩

Qk(t′ = 0) = 0
dQk
dt

|t′=0 = max (2.63)

As the pump-induced coherent oscillation, Equation 2.62, has a definite
phase, for a given pump-probe time delay we expect a specific effect of the
interaction on the probe spectrum and the vibrational amplitude. This can be
anticipated with an intuitive argument: the energy exchange between the light
and the sample depends on the scalar product between the forcing electric field
and the vibration momentum. If the scalar product is zero, when the oscillator
has maximum amplitude, there is no energy exchange. We will see in the next
section that there are other effects taking place during the interaction at max-
imum amplitude, which are due to the system being out of equilibrium.

To calculate explicitly the dynamical probe intensity, we drop the tensor
indices. We start from the Maxwell equations for a neutral system [35]

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∇ ⋅ E = 0

∇ ⋅ B = 0

∇ × E = − )B
)t

∇ × B = �0J +
1
c2
)E
)t

(2.64)

with E, B and J the electric and magnetic fields of the probe pulse and the
current in the sample respectively. We apply the rotor to the third equation,
insert the fourth and get

∇ × ∇ × E = ∇(∇ ⋅ E) − ∇2E = − )
)t
(∇ × B) =

= −�0
)J
)t
− 1
c2
)2E
)t2

(2.65)
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The current is function of the polarization field P, thus we use the relation
J = )P

)t
, together with Equations 2.55 and 2.57 to write

∇2E = �0
)2P
)t2

+ 1
c2
)2E
)t2

=

= �0
)2�E
)t2

+ 1
c2
)2E
)t2

= �0�0
)2E
)t2

+ 1
c2
)2E
)t2

+ �0

(

��
�Q

)

Q=0

)2(QE)
)t2

(2.66)

We make use of the relation between polarizability and refractive index
1
c2
+ �0�0 =

1
c2

(

1 +
�0
�0

)

1
c2
(1 + �) = n2

c2
(2.67)

and get
∇2E(t′) − n2

c2
)2E(t′)
)t2

= �0

(

��
�Q

)

Q=0

)2Q(t′ + Δt)E(t′)
)t2

(2.68)
which is a corrected wave equation because of the appearance, on the right hand
side, of a nonlinear term. We have written explicitly the dependence on the time
variable t′ = t− n

c
z and added the quantity Δt representing the pump-probe delay.

2.2.1 ■ Time dependent effects on the refractive index

We describe in this section the effects of the coherent distortion on the refractive
index of the material. We start from the expansion of the polarizability tensor,
Equation 2.57, as a function of the vibrational amplitude. We consider the time
dependent vibrational amplitude after the interaction with the pump, Equation
2.62, and by simple substitution we obtain (in scalar notation)

�(Q) = �0 +
(

��
�Q

)

|Q=0
�f pump

2Ω
sin(Ωt′) (2.69)

We observe that the polarizability is modulated at the phonon frequency. Know-
ing the relationship between equilibrium polarizability �0 and dielectric suscep-
tibility �

�0 = �0� (2.70)
and that � determines the index of refraction [35]

n =
√

1 + � (2.71)
we expect the pump to affect the optical response of the material to the propa-
gation of a field. To display this effect we explicit the right hand side of Equa-
tion 2.68 to collect the second order time derivatives of the electric field and
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recognize the coefficient

ñ2(Δt) = n2 + c2�0

(

��
�Q

)

Q=0
Q(Δt) (2.72)

representing a time- (and implicitly frequency-) dependent refractive index,
whose intensity varies with the phonon frequency according to the amplitude
Q. We assumed a reference frame in which the pump excitation starts at t′ = 0.

In case of normal incidence of the probe pulse on the sample we can use the
Fresnel equation [35] to write the transmission coefficient T(Δt, !) of the excited
material, in the frequency domain, as

T(Δt, !) = 2
1 + ñ(Δt)

(2.73)
Given that ñ − n << n we expand the transmittivity around the equilibrium re-
fractive index

T(Δt, !) = 2
1 + n

[

1 −
c2�0

2n(1 + n)

(

��
�Q

)

Q=0
Q(Δt)

]

(2.74)
which is modulated in phase with the vibrational amplitude. Using this coeffi-
cient and Equation 2.60, we write the transmitted intensity as
I(!,Δt) = I(!, 0)−|EI (!)|2

(

∑

!
EPU (!)

(

EPU (! − Ω) + EPU (! + Ω)
)

)

sin(ΩΔt) (2.75)
where we have collected all the constants in a factor  and indicated with EPU

the pump field and EI the incident probe field. We notice that the transmitted
intensity depends linearly on the intensity of both pump and probe.

It is convenient to define a relative differential transmitted intensity
I(!,Δt) − I(!)Δt<0

I(!)Δt<0
= ΔI

I
(2.76)

which allows to visualize directly the induced changes. In Figure 2.5 we plot
ΔI∕I, calculated using Equation 2.75, as a function of ! and Δt, showing the
periodic increase and decrease of the transmittivity.

As anticipated at the end of the last paragraph, this transmittivity modu-
lation is particularly apparent in the nodes of the spectral shift of the probe,
which happen when the vibrational momentum is zero, in other words at all
the delays between the red-shifts and blue-shift of the probe spectrum. The
inelastic scattering of the probe will be studied in the next paragraph.
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Figure 2.5: Relative differential transmitted intensityΔI∕I calculated using Equation
2.75, showing the effect of a nonlinear refractive index modulation, induced by the co-
herent pumping of a vibrationalmode, on the spectrumof the transmitted probe pulses.

2.2.2 ■ Time dependent inelastic scattering of probe pulses

The starting point is Equation 2.68, which will be explicitly solved. Considering
the variable t′ = t − n

c
z, the following relations for a generic function f (t′) hold

⎧

⎪

⎨

⎪

⎩

)f (t′)
)t

= )f (t′)
)t′

)2f (t′)
)z2

= − n2

c2
)2f (t′)
)t2

= − n
c
)2f (t′)
)z)t′

(2.77)

and allow to rewrite Equation 2.68 as
− 2n

c
)2E(t′)
)z)t′

= �0

(

��
�Q

)

Q=0

)2Q(t′ + Δt)E(t′)
)t′2

(2.78)
We integrate such equation in space considering a sample with thickness z, with
initial condition E(t′, z = 0) = EI (t′)

− 2n
c

(

)E(t′, z)
)t′

−
)EI (t′)
)t′

)

= �0

(

��
�Q

)

Q=0

)2Q(t′ + Δt)E(t′)
)t2

(2.79)
and then integrate over t′, which depends also on the space coordinate and
accounts for the propagation time of the field through the sample. We set the
initial condition E(t′ = 0) = EI (t′) and use, on the right hand side, the fact that
the variation of the polarizability is small, therefore choosing to set it to its
initial value

E(t′) − EI (t′) = −
�0cz
2n

(

��
�Q

)

Q=0

)2Q(t′ + Δt)E(t′)
)t2

(2.80)
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We look for a solution calculating the right hand side of the equation in the
frequency domain, using the Fourier expansion

E(t) = ∫ d!E(!)ei!t (2.81)
To explicit its time dependence, we rewrite the vibrational amplitude in the
form

Q(t′ + Δt) = Q0 sin(Ω(t′ + Δt)) (2.82)
Using Equations 2.81 and 2.82, we rewrite the right hand side of Equation 2.80
as
)Q

(

t′ + Δt
)

EI
(

t′
)

)t′
=

= Q0 ∫ d!EI (!)
(

sin
(

Ω
(

t′ + Δt
)) )ei!t′

)t′
+
) sin

(

Ω
(

t′ + Δt
))

)t′
ei!t

′

)

=

= Q0 ∫ d!EI (!)
(

i! sin
(

Ω
(

t′ + Δt
))

+ Ωcos(Ω(t′ + Δt))ei!t′
)

=

=
Q0
2 ∫ d!EI (!)

(

(! + Ω)ei(!+Ω)t′eiΩΔt − (! − Ω)ei(!−Ω)t′e−iΩΔt
)

(2.83)
We notice the dependence on the phonon frequency Ω, thus we change the
integration variable from ! to ! ± Ω, getting

)Q
(

t′ + Δt
)

EI
(

t′
)

)t′
=
Q0
2 ∫ d!!

(

EI (! − Ω)eiΩΔt − EI (! + Ω)e−iΩΔt
)

ei!t
′ (2.84)

Fourier expanding the left hand side of 2.80 we get an explicit formula for the
spectrum of the transmitted field:

E(!)(Δt) = EI (!) +
cz�0
4n

(

��
�Q

)

0
Q0!

(

EI (! + Ω)e−iΩΔt − EI (! − Ω)eiΩΔt
) (2.85)

where we notice the dependence of the ! component on the components at
! ± Ω, due to the coupling introduced by the inelastic scattering.

Defining the coupling constant kΩ = cz�0
2ñ

(

��
�Q

)

Q=0
Q0!, we finally calculate the

transmitted intensity as a function of frequency and pump probe time delay,
that reads:

I(!,Δt) = II (!) + kΩEI (!)
[

EI (! + Ω) − EI (! − Ω)
]

cos(ΩΔt) (2.86)
We extract from kΩ the pump field EPU (redefining the gathered factors as k′Ω)
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and explicit the dependence on all the fields

I(!,Δt) =

= II (!) + k′Ω

(

∑

!
EPU (!)

(

EPU (! − Ω) + EPU (! + Ω)
)

)

⋅

⋅
[

EI (!)
(

EI (! + Ω) − EI (! − Ω)
)]

cos(ΩΔt)

(2.87)

Figure 2.6: Relative differential transmitted intensityΔI∕I calculated using Equation
2.87, showing the spectrum of the transmitted pulses undergoing inelastic scattering in
a medium where a coherent vibration was excited by a pump.

In Figure 2.6 we plot ΔI∕I calculated with appropriate parameters using
Equation 2.87 to display the probe inelastic scattering. At all the time delays
when the cosine is non vanishing, we observe a shift of the spectrum towards
the low or high frequency side. Being these points distant a vibrational period,
the single mode signal oscillates at the phonon frequency Ω as a function of
Δt, but its absolute phase changes depending on the position of ! in the spec-
trum. When the cosine is zero, no shift in the spectrum is present, and the
effect due to the nonlinear modulation in the refractive index emerges, as it is
�∕2 shifted in time with respect to the inelastic scattering induced dynamics
(compare Equation 2.75 to Equation 2.87). In other words we can say that

ΔI(Δt)∕I ∝ Q(Δt) refractive index nonlinearity
ΔI(Δt)∕I ∝ P (Δt) inelastic scattering (2.88)
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At the foundations of the discussion we just concluded lie considerations on
the mechanics of the ions, regarding them as springs, generating during their
motion an instantaneous electric field with the electrons which couples to the
electric field of the pulses. The predictions of this phenomenological model
will be validated by the results of the quantum mechanical reformulation of
the problem, presented in the next paragraph, starting from operators for both
light and matter, whose expected values for the observables represent measur-
able quantities.

We will now set the basis for the quantum description of the pump probe
experiment by developing a common formalism for light and matter at all the
stages of the interaction. In the following the electromagnetic fields of the light
pulses and the elastic field of the material will be expressed in terms of photonic
and phononic creation (and annihilation) operators â† (â) and b̂† (b̂), that satisfy
the bosonic commutation relations (Equation 2.12) in their quantized form that
is, respectively [39, 40]

Ê�(t, z) = i
∑

!

√

!
2v�0

(

â!,�e
−i(!t−k⃗⋅r⃗) − â†!,�e

i(!t−k⃗⋅r⃗)
) (2.89)

Q̂(t, r⃗) = 1
√

mΩvS

(

b̂Ω,u⃗e
−i(Ωt−u⃗⋅r⃗) + b̂†

Ω,u⃗
ei(Ωt−u⃗⋅r⃗)

) (2.90)
where we introduced the indices of two orthogonal linear polarizations � and
�′ composing the electric field, v is the quantization volume, vS is the sample
volume, Ω is the phonon frequency and m the ionic effective mass.

We use these equations to redefine the energy required to establish the po-
larization in the medium when an ultrashort pulse is interacting with it, Equa-
tion 2.56. The quantity we get is the interaction Hamiltonian of the system

̂INT = ∫vS
dr⃗

∑

�,�′

[

�0��′ +
(

��
�Q

)

|

|

|

|

|Q=0 ��′

1
√

mΩvS

(

b̂Ω,u⃗e
−i(Ωt−u⃗⋅r⃗) + h.c. )

]

×

×
∑

!,!′

√

!!′

2v�0

(

â!,�e
−i(!t−k⃗⋅r⃗) − h.c. )

(

â!′,�′e
−i
(

!′t−k⃗′⋅r⃗
)

− h.c.
)

(2.91)

Of the many terms which arise from the products, we focus on the two terms
which describe the nonlinear refractive index modulation and the inelastic scat-
tering. The first reads

ĤREF = −
vS
2v

∑

��′,j
!j

(

� (0)��′ + �
(1)
��′ q̂

)(

â†�j â�′j + â�j â
†
�′j

) (2.92)
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with v the quantization volume. This term describes the redistribution of pho-
tons between two polarizations � and �′ which is mediated by the static sus-
ceptibility � (0)��′ and the time dependent susceptibility � (1)��′ that is ruled by the
instantaneous atomic position. We thus split Equation 2.92 in two terms: an
equilibrium one

H (0)
REF = −

vS
2v

∑

��′,j
!j�

(0)
��′

(

â†�j â�′j + â�j â
†
�j

) (2.93)
and a dynamical one

H (1)
REF = −

vS
2v
Q̂

∑

��′,j
!j�

(1)
��′

(

a†�j â�′j + â�j â
†
�j

) (2.94)

� (0) is the equilibrium susceptibility that describes static effects like polarization
rotation and birefringence. We consider the case of an isotropic sample with an
hermitian susceptibility of the form

� (0) =

⎛

⎜

⎜

⎜

⎝

u |w|ei�

|w|e−i� u

⎞

⎟

⎟

⎟

⎠

(2.95)

where |w| and � quantify respectively the polarization rotation and ellipticity
induced in a linearly polarized input beam. The phonon related nonlinear sus-
ceptibility � (1)��′ is assumed to be real, such that � (1)��′ = � (1)�′�, and small in absolute
value, representing a perturbative modification to the equilibrium tensor. We
anticipate that in the experimental realization the equilibrium polarization ro-
tation is accounted for by using an analyzer parallel or orthogonal to the output
polarization. In the model, we account for this with an additional term in the
Hamiltonian.

The second term contributing to the Hamiltonian is

ĤILS = −

√

vS

2v
√

2mΩ

∑

��′,j
!j�

(1)
��′

[

(

â†�j â�′j+Ω
�

)

b̂†Ω +
(

â�j â
†
�′j+Ω

�

)

b̂Ω

]

(2.96)

Photons with energy !j and polarization � are destroyed by â�j and photons of
energy !j ±Ω and polarization �′ are created by â†

�′j±Ω
�

while a phonon is created
by b̂†Ω or annihilated by b̂Ω, respectively. We also notice that while ĤREF acts
as a beamsplitter, relocating photons at a fixed frequency between the two po-
larizations, without implying an effective transfer of energy between the light
and the sample, ĤILS involves the exchange of a quantum of energy between
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the elastic field and the light pulse.

The combination of ĤREF and ĤILS allows to obtain the system dynamics
when acting on the appropriate initial state, considering a finite interaction
time � shorter than the phonon oscillation period 1∕Ω. We consider the evolu-
tion induced by the term ĤILS on the phonon operator b̂Ω

b̂Ω(�) = b̂Ω(0) + i
�
√

vS

2v
√

2mΩ
ĝ (2.97)

where ĝ = ∑

��′,j �
(1)
��′!j â

†
�j â�′j+Ω

�
which in turn allows to calculate the evolved po-

sition and momentum with respect to a generic initial state
⎧

⎪

⎨

⎪

⎩

⟨Q̂(�)⟩ = ⟨Q̂(0)⟩

⟨P̂ (�)⟩ = ⟨P̂ (0)⟩ + �
2v

(2.98)

defining  = ⟨ĝ⟩ =
∑

��′,j �
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��′!j

|

|
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��j
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|

|
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|
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��′j+Ω
�

|

|

|

|

.

We can visualize the result of a sudden Raman interaction as a displacement
along the momentum axis defining the evolution radius R, as sketched in Figure
2.7. The squared radius R2 gives the mean value of the phonon number N̂Ω =

b̂†Ωb̂Ω which, to second order in the �� (1) coupling parameter, reads
⟨N̂Ω(�)⟩ = ⟨N̂Ω(0)⟩ +

�vS
2vmΩ

⟨P̂ (0)⟩ +
�2vS
8v2mΩ

⟨

ĝ†ĝ
⟩ (2.99)

We notice that the first order contribution depends on the value of the mo-
mentum P̂ before the interaction, while the second order term is proportional
to the mean value of the operator ĝ†ĝ, which equals 2 for classical light states
(coherent states with very large amplitude). The second order term is usually
negligible with respect to the first one unless ⟨P̂ (0)⟩ = 0.

We calculate now the effect of the interaction on the photonic degrees of
freedom. The light pulses are well described in their initial state by a multimode
coherent state |�⟩, where � stands for the vector with components ��j, given by

|�⟩ = exp

(

∑

�,j
��ja

†
�j − �

∗
�ja�j

)

|0⟩, a�j|�⟩ = ��j|�⟩ (2.100)
where |0⟩ is the vacuum state and !j is the photon frequency indexed by j. The
bandwidth of the pulse is represented by a set of modes !j = j� + !0 centred
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around the frequency !0 and spaced by �.

The measured intensity is proportional to the expected value ⟨

N̂�j(�)
⟩

∶=
⟨

â†�j(�)â�j(�)
⟩ on coherent states and results in the quantity [39]
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(2.101)
The term proportional to ⟨P̂ (0)⟩ results from first order contributions and is pro-
portional to the difference between the field amplitude at frequencies !j ± Ω.
The terms in  and  ′ arise from second order interactions.

We use these tools to calculate the output spectra. We assume the pump
finding the sample at thermal equilibrium, when phonon position and mo-
mentum have zero average ⟨Q̂(0)⟩ = ⟨P̂ (0)⟩ = 0. The transmitted pump intensity
is thus given by Equation 2.101, with the appropriate proportionality factors:
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) (2.102)

where we have neglected the term proportional to  ′ because the phonon pop-
ulation is negligible with respect to the photon number. We indicate with
⟨

I�PUj (0)
⟩

0
the intensity before the interaction. The second term can be inter-

preted as an effective red-shift of the spectrum. The effect on the phonon,
using Equation 2.98, is a shift along the momentum axis with radius

R = �
2v
PU (2.103)

Given that we are neglecting the dissipation, after the pump excitation and
before the probe interaction, the sample evolves with the Hamiltonian of a
quantum free harmonic oscillator. As a consequence, the initial conditions for
the probe interaction at a given time delay Δt are

⎧

⎪

⎨

⎪

⎩

Δt < 0, ⟨Q̂(0)⟩t = ⟨P̂ (0)⟩t = 0

Δt > 0, ⟨Q̂(0)⟩t =
R
mΩ sin(Ωt), ⟨P̂ (0)⟩t = R cos(Ωt)

(2.104)
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In the following we consider positive time delays Δt > 0 and estimate the dy-

namical intensity modulation ⟨ΔIPR�j ⟩Δt>0 = ⟨IPR�j (�)⟩Δt>0 − ⟨IPR(�)⟩Δt<0 with respect
to the unperturbed condition (Δt < 0). We get

⟨ΔIPR�j ⟩Δt>0 =
�vS
2vmΩ
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⟨P̂ (0)⟩Δt>0 (2.105)
where we have neglected the second order terms considering that PR ≪ ⟨p̂(0)⟩Δt
due to the relation |�PU |≫ |�PR|.

Applying ĤREF up to first order in �� (1), the dynamical response due to the
pump effect on the refractive index is dependent on the phonon position and
reads

⟨

ΔIPR�j
⟩

Δt>0
= −

vS
2v

∑

�′�′′
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K
(

�, � (0), � (1)
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�,�′�′′
|

|

|
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��′′j
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⟨Q̂(0)⟩Δt>0 (2.106)
where all the terms which account for the equilibrium refractive properties are
collected in the K tensor.

It is insightful to visualize the pump-probe experiment at a few selected
time delays from the point of view of the ⟨Q̂⟩,⟨P̂ ⟩ phonon phase space and of
the relative differential probe intensity ΔI/I, as sketched in Figure 2.7. At equi-
librium, the phonon is in a thermal state (blurred circle in the origin of the
plane). The pump leaves energy into the system, and displaces the phonon
state along the momentum axis. The probe further interacts with the phonon,
losing a small amount of energy to it, the pulse spectrum being red shifted.
The phonon evolves, reaching its maximum amplitude, where the probe ex-
periences minimum transmittivity. When the phonon has maximum negative
momentum, the probe extracts energy from the sample. The phonon is there-
fore pushed towards a smaller trajectory, and the probe spectrum is blue shifted.
Finally, the phonon amplitude reaches a minimum, and the probe transmittiv-
ity is maximum. From here the cycle will repeat.

We recognize that the results of the quantum model, Equations 2.106 and
2.105 agree with their classical counterparts, Equations 2.75 and 2.87, respec-
tively. The microscopic model therefore validates the classical one, and con-
stitutes the basis for a future investigation of the role of the stochasticity in
a pump-probe experiment where the probe spectra are randomized. In fact a



40 CHAPTER 2. INELASTIC LIGHT SCATTERING

Figure 2.7: Impulsive Stimulated Raman Scattering experiment in the phonon phase
space, showing the resulting probe intensity spectrum ΔI∕I .

quantum model taking into account the randomized spectral phase will be de-
veloped and used to clarify the role of the coherent phonon state in determining
the shape and sign of the signal obtained in the preliminary measurements of
Section 5.2.

2.2.3 ■ Case study: α-quartz

Applying the quantum formalism, we calculate the probe observables taking
into account the material response through a specific susceptibility tensor.
Since we are interested in the first order corrections to the transmittivity of the
probe pulse, the contributions of different phonon modes add independently
to a total susceptibility � =

∑

p �p, where p denotes the ptℎ phonon mode. The
symmetry of �p determines the photon polarizations involved in the exchange
during the interaction; in other words the contributions of phonons with differ-
ent symmetry can be selected by a proper combination of the pump and probe
polarizations [41].

We focus on the material probed in the measurements of the present The-
sis, α-quartz (the prefix refers to the low temperature phase of this material,
opposed to the β phase found at temperatures higher than 848 K), that has a
trigonal structure with D3 symmetry and 9 atoms per unit cell. Its 27 degrees
of freedom give rise to 2 acoustic modes with A2 + E symmetry and 16 optical
modes with symmetry 4A1 + 4A2 + 8E. Of these, 4 A1 are infrared-active, 4A2
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are Raman active, and 8 are doubly degenerate E modes.

Figure 2.8: a) Atomic arrangement of crystalline quartz unit cell and b) projection on
the plane perpendicular to the c-axis. c) Vibrational motion with symmetry A, EL and
ET (green lines) around the ionic equilibrium positions (purple dots) in a triangular
lattice. Adapted from [42].

The unit cell of quartz is sketched in Figure 2.8, together with its projection
on the microscopic ab plane, along which the sample is cut. Therefore the sam-
ple is excited and probed with fields propagating along its microscopic c-axis,
lying in the ab plane. They can only access a few of α-quartz vibrational modes,
those of a system with C3 rotational symmetry. They are compatible with the
vibrations allowed for a triatomic molecule with 3 atoms of equal masses placed
at the corners of an equilateral triangle, one A mode and two doubly degenerate
E modes (separated in longitudinal and transverse, indicated in the following
by the subscripts L and T ), as sketched in panel c) of Figure 2.8. These modes
have matrix representation [42, 43]
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and constitute the susceptibility tensor as
� (3)ijkl = AijAkl + ELijELkl + ET ijET kl =
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(2.108)

as cT = cL (due to the degeneracy).
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Figure 2.9: Complete vibrational spectrum of �-quartz. Phonons with a) A and b)
E symmetry. The arrows indicate Amodes that could not be completely extinguished.
Adapted from [43].

In Figure 2.9 we plot the full vibrational (Raman) spectrum of α-quartz,
as retrieved by measuring the spontaneously inelastically scattered light. The
central frequencies of the α-quartz phonons lying within the bandwidth of
our pulses are 3.8, 6.2, 10.7, 14 THz.

In order to make quantitative predictions, we make some assumptions on
the spectral shape of the pulses. Both pump and probe are chosen to be linearly
polarized with a Gaussian spectrum whose maximum is �0 > 0 and width �

�j = �0e
− 1
2

(

j�
�

)2 (2.109)
We consider a reference frame in which the z axis is parallel to the microscopic c
axis of the sample, while the x and y axes lie on the orthogonal plane. The probe
electric field is initially linearly polarized along the x axis and the pump electric
field lies in the same plane with an angle � with respect to the probe (and the
x axis). We explicit this dependence on � by redefining the pump amplitude as

�PUxj = �PUj cos(�), �PUyj = �PUj sin(�) (2.110)
The transmittivity of the probe depends on the radial parameter R defined in
Equation 2.103. We calculate it explicitly for the each of the phonons and get

RA = a �PUΩA

REL = cL cos(2�)�PUΩE
RET = −cT sin(2�)�PUΩE

(2.111)
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where the parameter �PUΩ is defined as
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The expression of the dynamical intensity modulation is simplified considering
a small equilibrium rotation, in other words considering only the first order
term in |w| (see Equation 2.95). In this case, when the analyzer selects the
transmitted intensity along the x axis, this is dominated by the inelastic scat-
tering (which is of order zero in |w|):
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evolving at frequencies ΩA and ΩE, in phase with the phonon momenta. When
selecting the y parallel polarization, instead, the dominating contributions are
proportional to |w|
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this equation is evolving at ΩE, in phase with the phonon amplitude. Its first
term is due to Ĥ (1)

REF (Equation 2.94), while the second is due to the combined
action of Ĥ (0)

REF (Equation 2.93) and ĤILS (Equation 2.96).

Both the above Equations depend on 2θ. To sample the angle dependent
response we calculate Equations 2.113 and 2.114 at θ = [0,π∕8,π∕4, 3π∕8,π∕2]. The
expected signal when the analyzer selects the polarization parallel to the probe
reads
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where we gather the electric field amplitudes giving rise to the spectral weight
shift and define
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When the analyzer is orthogonal to the probe, the signal is
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with the terms proportional to the field amplitudes gathered in the factor
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It can be observed that exploiting the polarization geometries allows to dis-

entangle the symmetry dependent response of α-quartz. One could in principle
select the A or E phonons if the appropriate optical elements are used. We note
that the E phonons can be selected thanks to the nonlinear refractive index
modulation, which affects the probe transmittivity in the orthogonal polariza-
tion to that of the probe.

In this Chapter, we used the language of quantum optics and the formalism
of the Liouville space to describe a third order light matter interaction. With the
former, we defined a quantum state for the elastic field, interacting with a co-
herent light state for the pump and one for the probe, and conveniently depicted
the evolution of the vibrational state in a phase space. The Liouville formalism,
on the other hand, provided powerful tools to describe the interaction between
a single light pulse and a two-level system, where the output beam is self-
heterodyned. Developing these models allowed to formulate predictions for the
outcome of experiments based on a single randomized pulse or a pump and
a time delayed randomized probe. These two apparently distant frameworks
describe the sample and its vibrational levels under close assumptions. A for-
mal and conceptual connection must be found between these two worlds, in
order to provide the Femtosecond Covariance Spectroscopy technique with the
necessary analytical tools to describe a dynamical noise-based investigation.



3 ■ Experimental realization

In this chapter we present the experimental arrangements chosen and imple-
mented to perform the measurements. To perform a femtosecond covariance
measurement, the setup must allow the manipulation of ultrashort laser pulses.
We need to split the beam into pump and probe, control their time overlap on
the sample, randomize the probe, and finally route the beams of interest to the
detectors. As will be explained with more details in the following, the pulses
are produced with a fixed time distance (usually expressed as a frequency, the
repetition rate) much larger (being 200 µs) than the characteristic scales of the
dynamics (from tens of fs to tens of ps), and consequently of the pump probe
time delays (typically submultiples of 50 fs) sampling such dynamics. In the
following we will sometimes refer to the pulse train as light beam, a term rep-
resenting the direction of propagation of the light fields.

The rationale behind the setup construction and usage is outlined in Sec-
tion 3.1, while in the rest of the chapter we describe the main elements: the
laser source, the pulse shaper, the detectors. We dedicate Sections 3.2 and 3.3
to a brief description of two nonlinear optics techniques, Optical Parametric
Amplification (OPA) and Frequency Resolved Optical Gating (FROG), that were
exploited to convert the pump frequency content and to measure the pulses
time duration, respectively.

3.1 ■ Experimental geometries

In this section we present the logic of the different kinds of covariance mea-
surement. The complete setup is sketched in Figure 3.1. When describing the
different experiments, we will refer from time to time to different portions of

45



46 CHAPTER 3. EXPERIMENTAL REALIZATION
the such setup.

Figure 3.1: Setup implemented to perform single and double pulse experiments. The
laser pulses are split in a pump and a probe beam. The first is routed through a de-
lay stage and the second through a pulse shaper. Two beams are then measured: a
reference (collected before the sample) and the probe, or two orthogonal probe polar-
izations. To be detected by the linear photodiode arrays, the pulses are dispersed by a
diffraction grating and focused by plano convex lenses. The measured intensity values
are sent to a computer for the analysis.

We start with the transmission measurements, whose theoretical interpre-
tation is drawn in Section 2.1. To perform these experiments we lead the laser
beam through the pulse shaper, that randomizes each pulse. Then the beam is
split in two: a reference beam and a probe beam, the latter transmitted by the
sample. Each beam is sent to one of a pair of twin detectors, consisting in a
diffraction grating to disperse the spectral content, a plano convex lens to focus
it, and a linear detector array to record the intensity shot by shot.

To perform pumpprobemeasurements, we make use of a pump to excite the
sample, and describe the dynamics from a theoretical point of view in Section
2.2. The pump is a portion of the laser beam which is collected before the pulses
are sent through the pulse shaper, using a window that transmits the 96% of
the radiation (pump) and reflects the 4% (sent to the pulse shaper). In order
to synchronize each pump and probe pulse pair on the sample, we compare
the optical paths of the radiation from the point where the beams are split to
the sample, and modify the path length until their values match. We take into
account the index of refraction of the transmittive elements in the paths, as it
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is usually greater than one, thus effectively elongating the optical path. After
optimizing the spatial overlap on the sample using a CCD camera or a pinhole,
we find the time overlap by means of sum frequency generation in a β-barium
borate (BBO) nonlinear optical crystal (more details about the crystal and its
nonlinear response are reported in Sections 3.2 and 3.3). The pump must be
routed through a software controlled electronic delay stage, which shortens its
optical path to anticipate its arrival time, at the sample position, with respect
to the probe. The latter travels through the remaining part of the setup, while
the pump is blocked after the sample. A possible variation of this experiment
is realized by using a polarizing beamsplitter to split the transmitted probe in
two beams with orthogonal polarization, each measured by a detector. If this is
the case, the reference beam is blocked and the beam to be measured is routed
to the detector using, for example, a flip mirror.

3.1.1 ■ Laser

The laser system (manufactured by Coherent [44]) is composed by the elements
sketched in Figure 3.2. We cannot describe properly such a system in the Thesis,
thus we refer the reader to specialized publications [45, 46]. The system is
based on a resonant cavity, allowing a finite number of longitudinal modes, and
relies on mode-locking, determining a fixed phase relation between the spectral
components. Therefore the output pulses are highly spectrally coherent.

Figure 3.2: Scheme of the generation of the ultrashort pulses used in the experiment
for both the single and the double pulse experiment.

The Vitara-T oscillator is a mode-locked laser able to produce ultrashort
pulses with central wavelength 800 nm, carrying 6 nJ of energy, and ∼83 MHz
of repetition rate (as mentioned earlier, the inverse time between subsequent
pulses, related to the laser cavity length). This regime is reached in the Kerr Lens
medium, a Ti:Sapphire crystal, when it is pumped by the continuous wave (CW)
laser Verdi. The oscillator output constitutes the seed beam for the Legend sys-
tem to amplify using the pump produced by the Revolution system. The latter
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is based on Q-switching to obtain mode-locking, and is an intracavity doubled
Nd:YLF laser producing very high energy (16 mJ) pulses. The repetition rate
of the Revolution laser is lower than the Vitara-T one, determining the output
repetition rate. The Legend Elite Duo amplifier employs two thermoelectrically
cooled Ti:Sapphire based cavities, a multiple pass and a single pass cavity. It
relies on the chirped pulse amplification (CPA) scheme, based on the energy
injection into the stretched pulse, which is then compressed [47]. The output
of the laser system is a train of pulses with 5 kHz repetition rate, central wave-
length 795 nm and duration of about 35 fs (their minimum duration given the
bandwidth). Their energy per pulse is about 2.4 mJ, of which a small percentage
(< 10%) is effectively employed in our experiments.

3.1.2 ■ Pulse shaper

As the name suggests, a pulse shaper is a tool which enables the manipula-
tion of the intensity figure of ultrashort pulses. As typical durations are few
to hundreds of femtosecond, their time dependent electric field it is still not
easily accessed. Therefore techniques have been proposed and implemented to
manipulate the pulses in the frequency domain, exploiting the relationship be-
tween the time and spectral complex planes.

A number of approaches for ultrafast pulse shaping have been advanced [48].
We have adopted a method in which waveform synthesis is achieved by using a
device that acts on the angularly dispersed optical frequency spectrum.

Figure 3.3: a) Pulse shaping using a spatial mask in a 4f line configuration. b) Linear
filtering in frequency and time domain.
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A basic apparatus consists of a pair of diffraction gratings and lenses, ar-

ranged in a configuration known as 4f line (as each optical element in the setup
is at distance f from the next, f being the focal length of the cylindrical lenses)
or zero dispersion pulse compressor. As shown in Figure 3.3, the first diffrac-
tion grating angularly disperses the individual frequency components contained
within the incident pulse, which are then focused to small diffraction limited
spots at the back focal plane of the first lens. Therefore on this plane the fre-
quency components are spatially separated along one dimension (x). If nothing
is placed in the Fourier plane, the device is dispersion free, as a second lens and
grating recombine all the frequencies into a single collimated beam. Instead if
a spatially patterned amplitude or phase mask is placed in the Fourier plane,
manipulation of the frequency components can be achieved. The spatial mask
M(x), behaves effectively as a complex frequency mask H(!), completely de-
scribing the effect of the pulse shaper. We look for an explicit expression for
the complex mask, starting from the expression of the field immediately after
the mask, Ẽm(x, !) [49]

Ẽm(x, !) ∼M(x)Ẽin(!)e
−(x−�!)2∕w20 (3.1)

where
� =

�2f
2�cd cos

(

�d
) (3.2)

is the spatial dispersion with units cm(rad/s)−1 and
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cos
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�in
)

cos
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)
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)

(3.3)

is the radius of the focused single frequency component at the masking plane.
Ẽin(!) is the input beam, win its radius before the first grating, c is the speed of
light, d is the grating period, � is the wavelength, and �in and �d are the input
and diffracted angles from the first grating. Note that Equation 3.1 is in general
a nonseparable function of space and frequency, because the spatial profiles of
the focused spectral components can be altered by the mask (a component may
impinge on abrupt amplitude or phase steps). This results in an output field
which may be a coupled function of space and time. To obtain an output field
which is a function of frequency or time only, an appropriate spatial filtering
should be made. We take, in the expansion of Ẽm(x, !) in Hermite-Gaussian
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modes1, the lowest coefficient H(!) as filter function

H(!) =

(

2
�w20

)1∕2

∫ dxM(x)e−2(x−�!)
2∕w20 (3.4)

This Equation shows that the actual filter in the frequency domain H(!) is the
mask function M(x) convolved with the intensity profile of the beam. This
convolution effectively limits the spectral resolution �! of the pulse shaper to
�! ≅ (ln 2)1∕2w0∕�, with the consequence that features on the mask smaller than ∼
w0 are smeared out by the convolution, and that wavelengths shorter than ∼ w0
are diffracted out of the main beam, leading to phase-to-amplitude conversion
effects [49]. Through the Fourier Transform, this corresponds to a window T

in the time domain T = 4 ln(2)∕�! constituting an upper limit for the applicable
time delay and stretching on the shaped pulse through the manipulation of the
spectral phase. Finally, the pulse output by the pulse shaper will be

ẼOUT (!) = H(!)ẼIN (!) (3.5)
thus the mask behaves like a linear filter for the input pulse. In the time domain,
the filter is characterized by an impulse response function R(t), the Fourier
transform of the frequency domain filter. The output EOUT (t) of the filter in
response to an input pulse EIN (t) is given by the convolution

EOUT (t) = ∫ dt′EIN (t′)R(t − t′) (3.6)
thus the problem of generating a specific output pulse shape is equivalent to the
task of fabricating a linear filter with the desired impulse response, clarifying
why the frequency domain approach is favourable [48].

Diffraction based liquid crystal spatial light modulator

The first proposed masks were fixed, in the sense that for every experiment
a single mask was litographically fabricated and placed in the 4f-line. Nowa-
days versatile programmable masks are widely adopted. The optical properties
of such devices are dynamically controlled by a software, and changed when

1The Hermite-Gaussian modes (labelled as TEMnm) are approximate solutions of the wave
equation of an electromagnetic field, valid for weak focusing. They describe the spatial intensity
profile of a propagating field in an homogeneous medium and are given by the product of a Gaus-
sian function, a Hermite polynomial, and a phase term. The modes are constant distributions
during the propagation.
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needed, without physically removing the mask from the pulse shaper. The de-
vice we used in the experiments of this Thesis belongs to this category: it is
a two-dimensional programmable liquid crystal spatial light modulator (LC-
SLM) [49].

Figure 3.4: a) Transverse section of a LC-SLM. From left to right, the effect of the ap-
plication of an increasing voltage results in a rotation of the liquid crystals. b) Ordinary
(no) and extraordinary (ne) refractive indexes of the liquid crystal layer for different ap-
plied voltages.

The structure of a LC-SLM is shown in Figure 3.4, where its transverse sec-
tion is sketched. A thin layer of nematic liquid crystals (LCs) is sandwiched
between two glass substrates. The LCs are long rod-like molecules oriented
parallel to the substrate when no voltage is applied; instead, when a voltage is
applied, they tend to align along the field. This situation is sketched in Figure
3.4. The voltage modifies the birefringence of the medium, leading to a mod-
ification of the optical path for light polarized along the anchorage direction
(where the beam experiences a refractive index ne, opposed to the ordinary re-
fractive index no). The phase delay '(!, V ) introduced by the changing voltage
V is quantified as

'(!, V ) =
!Δn(!, V )dLC

c
(3.7)

where Δn = ne−no is the change in the refractive index and dLC is the thickness of
the liquid crystal layer. In order to apply the electric field that will induce such
phase change, the inside surface of each glass layer is coated with a thin, trans-
parent, electrically conducting film of indium tin oxide. One piece is patterned
into a number of separate electrodes (or pixels) with the corresponding fan out
for electrical connections. The modulator array is controlled by a special drive
circuit which generates separate, variable amplitude signals to achieve inde-
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pendent, gray-level phase control of all the elements.

Figure 3.5: a) Diffraction based pulse shaping using a 4f line in reflection geome-
try. Themask, a liquid crystal spatial light modulator (LC-SLM), diffracts the radiation
through the diffraction grating and cylindrical lens used to disperse and focus the beam.
b) CCD camera image of the beam focus after the pulse shaper applying a blazed grating
with constant period (left) and with a correction (right) accounting for the wavelength
change.

To simultaneously shape both the phase and amplitude of femtosecond laser
pulses, we used a diffraction-based method [50]. The 4f line is reproduced in
a folded geometry, as shown in Figure 3.5. This means that the beam reaches
the mask plane after the first lens-grating pair and is reflected back through
the same optics, as the LC-SLM comprises a dielectric mirror (see Figure 3.4).
More specifically, the beam is diffracted back. In fact, the beam is dispersed
horizontally, and a sawtooth phase function, reproducing a blazed diffraction
grating, is applied along each vertical direction [50]. For this reason a cylin-
drical lens is used instead of a spherical one, as the former focuses the spectral
components only along one axis (in the present case the horizontal one).

The exit angle of the first-order diffracted light for a given wavelength is
determined by the period of the sawtooth phase function, as can be seen from
the blazed grating equation

d
[

sin
(

�m
)

− sin
(

�i
)]

= m� (3.8)
where d is the grating period, m is the order of diffraction, � the wavelength
of the spectral component, �i and �m the angles of incidence and diffraction of
the beam. A sketch of the beam geometry when using a diffraction grating
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is sketched in Figure 3.6 [39]. If the period is constant along the horizon-
tal direction, being the spectral bandwidth large, each spectral component will
experience a slightly different diffraction angle. This is taken into account, in
our setup, by changing the diffraction period, along the horizontal direction,
proportionally to the wavelength. The procedure adopted to find the coefficient
at each point is phenomenological. We focus the beam after the pulse shaper
and select with an iris the first order of diffraction. A CCD camera image of the
beam focus is shown in Figure 3.5. We observe that, if the period is constant,
the shape of the focus is elongated, reflecting the change in the diffraction an-
gle. If a proper correction is applied, the spatial dispersion is corrected and all
the components focus at the same point.

Figure 3.6: a) Reflective blazed diffraction grating, showing the angle dependence of
the diffracted intensity on the wavelength. b) Scheme of the top view on a diffraction
based pulse shaping: the incident beam is diffracted and recollimated. The parameters
of Equation 3.10 are reported. The phase � is varied along the direction orthogonal
to the page plane. c) Amplitude of the diffracted field as a function of the sawtooth
amplitude A(!).

The amplitude of the sawtooth phase function determines the efficiency of
the diffraction grating, thus ruling the amount of light that is sent to the first
order of diffraction and the light that is reflected back to the zeroth-order.
The phase of the light is instead determined by the relative vertical shift of the
sawtooth, as two adjacent spectral components, at the same vertical position,
will experience different phases. These expectations find a justification in the
expression of the diffracted field at the Fourier plane of a lens (plotted in Figure
3.6), calculated in terms of Fraunhofer diffraction

E(!) ∝ exp[−i�(!)] sinc
[

� − �
2
A(!)

] (3.9)
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for a phase modulation of the form

Φ(!, y) = �
{1
2
+ A(!)Sd[�(!), y]

} (3.10)
where Sd[�(!), y] is the sawtooth function, depending on the vertical dimension
y and on the frequency along the horizontal axis via Φ(!, y), the phase of the
grating. A(!) is the amplitude of the sawtooth (ranging from 0 to 1), and � is
the maximum phase shift achievable by the LC-SLM, in the present case � ≈ 2�.
We note that, even when � < 2�, a phase shift of 2� can still be obtained as � in
Equation 3.9 does not depend on �. On the other hand, there would be no ben-
efit in using values � > 2� even if the LC-SLM allows them [50]. This is one of
the reasons why we have limited the range of operation of our LC-SLM to (0, 2�).

The diffraction based LC-SLM is a very versatile tool: being the pixels in-
dependent, the parameters of the sawtooth phase function can be controlled
line by line, in other words frequency by frequency. Applying the proper volt-
age matrix on the liquid crystals, a pattern, we can control and manipulate the
spectral phase of each pulse and shape the outcome at our needs, for example
to compensate or introduce a functional dependence on frequency (a chirp), to
split the pulses in time, to select a portion of their spectral content [48]. In any
case, before employing the diffraction based LC-SLM, a few preliminary steps
have to be taken to completely define the correspondence between the pattern
and the mask. First, to establish a relation between the applied voltage and the
actual applied phase on the light fields, we need to perform a phase calibration of
the pulse shaper. Then we relate the sawtooth depth to the diffracted intensity
by performing an amplitude calibration. Finally a frequency calibration must be
performed to establish the frequency dependence of the horizontal coordinate
of the liquid crystal matrix (and of the photodiode arrays). The details of the
pulse shaper calibrations are reported in Appendix C.

Our aim is to apply a random pattern to the pulses in order to destroy their
spectral phase coherence. As shown in Figure 3.7, we can pick, point by point,
random values for �(!) and A(!), resulting in random shifts of the gratings or
in a random modulation of their amplitude. Because of the continuity of the
liquid crystal layer, anyway, adjacent pixels can be coupled resulting in a false
phase distribution that differs from the input one. Therefore we use a software
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Figure 3.7: Front view of the spatial lightmodulatormatrixwhen a diffraction grating
is applied with randomized a) phase and b) amplitude.
to generate an array of uniformly distributed random phase values �U and then
perform a gaussian smoothing of such array following the formula

�S(i) ∝
512−i
∑

j=−i
�U (i + j)e−(

i+j
Δcorr

)2 (3.11)
where the smoothed phase value �S is calculated at the itℎ pixel by summing
over the neighboring phase values weighted by a gaussian coefficient.

Figure 3.8: a) Uniformly distributed phase noise (red curve) and gaussian smoothed
phase noise (black curve). b) Histogram of the uniformly (red) and gaussian smoothed
(black) phase noise.

In Figure3.8 we show the phase values for a selected number of SLM pixels
when generated with a uniform distribution and after the gaussian smoothing,
along with the histogram of the distributions. The variance of the gaussian
weight Δcorr is the experimental counterpart of Equation 2.41, as it represents
the frequency resolution. Below its value, the frequency components are sta-
tistically correlated. Taking into account the width of the focus of a single
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frequency component on the LC-SLM matrix, and setting Δcorr = 2 pixels, we
get Δcorr ≃ 0.2 THz. This value is obtained by convolving Δcorr with the resolving
power of the linear photodiode arrays, as it necessarily impacts the frequency
resolution of the method.

Finally, we mention the speed of the LC-SLM in updating the pattern. Some
programmable devices have a high (≈ kHz) refresh rate that is comparable to
laser repetition rates [48]; our LC-SLM’s speed is in practice limited by the
liquid crystals rotation time, thus about 500 Hz. This means that, even if the
LPDAs can acquire every spectrum, there are chunks of about 10 spectra with
the same random pattern, which are therefore completely spectrally correlated.
We average over this subset of spectra and obtain a single spectrum for each
applied pattern. When analyzing the data, therefore, we use this as single shot
spectrum.

3.1.3 ■ Detection

The detection apparatus is able of measuring shot by shot the pulse spectrum.
It is made of two identical spectrometers, one for the reference beam and one
for the probe beam (they can also be used to detect two orthogonal polariza-
tions of the probe). Each spectrometer is composed by a diffraction grating to
disperse the beam, a spherical lens to focus the components and a linear pho-
todiode array (PDA). The PDAs are arrays of 256 silicon square pixels, 5 µm
wide, manufactured by Hamamatsu. They are part of a in-house made readout
system. The signal from the PDAs is digitized by an analog to digital converter
(ADC) and manipulated in a LabView environment.

Before the acquisition, the software updates the pattern on the LC-SLM. The
two 256-long arrays of voltage data are displayed and stored, and the acquisi-
tion is repeated many times with a different random pattern on the SLM. While
the measured values are input to the covariance to calculate the experimental
correlation coefficients, we must establish a relation between the pixel index
and the frequency of the intensity it measures. To do so we use the pulse shaper,
in a procedure that will be explained in detail in Appendix C.
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3.2 ■ Double stage optical parametric amplification

In this section we describe the device used to frequency convert the pump beam
with the aim of performing non degenerate double pulse experiments. Specifi-
cally, we change the energy of the pump from the visible to the near infrared. To
achieve this we exploit nonlinear processes in a double stage optical parametric
amplifier (DS-OPA), which allows the output spectrum central wavelength to
be tuned.

The conversion is based on a process taking place in BBO crystals. This
crystal lacks inversion symmetry (� (2) ≠ 0), therefore supports second order
nonlinear effects, such as difference frequency generation (DFG) [51]. By his-
torical convention, of the three beams taking part in DFG, the beam with the
highest frequency !P is called pump, the beam at frequency !S < !P is called
signal and the beam with difference frequency !i = !P − !S is called idler. In
the present case, the pump is represented by the laser pulse, and the signal we
aim to produce is the near infrared beam. Therefore the idler is an infrared
beam that will be emitted to conserve the total energy, and that we will dis-
card. A sufficiently intense pump will produce in a BBO very weak signal and
idler beams, and in this case the process is called spontaneous fluorescence. If
a signal field is instead input in the BBO, overlapped in time and space with the
pump beam, the conversion is stimulated and can reach higher efficiency. In
this case the process is called parametric downconversion (PDC), and the input
signal to be amplified is named seed.

To generate a seed beam we separate a small intensity portion from the
pump beam and broaden its spectrum up to the infrared. This is achieved
through self-phase modulation. If a material allows third order effects, its in-
dex of refraction acquires a term proportional to the time dependent intensity
I of the beam n(I) = n(t) = n0 + n2I(r, t), where n0 is the equilibrium refractive
index. As the transverse intensity profile of a laser beam is usually Gaussian,
the index of refraction acquires a spatial dependence that produces an effective
lens, causing the beam to collapse, an effect called self-focusing. Simultane-
ously the beam acquires a time dependent phase and is stretched in time, while
its spectrum broadens, in a supercontinuum (SC). We produce it in an yttrium
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aluminum garnet (YAG), as the output of such crystal is known to be character-
ized by more energy density in the near-infrared as compared to the commonly
used sapphire [52].

We built a double stage optical parametric amplifier, each stage being based
on a BBO crystal to generate infrared radiation. There are two main advantages
in using two separate stages. First, they are optimized separately, which leads
to an improved output stability. Moreover, the stages are dedicated to differ-
ent tasks: the first to the selection of the output wavelength, the second to its
amplification. BBO crystals can accomplish both tasks, because of their bire-
fringence. In fact, for nonlinear effects to take place efficiently in a medium the
phase matching condition Δk = 0 must be satisfied, representing the momentum
conservation between the input and output beams. It is not generally fulfilled
in a medium, where the refractive index is a monotonically growing function of
frequency (far from atomic resonances). If a birefringent medium, combining
the choice of its internal cut angle with the input beams direction and polariza-
tion, phase matching can be achieved and the time overlap of the three fields
maintained through the crystal. As we are dealing with broadband pulses, the
description of the process is more complicated. The group velocity mismatch
(GVM) between the pump and the amplified pulse limits the interaction length
over which parametric amplification takes place, while GVM between the signal
and the idler beams limits the phase matching bandwidth.

We show in Figure 3.9 a simplified scheme of our DS-OPA, whose layout is
described in the Figure caption.

The wavelength ranges attainable at the NOPA output range from roughly
1.1 µm to 1.5 µm. The reason for this is that the BBO absorbs radiation below
∼ 1 µm, and the upper limit is instead given by the very few photons produced
by the YAG in that region. Typical output spectra at 1.21 µm and 1.3 µm are
shown in Figure 3.10, compared to the corresponding NOPA signal prior to the
amplification. The bandwidth is largely reduced, and the energy per pulse is 20
times higher, as the NOPA signal has roughly 1 µJ per pulse. The OPA output’s
duration is close to the transform limit (it was measured using the FROG tech-
nique, topic of Section 3.3). We note that the NOPA spectra show a dip at ∼1.25
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Figure 3.9: Scheme of a double stage optical parametric amplification setup. The laser
beam is input in the optical board. About 1% of it, is focused into the YAG crystal to drive
the supercontinuum generation. The latter is collimated and sent to seed the first BBO
(BBO1). The transmitted laser beam is split in two portions, to act as pump respectively
in the first noncollinear stage (NOPA) and second collinear stage (OPA). The spectral
portion of the seed to be amplified is selected by fine tuning the angle of BBO1 mount.
In the present configuration as much as the 25% of the pump intensity is transferred to
the near infrared beam in the second stage. Finally, a filter eliminates the pump, and a
polarizing beamsplitter selects the signal.

Figure 3.10: a) Output spectrum at 1.21 �m and 1.3 �m (blue and red curves) after the
first (dark hues) and second (light hues) amplification stage. b) Measured pump spec-
trum input (orange) and output (red) by the DS-OPA.

µm, and that the intensity drops at ∼1.37 µm: both effects are due to absorption
by water vapour deposited on BBO1 surface, impacting the SC spectrum [51].

The near infrared pulses were used as pump in a double pulse configuration.



60 CHAPTER 3. EXPERIMENTAL REALIZATION
To do so, the beam was routed into the DS-OPA and, after the frequency con-
version, focused on the sample in a nearly collinear configuration with the aid
of a dichroic mirror. The optical path of the probe was consequently increased
to compensate for the optical path difference.

3.3 ■ Measurement of the pulse duration

This final section is dedicated to the method used to estimate the duration of an
ultrashort pulse. To retrieve the time dependent electric field of an ultrashort
pulse, both the amplitude and the phase of each frequency component of an
ultrashort pulse must be retrieved and input to a Fourier Transform. The Fre-
quency Resolved Optical Gating (FROG) method is a way to retrieve the complete
complex representation of a pulse, both in frequency and time. This method
was devised to use a reference pulse as a gate function to scan the profile of a
pulse to be measured. If a short reference pulse is available, this is used as gate;
otherwise a replica of the unknown pulse acts as gate [53]. This is the method
we adopted, and that will described in the following.

Figure 3.11: Scheme of a frequency resolved optical gating setup.

As shown in Figure 3.11, the pulse to be measured is split in two by a beam
splitter. The reflected beam is sent back through the same beam splitter by a
roof mirror (whose surface is inclined to form two faces sharing an edge at a
90° angle), while the transmitted beam is routed through an electronic delay
stage which introduces an optical path difference. The two beams then travel in
parallel up to a concave mirror, which focuses them on a BBO crystal, in which
sum frequency generation and second harmonic generation take place [51]. The
sum frequency beam intensity is then measured by a commercial spectrometer
while the time delay � between the two beams is scanned, generating a spec-
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trogram

FROG(!, �) =
|

|

|

|

|

∫

+∞

−∞
dtE(t)E(t − �)e(i!t)

|

|

|

|

|

2

(3.12)

where the delayed electric field E(t − �) acts as the gate, scanning the profile
of the field to be measured, E(t), belonging to the same pulse. A measure of
FROG(!, �) is enough to completely characterize E(t). The field is obtained by
means of an iterative phase retrieval algorithm that starts from a guess for E(t)
and uses as constraints the following relations on the frequency doubled field
EFD(t): the squared modulus of its Fourier Transform must coincide with the
measured FROG trace for every delay �, and EFD(t) must result from E(t) under-
going a known nonlinear process [53].

As mentioned above, the role of the BBO in the FROG is to generate the sum
frequency beam to be measured. Let us start, for the sake of simplicity, by de-
scribing the case of monochromatic beams with wavelength λ = 800 nm. When
one of the beams is focused on the BBO, the crystal doubles its the frequency
content, in other words generating light with wavelength λ = 400 nm. If the
beams overlap in space and time on the BBO, the crystal sums the two beams
by generating an output with 1∕λOUT = 1∕λ1 + 1∕λ2, resulting in λOUT = 400 nm.
The input beams hit the BBO crystal non collinearly, and the output wavevec-
tors can be inferred by considering the conservation of the total momentum.
Therefore each of the frequency doubled beams will propagate in the same di-
rection of its parent beam, while the sum frequency beam will propagate in the
middle, being its wavevector given by the sum of the parent beams momenta.
This picture holds for every component in the bandwidth of a broadband pulse.
Nonetheless, as mentioned in the Section 3.2, the BBO crystal has an efficiency
bandwidth limiting the actual output spectrum for the sum generation. This
necessarily impacts the result of a FROG reconstruction, as the measured spec-
trum might be underestimated, resulting is an overestimation of the duration
of the pulse.

By means of the FROG technique, we measured the pulse duration of the
laser pulse at its fundamental wavelength (800 nm) and output from the DS-
OPA (tunable). In Figure 3.12 we show the reconstructed electric field as a
function of time and its complex spectrum. A fit performed on the time de-
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Figure 3.12: Reconstructed electric field in time (a,c) and frequency (b,d) of probe
pulses when the central frequency is 800 nm (a,b) or 1290 nm (c,d).The blue dashed
lines show the phase applied using the pulse shaper.

pendent electric field allows to estimate the pulse duration as the full width
half maximum (FWHM) of the field envelope, resulting in 45 fs for the 800 nm
pulse and 110 fs for the 1290 nm pulse. Both are very close to their transform
limit.

Figure 3.13: Reconstructed electric field in time (a,c) and frequency (b,d) of probe
pulses when phase noise with Δcorr = 4 (a,b) or with Δcorr = 2 (c,d) is applied.The blue
dashed lines show the phase applied using the pulse shaper.

In Figure 3.13 we show the result of a FROG reconstruction applied to a
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shaped probe pulses with a stochastic spectral phase with spikes having av-
erage width ∆corr = 4 or ∆corr = 2. We start by noting that the reconstructed
spectrum looks very noisy. A possible explanation for lies in the fact that a
smooth spectrum with a randomized spectral phase undergoes a gating dur-
ing the acquisition in the FROG setup, as the latter is performed through a
discretized detector. The reconstructed spectral phase is compared (rightmost
graphs) to the spectral phase as generated by the pulse shaper software (blue
dashed line). The FROG technique does not allow for an accurate retrieval of the
spectral phase. This might be due to the fact that the measured spectrum does
not correspond to the actual one. The result of this computation is nonetheless
very interesting, and can be confirmed by a simple simulation. In fact the time
profile shows a central intense and short spike. This feature has a duration
which is inversely proportional to the pulse bandwidth, and its amplitude is
inversely proportional to the spectral phase correlation length. In fact, at the
sides of such a peak, weaker spikes arise, whose amplitude relatively to the
central spike, instead, increases proportionally to the correlation length. This
is what we observe in the result of the FROG retrieval of pulses with ∆corr = 2,4
whose result is shown in Figure 3.13.

This peculiar temporal structure was shown to actually provide an advan-
tage. To understand why, let us consider the fact that a pump probe trace has
a resolution determined, roughly, by the intensity autocorrelation of the pump
and probe pulses, convoluted with the detector response [2]. Therefore, to gain
insight on the expected resolution of a pump probe measurement, we start by
calculating the intensity autocorrelation for any combinations of coherent and
noisy temporal profiles.

When both pump and probe pulses are spectrally coherent, their autocorre-
lation is proportional (with a constant factor depending on the functional shape
of the pulses) to the temporal width of the pulses [54]. In this case, in fact, both
the pulses are fully coherent within their temporal envelope. The time profile
of a noisy pulse is, instead, made of narrow spikes enclosed within the en-
velope. When two noisy pulses overlap, the most intense superposition takes
place when the central narrow coherent spikes overlap. Therefore the autocor-
relation trace is itself given by a short central spike referred to, in the literature,
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as "coherent artifact", whose width is proportional to the average width of the
narrow noisy spikes in the time profile. The random nature of the spikes po-
sition and separation in time gives rise to a broad average background with
few hundreds femtoseconds duration [53]. Because of the fact that the noisy
spikes are much narrower than the envelope, the coherent artifact is itself very
short and the time resolution of a spectroscopic experiment is improved with
respect to the experiment carried out with pulses with the same envelope and
a smooth intensity profile [26, 27, 55–59]. Clearly the autocorrelation of a pair
of pulses sharing the envelope, one coherent and one noisy has intermediate
width between the two limiting cases, therefore the temporal resolution is still
improved with respect to the standard configuration. In the present case, the
time resolved measurements are carried out with a coherent pump pulse and a
noisy probe. Because of the fact that both share the same spectrum, their time
durations are comparable (as confirmed by the FROG reconstruction). There-
fore, the time resolution is only slightly better than in the standard pump probe
configuration (it cannot be worse, though). The correlation length is therefore
primarily chosen to ensure a good spectral resolution, and is minimized. This
choice also ensures that the temporal profile of the probe pulses is structured
as seen above, with a central spike over a low background.



4 ■ Transmission experiments

In this chapter we report and discuss the data acquired in a transmission ge-
ometry from a 1 mm thick sample of α-quartz, in the framework described
by the quantum model of Section 2.1. The chapter starts with the description
of the main measurement categories enabled by the pulse shaper. In Section
4.1 we report the results obtained randomizing the whole spectral phase of the
pulses, while in Section 4.2 we discuss the outcome of a partial randomization.
Correlation data from this two sections was published in [14]. A set of spectra
measured within all of the possible noise configurations is shown in Figure 4.1.
The second part of the Chapter, divided in Sections 4.4 and 4.5 respectively, is
devoted to a set of measurements performed modulating selected narrow peaks
in the spectrum and to a systematic study on the probe pulse energy. Unless
otherwise stated, the experiments performed in this chapter were carried out
using pulses with 1.25 mJ/cm2 incident fluence.

4.1 ■ Full modulation

We discuss the results of measurements obtained randomizing the spectral am-
plitude or phase of the pulses along their whole bandwidth. The applied phase
values range between -π and π. We can use a portion of this range, therefore
a narrower phase distribution, whose width is indicated by a percentage, to be
intended as multiplied by the full range and around zero.

Before discussing the effect of the randomization on the covariance based
detection, we report a test aimed at understanding the relationship between the
software applied phase distribution and the measured intensity deviation. We
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Figure 4.1: Possible types of randomization employed in the measurements shown in
this Chapter. Modulation of the spectral phase and of the spectral amplitude along the
whole bandwidth (a,b respectively) or of half of the spectrum(c,d). Theaverage value of
the spectrum can bemodified for thewhole set of pulseswhile randomizing the spectral
phase (e) or amplitude (f). In all of the plots, the gray curve represents the non shaped
pulse spectrumand the black the shaped one. We notice that the pulses illuminating the
sample undergo self-phase modulation, visible as a broadening of the spectrum. This
is a third order process as inelastic light scattering, thus the intensity regime we work
with triggers both effects.

Figure 4.2: Dependence of actual noise range on the software applied phase. Ratio
between standard deviation and average of the intensity (both averaged over the pho-
todiode array pixels) plotted against the phase (a) or amplitude (b) noise percentage.

show in Figure 4.2 the standard deviation of the measured intensity (averaged
over the photodiode array pixels) versus the applied noise percentage. The two
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are linearly dependent when the amplitude is randomized. When phase noise
is introduced, this is mapped proportionally into intensity fluctuations up to
50%, while for higher factors the standard deviation decreases. This is con-
sistent with the picture given in Chapter 2, where we discuss how any phase
modulation is imprinted in the spectral profile and is visible in the detected
intensity. We deduce that the "background" correlation will be the lowest for a
50% phase noise, at which the visibility of any sample induced correlations will
be the highest, but does not necessarily imply an enhancement on the magni-
tude of the signal. We will discuss again this point shortly (see Figure 4.4). In
the following, we show measurements performed using a noise range of 50% on
the spectral phase or on the spectral amplitude. The chosen correlation length
is Δcorr = 2 pixels ≃ 0.22 THz.

We turn now to the covariance based transmission measurements performed
on α-quartz. In Figure 4.3 we plot a few representative spectra obtained after
the application of noise on the spectral phase or amplitude, and the correlation
coefficients ρ calculated on the measured reference and transmitted beams. We
notice that fluctuations in the transmitted spectra are far more pronounced than
in the reference spectra, as the interaction process amplifies their magnitude
(and self-modulation takes place in the sample). The reference correlation co-
efficient is zero outside of the diagonal, which is close to one and whose width
is proportional to the correlation length. The sample correlation coefficient
shows clear off diagonal features. A negative region around the diagonal is
followed by a quasi-zero region and by a positive plateau. The position of the
edges between these regions, evaluated by expressing the frequency axes as a
frequency distance, is found to match the frequency of two vibrational modes
of the α-quartz sample, at 6.2 THz and at 14 THz. At a closer ispection, in the
negative region, particularly of the phase randomized correlation coefficient, a
deeper blue area can be distinguished, whose edge falls at the lowest frequency
α-quartz vibrational mode at 3.8 THz. Finally, inspecting the average value of
the correlation coefficient along the diagonal direction, a weak positive fea-
ture can be seen, matching the frequency of the vibrational mode at 10.7 THz.
Therefore the signal is, in this measurement, represented by dispersive peaks
on top of a shifting background. As we will discuss in the following sections,
this peculiar lineshape can be attributed to the coherent sum of the scattered
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Figure 4.3: Measurements performed randomizing the spectral phase (a-d) or am-
plitude (e-h) along the whole bandwidth. Example of reference (light blue) and trans-
mitted (dark blue) spectra when randomizing the c) phase or g) amplitude. The re-
spective low energy vibrational spectrum, retrieved by integrating the signal along the
diagonal, is shown in panels d) and h), where the vibrations of α-quartz are indicated
by vertical lines for comparison [41].

classical field to the non interacting field. Nonetheless, results obtained within
traditional nonlinear spectroscopic techniques suggest that a dispersive line-
shape could result from contributions of different competing quantum path-
ways [60–62] or from a mixing of a resonant and a non resonant contribution
[63]. The positions of the signal nodes are in very good agreement with the
phonon frequency of quartz from the literature [41].

There is a striking similarity between the signal arising in the covariance
map calculated randomizing the spectral phase or the spectral amplitude. A
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Figure 4.4: Correlation coefficient from the transmitted beamas a function of the fre-
quency difference, changing the value of the a) phase or b) amplitude noise percentage
applied.

possible explanation for this behaviour is that the randomized pulses behave
the same during the interaction with the sample. The inelastic scattering pro-
cess takes place regardless of the shape of the pulses, as long as the intensity
is high enough to trigger a nonlinear process. Therefore the pulse randomiza-
tion has the great advantage of removing, from the correlation coefficient, the
source spectral coherence. The gating performed by the detectors makes the
actual statistical properties of the phase modulated pulses "visible" to the cor-
relation coefficient. To confirm this hypothesis, we scanned the possible noise
percentages and compared the signal. In Figure 4.4 we show the correlation
coefficient value as a function of the frequency distance from the diagonal of
the map. It can be noticed that the signal amplitude does not increase sensibly
with the noise amplitude, for none of the two noise configurations.

We discuss in the following two more possible configurations for a stochastic
probe, and compare the results obtained so far.

4.2 ■ Half modulation

During the scattering process under consideration, the scattered photons from
any point ωj in the spectrum overlap with the photons at the final frequency
ωj +Ω. To deepen our understanding of the self heterodyned nature of the
signal on our covariance based technique, we performed measurements ran-
domizing only half of the spectrum, and leaving the rest spectrally coherent.

The results are shown in Figure 4.5. All the correlation coefficients split in
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Figure 4.5: Measurements performed randomizing the spectral phase (a-d) or ampli-
tude (e-h)alonghalf of thebandwidth. Example of reference (light blue) and transmit-
ted (dark blue) spectra when randomizing the c) phase or g) amplitude. The respective
low energy vibrational spectrum, retrieved by integrating the signal along the diago-
nal, is shown in panels d) and h), where the vibrations of α-quartz are indicated by
vertical lines for comparison [41].

blocks, representing the coupling between pairs of components belonging to
different regions of the spectrum. They can both belong to the coherent side
(low energy corner), both to the randomized side (high energy corner) or each
to one side (lower right and upper left blocks). While the upper right block
reproduces the results of the previous section, the clearest signal arises from
the blocks coupling one component from the low frequency side and one from
the high frequency side. The off-diagonal features reproduce neatly the low-
energy vibrational spectrum of α-quartz. There is no clear distinction between
the results obtained applying phase or amplitude modulation.
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4.2.1 ■ Half modulation with mean value shaping

In a configuration where the high frequency side is modulated, we performed a
set of measurements decreasing gradually the average amplitude of the coher-
ent side down to zero, to study the signal dependence on this parameter. The
energy per pulse was kept constant to work in a comparable fluence regime.

Figure 4.6: Measurements performed by gradually reducing the amplitude of the
spectrally coherent side of the pulse spectrum. Spectra during the sweep applying a)
phase or b) amplitude modulation. c-d) Correlation coefficient, as a function of fre-
quency difference, calculated at every configuration by integration over the region
where the signal is strongest. We only report data from the sample beam.

In Figure 4.6 we show selected spectra representing the mean amplitude
variation, and the resulting correlation coefficient. It emerges that the signal
shape is essentially the same up to the point where a field, if weak, is present
in the low frequency side. When the intensity is completely blocked, the be-
haviour of the signal is different, as the intensity background is essentially zero
across the region, and the presence of vibrational modes is revealed by Gaus-
sian positive peaks.

In the configuration where we completely delete the amplitude of the coher-
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Figure 4.7: Measurements performed randomizing the spectral phase (a-d) or am-
plitude (e-h) along half of the bandwidth and deleting the other half of the spectrum.
Example of reference (light blue) and transmitted (dark blue) spectra when random-
izing the c) phase or g) amplitude. The respective low energy vibrational spectrum,
retrieved by integrating the signal along the diagonal, is shown in panels d) and h),
where the vibrations of α-quartz are indicated by vertical lines for comparison [41].

ent low frequency side and randomize the high frequency side of the spectrum,
we explored the system’s response. The result, together with a few selected
spectra, is shown in Figure 4.7. We observe that the correlation coefficient has
a similar behaviour, globally, than if we were retaining the whole spectrum, as
the Pearson coefficient is not sensitive to the average value of the variables. The
strongest signal is found in the blocks correlating a non randomized intensity to
a randomized one. Moreover, the measurement with phase modulation delivers
the same result as the one performed with amplitude modulation. Nonetheless,
we notice that the asymmetricity in the peak shape disappears within this con-
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figuration, unlike when retaining the whole spectrum. We will discuss in more
detail this difference in the next section. Finally we comment on the shape of
the transmitted spectrum shown in Figure 4.7, which shows a "tail" of intensity
where the average amplitude should be zero (the expected behaviour is shown
by the reference pulses). This is not only caused by a nonlinear broadening of
the spectrum, it is also a sign of the presence of scattered intensity from the
modulated spectrum.

4.2.2 ■ Lineshape analysis

The results obtained so far reveal how solid the Femtosecond Covariance Spec-
troscopy technique is: whatever modulation is applied on the pulses, the results
are very consistent and the vibrational spectrum of the sample shows as offset
diagonal correlation features in the statistical coefficient.

Figure 4.8: Rotated quadrants of the correlation coefficient maps of the sample beam
calculated applying a) phase or b) amplitude modulation. The dashed lines delimits
the region over which the integration is performed. The results of the integral are the
curves shown in plots c) and d), stacked for the three types ofmeasurements (the colour
code is used to distinguish them), as a function of the phase difference. The vibrational
modes of α-quartz are represented by black vertical lines [41].

The main difference we observed so far, among the measurements per-
formed with the pulse shaper settings discussed above, is a changing signal
lineshape. When the sample is probed by the whole spectrum, whether totally
or half modulated, the signal is dispersive. When probing with half of the spec-
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trum, the signal has a purely Gaussian peak shape. We compare the resulting
correlation coefficients in Figure 4.8. We attribute this difference to the pres-
ence, in the first two cases, and absence in the latter, of a heterodyning field
for the scattered radiation [14]. These results prompted the description of the
interaction as a self-heterodyned scattering process. In this, the covariance
based approach finds a strength, as the signal beam does not need to be sepa-
rate, geometrically, from the parent beams to be measured, as the interaction
is revealed through the statistical correlation imprinted in the spectrum by the
interaction.

4.2.3 ■ Average phase dependence

We tested the sample response by introducing with the pulse shaper a sharp
edge at the centre of the average spectral phase. A noisy modulation was ap-
plied to the spectral amplitude in order to reveal the correlation signal.

Figure 4.9: Correlation signal of the 14 THz phonon (a,b) and of the 6.2 THz phonon
(c,d) as a function of the average spectral phase jump (x axis of the colour maps and
colour lines in the left plot), when imparting an amplitude randomization on a-c) the
low frequency side or on b-d) the high frequency side of the spectrum.

In Figure 4.9 we show the correlation signal for the 14 THz and the 6.2
THz phonons obtained varying the amplitude of the phase jump. The 14 THz
phonon signal has a dispersive peak shape. The amplitude of its maxima and
minima increases as the phase step reaches π, reverting to its initial shape when
the phase jump reaches 2π. The phonon at 6.2 THz seems to follow a similar
dynamics up to π, when the signal vanishes to reappear out of phase in the
second half of the map.
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4.3 ■ Cross correlation

Before discussing the few tests designed to investigate the dependence of the
correlation signal on experimental parameters, we show the cross correlation ρc
calculated on measurements using the whole spectrum, with a total or partial
modulation. The result is shown in Figure 4.10.

Figure 4.10: Cross correlation coefficient �c computed on the transmitted spectra of
single pulse measurements. Example reference (light blue) and transmitted spectra
(dark blue) obtained when modulating a) the whole bandwidth, b) the higher or c)
lower half of it. The corresponding �c is shown in e-g) respectively, along with its inte-
gral along the diagonal in i-k). In f) and g), and in i-k), the background was flattened
for the sake of clarity.

As expected, the cross correlation is not symmetric on the two sides of the
map. When the spectrum is fully modulated, the signal on the two sides of
the map is comparably strong, and it changes sign. We notice that the same
sign behaviour is retained when a portion of the spectrum is not modulated.
Moreover, in this scenario, the signal from light scattered towards the spec-
trally coherent side seems to be enhanced. Let us turn to the measurements
performed modulating the high frequency side. The signal is clearly visible in
the bottom right panel, and is positive. The opposite block reveals a tiny signal.
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When the modulation is applied on the low frequency side of the spectrum, the
measurement results in a strong negative signal in the upper left block, with
a negative sign as in the correlation coefficient of the fully modulated spectra.
We notice, as well, that as a result of this calculation, the shape of the signal is
not so clearly dispersive as from ρ.

4.4 ■ Selected peaks randomization

In this Section we describe experiments conceived in order to understand the
role of the stochasticity in the process taking place in the sample, and eventually
if a proper combination of settings enables an amplification of the signal.

4.4.1 ■ Randomization of a single peak

The first measurement of the set is performed by randomizing a single spectral
component at a fixed position in the spectrum.

Figure 4.11: Measurements performed with a single peak randomized, at a fixed po-
sition in the spectrum (377 THz). Ratio between a few selected transmitted spectra and
the corresponding reference spectrum, when applying a) phase or b) amplitude mod-
ulation. c-d) Correlation coefficients of the sample beam in the two aforementioned
noise configurations. The vertical lines at 377 THz are shown in e) and f), as a function
of the absolute value of the frequency difference (the actual sign of the difference Δ,
related to the position of the curve in the correlation coefficientmap, is indicated by the
colour of the lines).
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In Figure 4.11 we show the result of this measurement for a phase or ampli-

tude randomization. The correlation coefficient is dominated by the coherence
of the non modulated spectrum. Along lines at the position of the modulated
component, the coherence has a different structure. Cuts of the map along this
direction are shown in panel b) of the same Figure, as a function of frequency
difference. We find that for both positive and negative frequency differences
there are dispersive signal features at the vibrational modes position. These
measurements seem to reproduce the results of Section 4.2, only on a single
line.

Figure 4.12: Measurement performed with a single modulated peak at a random po-
sition within the spectrum. a-b) Plots of the ratio between a few selected transmitted
spectra and the corresponding reference spectrum. Correlation coefficient of the sample
beam when applying c) phase or d) amplitude modulation.

We repeated this experiment by changing the position of the modulated
peak within the spectrum, at each shot. The result is shown in Figure 4.12.
The correlation map reveals faint lines at frequency distance from the diago-
nal 3.8 THz and 14 THz, on top of a background from which they are almost
indistinguishable. We conclude that this measurement reproduces with lower
efficiency the result obtained by modulating half of the spectrum at once (see
Section 4.2).

4.4.2 ■ Randomization of a pair of peaks

On the basis of the previous tests, we performed an experiment fixing the po-
sition of a modulated peak and changing the position of the second peak ran-
domly at every shot.
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Figure 4.13: Measurement performedbymodulating twopeaks, one at a fixed position
(372 THz) and onemoving randomly across the spectrum. Ratio between a few selected
transmitted spectra and the corresponding reference spectrum,when applying a) phase
or b) amplitude modulation. Correlation coefficients of the sample beam in the two
aforementioned noise configurations (c), d)). The vertical lines at 372 THz are shown
in e) and f), as a function of the absolute value of the frequency difference (the actual
sign of the differenceΔ, related to the position of the curve in the correlation coefficient
map, is indicated by the colour of the lines).

The result is shown in Figure 4.13. This map looks like a combination of the
maps of Figure 4.11 and Figure 4.12. Along the profile of the fixed modulated
peak we recognize the signal from the 3.8 THz, 6.2 THz and 14 THz phonons.
At a closer inspection, these peaks are visible throughout the map.

Finally we tested the technique by modulating two peaks in the spectrum,
with a fixed distance for all repetitions in a single measurement, scanning such
a distance. To show the full set of measurements, an example of which is shown
in panel a) of Figure 4.14, we stack the correlation profile extracted along the
moving peak as a function of the frequency distance between the peaks. The
resulting image, shown in panel b) of Figure 4.14, is a colour map whose axes
represent a frequency difference (on the x axis the distance within the probe
spectrum, on the y axis the distance between the modulated peaks) and the
colour scale the value of the correlation. We find correlation features at the
position of the vibrational modes, and a diagonal line, whose value is close to
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zero, representing the vanishing correlation between the randomized peaks.
The plot in panel b) seems to reproduce the sample correlation coefficient of
panels b) and f) of Figure 5.9.

Figure 4.14: Set of measurements performed modulating two peaks within the spec-
trum of each pulse, with fixed distance. a) Correlation coefficient for a peak distance
of 5 THz. b-c) Profiles extracted at the fixed peak position (377 THz), which coincides
with the profile at the moving peak position, as a function of the peak distance and the
frequency difference within the spectrum.

We conclude that there is no enhancement of the vibrational signal when
the distance between the moving peaks is close or equal to the frequency of a
vibrational mode. Moreover, the results of this Section show that the correlation
coefficient is only sensitive to the statistical properties of the intensity pairs
which is fed, therefore there is no sensitivity to the global properties of the
pulse. This scenario is compatible with the interpretation of the experiment
given above: the process takes place no matter what the stochastic properties
of the pulses are, and the randomization of the latter only serves to enable the
detection of the sample induced correlation.

4.5 ■ Fluence dependence

This final Section of the Chapter dedicated to single pulse measurement deals
with a set of measurements performed increasing gradually the energy per
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pulse, in order to understand to which extent the FCS technique is able to re-
cover the order of nonlinearity of the interaction process. The usual approach
is to detect the changes in a nonlinear signal as a function of the intensity of
the incident fields. Given that the correlation coefficient under consideration
is adimensional and normalized, and taking into account the self-heterodyned
nature of the experiment, it is not straightforward to extract a dependence of
the Pearson coefficient values on the intensity of the incident pulses.

Figure 4.15: a) Slope map for each input fluence. Slope value (at frequency coordi-
nates indicated by the green square) as a function of the fluence, in b) linear and c)
logarithmic scale (the red line is a linear fit).

We therefore envisioned a different method to study the interaction non-
linearity, which makes use of the measured reference intensity, as the latter
serves as a benchmark of the beam properties before the interaction. Therefore
we will study the cross correlation between the transmitted intensity IT and
the incident intensity IR. We focus on the proportionality factor A existing be-
tween the variables when they are correlated, that is to say when a relationship
holds in the form IT = A(IR − IR0 ). As both IR and IT are measured intensities,
the order of the process m is enclosed in A. Being the interaction under con-
sideration of the third order, we expect A to be quadratically dependent on the
intensity of the input beam, which we vary in the experiment by appropriately
filtering the laser beam. We compute A applying a fitting procedure to all the
data pairs, and end up with a map of the proportionality coefficient A for each
input fluence (see Figure 4.15). We model the behaviour of A for each intensity
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pair as

A = C(IR − IR0 )
P (4.1)

where IR is the input intensity. We expect IR0 to be zero as the process is stim-
ulated, and P = m − 1 (as one intensity factor is the dependent variable of the
relation for IT ).

Figure 4.16: Maps of the exponent extracted by fitting each slope values as a function
of the fluence with Equation 4.1.

By taking the logarithm of Equation 4.1 and performing a linear fit of each
point of the A maps, we extract the value of P . The results for both spectral
phase and amplitude modulations are shown in Figure 4.16. P ≈ 2 where the
intensity values are correlated by the interaction, while P ≠ 2 elsewhere.

In this chapter we appreciated how straightforward it is to extract informa-
tion on the vibrational modes of α-quartz within the FCS technique. Applying
a stochastic modulation along the whole spectral bandwidth, on the phase or
amplitude of a pulse, we extracted, from the correlation coefficient of the trans-
mitted beam, the sample low energy vibrational spectrum. Moreover, applying
a modulation along half of the spectrum, we found a sharper correlation sig-
nal. As a matter of fact the signal, in such an experiment, is self-heterodyned,
which means that the scattered field adds to the non interacting field, from
which is indistinguishable, as the two spectrally and spatially overlap. The sig-
nal retrieved with the specific correlation coefficient ρ, therefore, depends on
the modulation of a single component of the two fed to ρ itself, consistently
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with what we obtained modulating one peak or a pair of peaks within the spec-
trum. This was further confirmed by the signal shape in the cross correlation
coefficient ρc. This suggests to investigate what information can be extracted
using tailored correlation coefficients based upon, for instance, multiple body
correlations.

To further assess the capabilities of the covariance based acquisition, we
applied it to a sample prepared in a coherent state whose population evolution
can be tracked in time. To excite the sample an intense pump pulse must be
employed, which imparts a defined phase to the excitations. An experiment
performed with two pulses allows, moreover, to combine their polarizations
and select the response of phonons with different symmetry, which could not
be distinguished in the experiments discussed so far because both polarizations
belong to the same pulse and are randomized simultaneously. The femtosecond
covariance technique used to probe a coherently excited sample is the subject
of the next Chapter.



5 ■ Time resolved experiments

We introduce in this Chapter double pulse experiments which constitute the
straightforward extension to the femtosecond covariance transmission mea-
surements in the framework of ultrafast spectroscopy. First, we study with
spectrally coherent probe pulses the vibrations of the sample, excited in phase
by the pump. These results were published, together with the quantum model
described in Section 2.2, in [15]. Then, we move on to double pulse experi-
ments with a coherent and a randomized probe, performed applying the setup
variations described in Chapter 3.

The experiments employing spectrally coherent pulses at the laser wave-
length are described in Section 5.1. They employ pump pulses with fluence
2 mJ/cm2 and probe with fluence 0.3 mJ/cm2 (exception made for the mea-
surements of Section 5.1.2, where this parameter was systematically changed).
These values were chosen in order to ensure the absence of nonlinear effects
induced by the probe. We fully characterize the signal dependence on the exper-
imental parameters and validate the quantum model of Chapter 2 for Impulsive
Stimulated Raman Scattering (ISRS). The following Section 5.2 is dedicated to
a femtosecond covariance based detection applied to the pump excited sample.
This set of measurements was performed using a frequency converted pump
(by means of the double stage optical parametric amplifier described in Section
3.2) at 1.29 µm and a randomized probe at the laser wavelength (800 nm). The
measurements were carried out using a pump fluence of roughly 2 mJ/cm2 and
a probe fluence of 0.03 mJ/cm2 (unless otherwise stated).
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5.1 ■ Pump probe experiments

The double pulse experiments on α-quartz using coherent pulses are displayed
as colour maps. The maps show the relative normalized transmitted intensity
∆I/I calculated using both the sample channel IS and the reference one IR as
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(5.1)

as the denominator in the first line of Equation 5.1 is ⟨IS∕IR⟩(!)Δt<0 ≈ 1.
In practice, we divide every transmitted single shot spectrum by the corre-
sponding reference single shot spectrum, to account for instantaneous fluctu-
ations of the source, and average such ratio over the repetitions acquired at a
fixed time delay. To this quantity, we subtract the ratio averaged over a finite
interval of negative time delays, representing the thermal equilibrium value of
the signal, to account for slower source intensity fluctuations. The evolution of
the function ⟨∆I⟩∕⟨I⟩(ω,∆t), therefore, represents the dynamical percent varia-
tion of the sample transmittivity. In the following we will indicate ⟨∆I⟩∕⟨I⟩(ω,∆t)
by ∆I/I.

In Figure 5.1 we show a time and frequency resolved experiment on α-quartz.
The vertical axis indicates the probe spectral content, the horizontal axis the
time delay ∆t, while the colour plot the values of ∆I/I. The spectrum is cen-
tered at 377 THz (795 nm), and regions below ≈355 THz and above ≈395 THz
are zero as there is no spectral intensity at the corresponding areas of the de-
tector. At negative time delays the ratio ∆I/I is zero both outside and within
the probe bandwidth, while at the pump probe overlap it arises sharply and
starts oscillating. This behaviour is expected for a transparent sample in which
coherent vibrational modes have been excited. As calculated within the ISRS
quantum model described in Section 2.2, and displayed in Figure 2.6, the probe
spectrum undergoes shifts towards the low or high frequency side, alterna-
tively, because of the energy exchange of the probe pulse with the pump ex-
cited coherent phonons of the sample. Within an intuitive picture, that sketches
the interaction between the probe and the material as a coupling between the
electric field of the former and the istantaneous polarization of the latter, we
find that the effective energy exchange depends on the relative direction of the
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Figure 5.1: Pump probe experiment on �-quartz using spectrally coherent pump and
probe pulses. The colourmap shows the frequency and time resolvedΔI/I signal. The cut
on top is the time dependent signal at a probe frequency 367 THz (the inset represents
a zoom on the last portion of the curve). The right panel represents cuts of the map
along the probe spectrum, at time delays indicated by the accordingly colored lines on
top of the colour plot. a) and c) are points of maximum inelastic light scattering shift
towards the low and high frequency side of the spectrum, respectively. b) and d) are
points ofmaximumnonlinear refractive indexmodulation, resulting in aminimumand
maximum of the dynamical transmittivity, respectively.

probe electric field and the phonon momentum, which oscillates in time with
the phonon frequency. The time oscillations of the experimental response can
actually be understood by noting that, at a fixed time delay, the response is
structured along the probe frequency axis. To view this response, slices of the
∆I/I map along the frequency axis and at subsequent time delays are shown on
the right. In a) and c) we recognize the inelastic light scattering (ILS) frequency
shifts, towards the low and high frequency side, respectively.

In addition to ILS, prevailing on the sides of the spectrum, we notice the
presence of a modulation at its centre, where the net frequency shift is zero.The
dynamics of such a modulation is in agreement with the ILS shifts, with a π/2
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phase difference. We recall that, within the quantum model, we calculated
the effect of the coherent phonon excitation on the material’s refractive index,
whose outcome on the evolution of ∆I/I is shown in Figure 2.5. As a conse-
quence of this nonlinear refractive index modulation (NRM), ∆I/I is expected
to be proportional to the coherent vibrational amplitude. Moreover, this ef-
fect does not result in any energy exchanges between the sample and the probe
pulses, consequently it is uniform along the probe spectrum. The slices of the
colour map b) and d), shown on the right of Figure 5.1, taken at the nodes of
the inelastic light shift, show peaks at the centre of the spectrum, in agree-
ment with the effect of NRM. To summarize, if we follow the evolution of the
differential signal in time, we find a red shift, a negative peak, a blue shift, a
positive peak, and the cycle repeats (cf. Figure 2.7). Switching back to the time
delay axis, at each frequency component along the probe bandwidth we expect
to witness oscillations of the signal with the same Fourier components, but a
different phase.

By looking at the time decay of the signal, we note the presence of many
vibrational modes: a slow vibrational mode dominating the signal at large time
delays, and a faster signal prevailing closer to the overlap. A very fast mod-
ulation is present all along and is clearly visible at large delays. We expect
these to be the three strongest low energy vibrational modes of α-quartz at 3.8
THz, 6.2 THz and 14 THz, respectively. To extract quantitative informations on
the amplitude of these modes, their relative phase and their lifetime, a Fourier
analysis in the frequency domain is necessary.

We start by performing the Fast Fourier Transform (FFT) [64] of ∆I/I along
the time delay axis. The absolute value of the FFT is shown in Figure 5.2 as a
function of the Fourier component frequency and of the probe frequency, cal-
culated on the measurement shown in Figure 5.1. We identify three regions
along the probe bandwidth which give rise to a higher FFT absolute value. The
external regions represent the points where the spectral shift due to the inelas-
tic light scattering is maximum, and the central region is where the nonlinear
refractive index modulation is strongest. The frequency content in these re-
gions of the probe spectrum is the same, but peaks due to ILS have a relative
π shift, and each of them is π/2 shifted from the NRM peaks. We plot, in the
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Figure 5.2: a) Absolute value of the Fast Fourier Transform (FFT) along the delay axis
of the average signal shown in Figure 5.1. b) Absolute value of the FFT averaged along
the probe spectrum (black curve), compared to the vibrational spectrum obtained from
the correlation coefficient of Figure 4.7. c) Value of the FFT phase at the maxima of the
three strongest Fourier components, as a function of the probe spectrum.

same Figure, the FFT amplitude averaged along the probe spectrum, together
with the central frequency of the vibrational modes as reported in the litera-
ture (grey vertical lines). Moreover, we compare these data to the spectrum
retrieved with the FCS technique when modulating half of the spectrum and
deleting its low energy portion (reported in Figure 4.7). There is good agree-
ment between the two spectra. We notice a difference in the position of the 14
THz peak from the correlation, possibly due to its dispersive lineshape, and an
apparent difference in the amplitude of the peak at 3.8 THz.

It is worth to comment on the high frequency modulation visible along the
spectrum of the measurement of Figure 5.1, which is particularly visible close
to the overlap at negative time delays. If we follow this modulation further
from the overlap, both at positive and negative time delays, we notice that its
frequency along the spectrum increases. Because of the proportionality of the
frequency of this effect to the time delay, we believe their appearance is inti-
mately related to the coherent sum of the probe field with a residual scattered
field of the pump along the probe propagation direction. Their appearance could
be related to cross-phase modulation (XPM) [65–67], a nonlinear modification
of the material refractive index due to the high intensity of the pump beam,
which can affect the temporal, spectral, and even spatial properties of a co-
propagating pulse.
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Figure 5.3: Double pulse experiment on �-quartz using spectrally coherent pump and
probe pulses, with a) parallel polarization or b) orthogonal polarization.

In Figure 5.3 we show two measurements on α-quartz performed in the
same fluence conditions, with parallel or orthogonal relative pump probe po-
larization. The high frequency modulation is more pronounced when the po-
larizations are parallel. They do not disappear when a pump output from the
DS-OPA is used, therefore when pump and probe do not have the same spectral
content, consistently with a nonlinear phenomenon dependent on the pump
intensity [68, 69].

5.1.1 ■ Polarization dependence

A further possibility provided by the double pulse experiment is the separa-
tion of the signal arising from A- and E-symmetry vibrational modes. As de-
scribed in Section 2.2.3, the matrix representations of the modes combine to
form the electric susceptibility of the material, determining which polarization
components are involved in the interaction. From the experimental perspec-
tive, properly combining the field polarizations allows to disentangle the dif-
ferent contributions to the susceptibility, in other words the response related
to phonons with a specific symmetry. In the case of α-quartz, we describe the
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frequency ωj, time t and pump-probe angle θ dependent response in Equations
2.113 and 2.114. The expected signal at θ = 0, π∕8, π∕4, 3π∕8, π∕2 is calculated in
Equations 2.115 and 2.117, which are reported here for the sake of clarity. When
the analyzer is parallel to the probe, the signal reads
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while when the analyzer is orthogonal to the probe
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The coefficients Δ�PRj,Ω and Σ�PRj,Ω are reported in Equations 2.116 and 2.118, re-
spectively.

The set of time and frequency resolved measurements performed by varying
the angle � is shown in Figure 5.4. The left (right) column shows the measure-
ments obtained by selecting with an analyzer EPOL the polarization parallel
(orthogonal) to the probe field EPR. In Figure 5.5, we show the FFT amplitude
calculated at 367 THz and 377 THz, respectively, on points of the probe spec-
trum where the ILS and NRM effects are more pronounced, for both parallel
and orthogonal polarization to the probe.

When EPOL ∥ EPR, the main vibrational components are present in the re-
sponse, and their amplitude is non zero where the spectral shift is maximum, as
can be seen in panel a) of Figure 5.5. By changing θ towards π∕4, the contribu-
tion to the response associated to the E phonons gradually disappears. Within
this geometry we should observe only contributions to the signal arising from
the inelastic light scattering, therefore there should be no oscillations at the
peak of the probe spectrum (see panel b) of Figure 5.5). When EPOL ⟂ EPR the
signal is given, as expected, by the nonlinear refractive index modulation, and
oscillates with the E mode frequency, as confirmed by the FFT shown in panel
c) of Figure 5.5. As θ varies, the amplitude of the FFT associated to such mode
increases, reaching a maximum at π∕4. We notice that an imperfect experi-
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Figure 5.4: Double pulse measurements performed using linearly polarized pulses,
changing the pump-probe polarization angle andmeasuring the parallel (left column)
or orthogonal (right column) component of the transmitted probe. The polarization
configurations are reported in the insets.

mental alignment determines the presence of faint frequency components on
the sides of the probe spectrum, at frequencies of the A modes. Moreover, the
signal is not perfectly estinguished as it should be for θ = 0,π∕2. The reason for
these discrepancies with the theoretical model lies in the fact that the crystal
equilibrium optical activity1 was not taken into account in the measurements.

1The optical activity is the ability of a crystal to rotate the linear polarization of a transmitted
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Figure 5.5: Absolute value of the Fast Fourier Transform (FFT) for parallel (a,b) and
orthogonal (c) probe-analyzer angles, changing the pump-probe polarization angle.
The FFT is calculated at probe frequency a) 367 THz and b,c) 377 THz.

Therefore the pump and analyzer rotations should have been adjusted to this
offset, in the present case roughly 8° (calculated for a crystal thickness of 1
mm).

5.1.2 ■ Pulse fluence dependence

The nonlinear order of the interaction was tested by changing the pump energy
and measuring the transmitted intensity. The probe fluence was 0.7 mJ/cm2.

In Figure 5.6 we plot the pump probe traces obtained by changing the pump
pulse energy, as a function of the time delay and at a fixed probe frequency
367 THz and 377 THz, respectively on the maximum of the ILS and of the NRM
effect. The signal is in both cases directly proportional to the fluence. The
maxima of the 367 THz signal and minima of the 377 THz signal are shown on
the right as a function of the fluence. A linear dependence of the ILS maxima
and the NRM minima is observed, as expected (see Equation 2.112). In fact the
fluence is proportional to the intensity, which is in turn proportional to the
squared absolute value of the electric field involved in the process.
light beam, with a magnitude proportional to the crystal thickness.
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Figure 5.6: ΔI/I traces at probe frequency a) 367 THz and c) 377 THz, plotted as a func-
tion of the pump probe time delay. The colour indicates a particular pump fluence. The
b) maximum and d) minimum amplitude of ΔI/I, at 367 THz and 377 THz respectively,
is plotted against the pump fluence. The grey dashed lines in b) and d) guide the eye.

We tested the dependence of the signal on the probe energy as well, with
a pump fluence of 2 mJ/cm2. We recall Equations 2.105 and 2.106, where the
dependence of ∆I/I on the probe field amplitude is shown. The presence of a
product of the amplitude of two frequency components in the spectrum makes
the signal linearly dependent on the probe fluence.

In Figure 5.7 we plot the time dependent signal at 367 THz and 377 THz in
the probe spectrum. The maxima and minima of such signals, respectively, are
found to be linearly dependent on the probe fluence.
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Figure 5.7: ΔI/I traces at probe frequency a) 367 THz and c) 377 THz, plotted as a func-
tion of the pump probe time delay. The colour indicates a particular probe fluence. The
b) maximum and d) minimum amplitude of ΔI/I, at 367 THz and 377 THz respectively,
is plotted against the probe fluence. The grey dashed lines in b) and d) guide the eye.

5.2 ■ Coherent pump and randomized probe

This section is dedicated to the experiments enabled by the combination of
Femtosecond Covariance Spectroscopy to the standard time resolved approach.
In practice, we apply a spectral randomization on the probe pulses, which are
delayed in time with respect to the spectrally coherent pump ones. A mea-
surement performed within this framework outputs a correlation map for each
pump probe time delay. As the time delay steps are tens of femtoseconds wide
(in order to properly sample the fastest oscillating response), the time depen-
dent response is sampled by hundreds of points. To efficiently visualize the re-
sult of such a measurement, we do not show all the correlation maps. Instead,
we exploit the symmetry of the correlation coefficient. In fact, by definition, the
map contains the same information on the two sides of the diagonal. Moreover,
the signal is the same along the diagonals, as there is no preferential point in
the spectrum where the interaction takes place. As shown in Figure 5.8, we ro-
tate each map and express the new horizontal axis as a frequency distance from
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the diagonal. We then select one of the two equivalent blocks where the signal
is the strongest, and average the correlation signal along the vertical direction
(along the diagonal of correlation of a component with itself), ending up with a
curve for each time delay. We then stack these curves and build a map, whose
z coordinate represents the average (over the block) correlation coefficient, the
x axis the time delay and the y axis the frequency difference. We notice that the
frequency difference is only meaningful in its absolute value, again due to the
symmetry under exchange of two components.

Figure 5.8: Scheme of the data analysis of a frequency and time resolved pump probe
experiment performed with randomized probe. a) For each time delay, a correlation
map is obtained on the measured transmitted probe spectra. b) Each map is rotated,
then the signal is averaged along the diagonal. c) The correlation curves are used to
build a correlation map, function of the time delay and the frequency shift from the
diagonal.

We explored the possibility of mixing the measured intensities from the
sample beam and the reference beam, using the cross correlation ρc (discussed
in Appendix A). The symmetry of the correlation coefficient is lifted in ρc: the
two sides of the map are not equivalent. As a consequence, the frequency dif-
ference between two frequency components has a well defined sign. �c could
be the right tool to investigate the scattering process directionality (in other
words any peculiarities of a scattering towards the low or high frequency side).
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5.3 ■ Full modulation

As done in the previous Chapter, we start by investigating the sample response
when applying a stochastic phase modulation all along the probe spectrum.
The measurement performed within this scheme results in the autocorrelation
� and the cross correlation �c shown in Figure 5.9 as colour maps, function of
the time delay and of the probe frequency.

We notice the presence of a correlation signal at all the frequency differences
equal to a vibrational mode frequency. Each of these signals oscillates in time
with the phonon frequency, as can be observed in the amplitude of the FFT of
the correlation maps, performed along the delay axis, where peaks appear along
the frequency shift - FFT frequency diagonal. The oscillation could be related to
the alternate redshift or blueshift of the probe spectrum, determining a π shift
of the signal (recall Figure 4.10). The signal in � is a line with finite frequency
width that seems to be "split" in two, while the signal in �c is a single band.
The most relevant feature of �c is the difference in the amplitude and decay
time of the signals belonging to the two sides. From the map we notice that
the phonon correlation survives longer when Δ>0, that is to say when the cor-
relation is evaluated between frequency components in the transmitted beam at
a higher frequency !Si than the input components !Rj from the reference beam,
being therefore satisfied the relation !Si >!Rj .

Around the pump probe overlap, stripes appear along the probe spectrum,
with a period inversely proportional to the pump and probe pulses time dis-
tance. Their presence could be related to the interference fringes in the average
intensity measurement (recall Figure 5.3) which could be caused by XPM [67].
XPM could have an effect on the vibrational signal itself [70], manifesting as
the splitting visible in the 6.2 THz band in the ρ map. Another possibility is
that such overlap signal could be enhanced by the phonon [71], causing it to
oscillate.
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Figure 5.9: Correlation maps as a function of the pump probe time delay for a mea-
surement performed applying phase noise along the whole probe bandwidth. a) Ex-
ample randomized transmitted and reference spectra. b) Example of auto correlation
from the reference beam, auto correlation from the transmitted beam, and cross cor-
relation coefficient, at a time delay of 2050 fs. c) Auto correlation � as a function of the
frequency shift and of the pump probe time delay. d) Cross correlation �c as a function
of the frequency shift and of the pump probe time delay. e) and f) Amplitude of the Fast
Fourier Transform of c) and d).
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5.4 ■ Half modulation

In this Section we show the results of an experiment carried out by applying a
modulation along the upper half of the probe bandwidth. The correlation co-
efficient (�) and cross correlation (�c) maps obtained with the data collected
during this experiment are shown in Figure 5.10. As observed at the end of the
previous Section, we notice the appearance of a correlation signal at frequency
shifts equal to phonon frequencies. The 10.7 THz phonon signal is visible both
in the auto correlation and in the cross correlation. The signal lines in the �

map appear to be split in two, exception made for the 6.2 THz phonon, while
the cross correlation shows as a single horizontal band. The FFT amplitude
confirms that each of the retrieved correlation features evolves at the corre-
sponding vibrational frequency.

A striking difference between this results and the ones of the previous Sec-
tion lies the fact that the strongest phonon correlation bands appear for ∆<0.
Moreover the difference in amplitude between the two halves of the �c map is
more evident. We believe this is due to an amplification of the signal in the
heterodyning process. In fact the spectrally smooth portion of the spectrum
might efficiently amplify the radiation scattered towards the low frequency side,
which therefore is revealed clearly in the lower portion of the ρc map in Figure
5.10. The signal scattered towards the high frequency side, instead, might be
partially cancelled by the randomization. According to this interpretation, we
expect to see the signal to be enhanced for positive frequency differences when
the modulation is put on the low frequency side of the spectrum. In Figure 5.11
we plot the cross correlation maps of two time resolved measurements per-
formed randomizing the spectral phase of half of the spectrum, on the low or
high frequency side, in a short range of positive time delays (2 ps to 2.6 ps).
We notice that, while the result of an experiment modulating the low frequency
side is in agreement with the result shown in Figure 5.10, the cross correlation
signal is more evident for a negative frequency difference when the probe pulse
modulation is on the high frequency side. This result corroborates the sug-
gested hypothesis that the half modulation configuration enhances the signal
originating in a directional scattering.
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Figure 5.10: Correlation maps as a function of the pump probe time delay for a mea-
surement performed applying phase noise along half of the probe bandwidth. a) Ex-
ample randomized transmitted and reference spectra. b) Example of auto correlation
from the reference beam, auto correlation from the transmitted beam, and cross cor-
relation coefficient, at a time delay of 2050 fs. c) Auto correlation � as a function of the
frequency shift and of the pump probe time delay. d) Cross correlation �c as a function
of the frequency shift and of the pump probe time delay. e) and f) Amplitude of the fast
Fourier Transform of c) and d).

5.4.1 ■ Half modulation with mean value shaping

We repeated the experiment employing probe pulses with their upper half ran-
domized, deleting the amplitude of the low frequency portion.
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Figure 5.11: Time dependent cross correlation �c on the transmitted spectra of a pump
probe measurement with probe randomized on the c) low and f) high frequency side.
Example of a modulated spectrum on the a) low and d) high frequency side. b,e) Cor-
relation coefficient �c for a specific time delay frommaps c,f) respectively.

The result of this measurement is shown in Figure 5.12. The lines seem to be
split in the auto correlation. As in the case of the experiment of Figure 5.10, we
observe that the signal is stronger for ∆<0 than for ∆>0. Unlike those results
though, the signal oscillations in time are somehow harder to interpret, as the
6.2 THz and 14 THz phonon result in more than one Fourier component.
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Figure 5.12: Correlation maps as a function of the pump probe time delay for a mea-
surement performedapplyingphasenoise alonghalf theprobebandwidth,while delet-
ing the amplitude of the coherent portion. a) Example randomized transmitted and
reference spectra. b) Example of auto correlation from the reference beam, auto corre-
lation from the transmitted beam, and cross correlation coefficient, at a time delay of
2050 fs. c) Auto correlation � as a function of the frequency shift and of the pump probe
time delay. d) Cross correlation �c as a function of the frequency shift and of the pump
probe time delay. e) and f) Amplitude of the fast Fourier transform of c) and d).
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5.4.2 ■ Polarization dependence

As anticipated at the end of the previous Chapter, in a single pulse experiment
performed randomizing the linearly polarized probe, it is not possible to dis-
tinguish between signals originating from phonons of different symmetry. In
this section we show the auto correlation and cross correlation maps obtained
in a polarization resolved scheme. The spectrally coherent pump and the ran-
domized probe are linearly polarized with a 45° angle, and a polarizing beam-
splitter separates the parallel and orthogonal components of the transmitted
probe, with respect to its orientation before the sample. Each beam is sent
to a photodiode array, so that their detection takes place simultaneously. We
performed these measurements randomizing half of the spectrum and deleting
the amplitude of the coherent portion, in order to obtain the clearest possible
peaks. Because of the fact that in such a configuration the phonon signals do
not oscillate in time, only the zero time delay maps are analyzed.

The results are shown in Figure 5.13, at the time overlap of the two beams on
the sample. As expected, when EPOL ∥ EPR, the A phonons are selected, there-
fore we observe lines at 6.2 THz, 10.7 THz, and 14 THz. On the other hand,
when EPOL ⟂ EPR, we observe a strong E signal, at 3.8 THz, together with a
weak E signal at 12.08 THz, showing opposite sign with respect to a residue of
the A lines in the same map and the A lines in the previously discussed map.
The rightmost map shows the cross correlation on intensities from orthogonal
polarizations. When ∆ < 0 only the Ag lines show, when ∆ > 0 signals from both
A and E phonons appear. The sign of all of the lines in this map is opposite
with respect to the signal obtained calculating the auto correlation.

The dynamical properties of the correlation signal are different for each
phonon, revealing the sensitivity of the technique to independent phonon pop-
ulations. An in-depth analysis of the signal, along with its comparison to the
results of a time domain analysis of the average transmitted intensity could
disclose information on contributions to the nonequilibrium state of the sys-
tem. For instance, we could distinguish mechanisms with different nature. The
"proper" phonon lifetime (or "decoherence" or "dephasing" time) character-
izes the decay of a single coherent lattice mode, and as such is affected, as an
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Figure 5.13: Correlation coefficient � and cross correlation �c calculated on ameasure-
ment performed using pump and probe linearly polarized at 45° and measuring the a)
parallel and b) orthogonal polarization to the probe. c) cross correlation calculated the
intensity of the orthogonal polarizations from the transmitted beam. d) diagonal cuts
on the three median subtracted maps in a) purple, b) orange, c) black. The blue and
green vertical lines denote the position of the low frequency E and A �-quartz vibra-
tional modes respectively.

example, by decay to levels of lower energy. It determines the linewidth of an
inelastic peak in a spontaneous scattering experiment and the decay time of the
signal in an average measurement [72]. On the other hand, the total phonon
population relaxes with a time which can only be determined by time resolved
techniques, being an incoherent contribution to the signal.

In order to investigate the time scales of the dynamics, we performed a
Wavelet Transform (WT) [64] analysis of the signal along the time delay axis,
independently for selected components within the probe bandwidth. We remind
that the Wavelet Transform of a time dependent curve allows to detect the
presence of any Fourier components as a function of time, because it is based
on the calculation of the signal FFT on a limited time window, selected by
a properly chosen gate function. Therefore the WT is represented by a two
dimensional complex valued map, function of the Fourier component and of
time. Cuts were extracted at the α-quartz phonon frequencies and fitted with
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a sum of two functions defined as a convolution between the pump impulsive
excitation and an exponential decay. The need of a two component decay in the
correlation coefficient could be attributed to the presence, at zero delay, of the
nonlinear interference between the pump and the probe.
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where τ is the decay time, σ the width of the pump pulse, ∆t the time delay
and erf the error function. We perform this analysis on a reference time and
frequency dependent average measurement and on the time and frequency de-
pendent correlation coefficients obtained by modulating the whole bandwidth
and half of it, to search for any differences in the slow decay time extracted
within the two spectroscopic approaches.

Figure 5.14: Ratio between the slow decay time obtained analyzing the correlation
maps and the one obtained reference average measurement.

Figure 5.14 shows the ratio between the slowly decaying τ from the corre-
lation maps over that obtained from the average pump probe measurement,
for each phonon. The result of this preliminary analysis shows a remarkable
difference in the phonon at 10.7 THz time, as it seems to survive much longer
in the correlation maps. One possible reason for this improved visibility of the
vibrational-induced correlation feature is that the low frequency spectrum is
dispersed along the y axis of the correlation map, while in the average mea-
surement all of the contributions overlap within the probe spectrum.
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In this Chapter were reported the results of an investigation on the dynam-
ical response of a α-quartz sample. We studied the response of the crystal’s
coherent vibrational modes in the average transmitted intensity. The latter is
modulated in time by oscillations at the vibrational frequencies, and the phase
of the oscillation is determined by the effect giving rise to it. We are able to
separate the response due to phonons of different symmetry, properly polariz-
ing the pump and probe pulses, and to retrieve the order of the interactions by
scanning the pulse fluence, validating the calculations of the quantum model
discussed in Chapter 2. Then, we studied the sample response after the pump
excitation, obtaining a dynamical covariance-mediated response. We explored
the full and partial modulation settings enabled by the pulse shaper, discussed
in a static configurations in Chapter 4. Each coherent vibrational mode gives
rise to a signal which manifests as a sideband in the correlation coefficient
map, and oscillates in time, with a decaying amplitude. A preliminary analysis
on the data shows that the visibility of the vibrational peaks is very good and,
for a small amplitude vibrational mode, orders of magnitude better than in the
average measurement. We are currently working in this direction to quantify
the differences between the two approaches and complete the characterization
of the time resolved covariance based acquisition.



6 ■ Applications

Throughout this Thesis the Femtosecond Covariance Spectroscopy technique
was revealed as a powerful means to investigate a transparent sample, and re-
veal its vibrational modes. Nonetheless, the concepts lying at the foundations
of the technique are general and not specific of the experimental apparatus em-
ployed nor of the nature of the energy levels considered. In this final Chapter
we study the adaptability of the technique to different systems. First, we report
the investigation of the vibrational modes in a non-transparent sample, carried
out without changing the setup. Then, we focus on the response of the same
material (and other samples) studied by applying the covariance based spec-
troscopy to a system producing X-ray light. Finally, we describe the simulation
of a scattering process involving electronic levels, and the result we obtained
within the covariance based investigation.

6.1 ■ Samples

Within the experimental scheme adopted to demonstrate the FCS technique
and described in Section 3.1, we investigated the response of Copper Germanate
(CuGeO3), a compound widely studied for its peculiar properties, due to a del-
icate and not fully clarified interplay between the magnetic, orbital and struc-
tural degrees of freedom. The relevant units of this crystal are the Cu-O6 oc-
tahedra, which are distorted because of structural symmetry reasons (Cristal
Field splitting and Jahn-Teller effect). This causes the originally fivefold de-
generate Cu 3d levels to split into the 3dx2−y2, 3dxy, 3dxz,yz, and 3dz2 levels. The
energy differences between the ground state and the three excited states are
∆1 ≃ 1.55 eV, ∆2 ≃ 1.7 eV, ∆3 ≃ 1.9 eV. Optical transitions between these levels
should be electric-dipole forbidden because the involved orbitals have the same
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parity, but normal vibrations in the system mix the d copper orbitals with the p
oxygen levels, changing their parity. These dd transitions are therefore referred
to as phonon assisted optical transitions [73].

Figure 6.1: Result of a FCS experiment employing phase noise on copper germanate
(CuGeO3) at room temperature, with probe polarized parallel to the microscopic a axis.
a) Reference auto correlation. b) Transmitted beam correlation. c) Example of a shaped
reference (light blue) and transmitted (blue) spectrum. d) Integral of � along the diag-
onal of the median-subtracted auto correlation shown in the lower right half of b).

For the reasons reported above, CuGeO3 is light absorbing within the band-
width of the laser in use, as the central wavelength of the latter is λ0 = 800 nm,
corresponding to E0 = 1.55 eV. We chose to shape the average value of the spec-
trum of our pulses in order to retain the portion where the sample absorption
is higher. The experiment was performed employing 50% phase noise, with a
pulse fluence of 1.8 mJ/cm2, on a crystalline sample with in plane microscopic
axes a and b. The probe was polarized parallel to the a axis, and the signal
parallel to this same axis was detected, in a configuration that allows to select
the Ag symmetry vibrational modes. The result is shown in Figure 6.1. Two
clear lines appear along the diagonal, which we estimate to be respectively 5.56
THz and 9.95 THz far from the diagonal, therefore being originated by the two
lowest energy Ag modes of CuGeO3 [74]. We find that a highly absorbing sample
is still a good candidate for FCS as this technique is sensitive to spectral weight
scattering, therefore a low average transmittivity is not an obstacle to its suc-
cessful application. On the other hand, changes in the transmitted intensity
in this wavelength range are particularly meaningful for this sample, as they
are related to the aforementioned dd transitions [73]. These changes could be
tracked while working in the present nonlinear excitation regime, because the
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pulse bandwidth contains the lowest energy excitations. Using the femtosec-
ond covariance spectroscopy technique in combination with a time resolved
approach could allow to study the dynamical interplay of the excited coherent
vibrational modes and the dd transitions [75].

We therefore demonstrated the general applicability of the technique to sam-
ples probed by transmitted pulses. Whenever it should be more convenient to
study the transient reflectivity during an ultrafast spectroscopy experiment,
the FCS approach would not require any fundamental changes to be success-
fully employed. The technique is intrinsically insensitive to any linear effect
which provide an unwanted background. This, together with the fact that the
present scheme relies on a reference beam, makes FCS particularly attractive
for experiments on biological samples, where often the sample vessel and sol-
vent response need to be accounted for. We are confident, therefore, that the
innovative scheme of FCS will find applications in diverse areas.

6.2 ■ Wavelength range

One of the advantages of the technique presented in this work is that the central
wavelength of the light is not a crucial parameter. In a stimulated light scat-
tering experiment, performed far from any electronic resonances and involving
low energy modes, the pulse bandwidth is important as determines the max-
imum excitation energy that can be retrieved, as well as the frequency width
of the spectral features (of the shaping and of the detection) that affects the
sensitivity of the method. As a matter of fact, we found that when extracting
information using the statistical correlation between two frequency compo-
nents, their distance is the meaningful scale of the analysis.

We could, therefore, change the source wavelength and repeat the experi-
ment. In order to adapt the setup to the new source, the greatest effort would
go into adjusting the pulse shaper alignment and geometry. This step could
be skipped if the source was able to produce stochastic radiation. This is the
case for a Self-Amplified Spontaneous Emission (SASE) Free Electron Laser
(FEL). In such a machine, laser amplification and saturation is reached within
a single pass of a relativistic electron bunch through a long undulator section.
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Figure 6.2: FERMI FEL spectra in a) SASE, b) partially seeded and c) seeded mode
of operation, acquired during a test . The coloured lines are single shot spectra, while
black filled curves represent the average spectrum over the set. The peak at 42.1 nm
in b) represents the region of the spectrum overlapping with the seed. The correlation
coefficient calculated on each set of spectra is shownbelow the correspondingplot (d-f).

The lasing process is initiated by spontaneous undulator radiation, which is
a stochastic process. As a consequence, measured spectra of individual SASE
pulses show several narrow peaks which fluctuate in size, position and height
from shot to shot. This intrinsic stochasticity is an advantage to covariance
based techniques. The central wavelength of the average spectrum ranges from
the deep UV to the hard X-rays, depending on the parameters of the machine
[76]. It can be inferred that the output of a SASE FEL is spectrally uncorre-
lated, and is an ideal candidate to test the validity of the FCS technique. At
FERMI (Free Electron laser Radiation for Multidisciplinary Investigations), the
FEL built in the site of the third-generation synchrotron radiation facility Elet-
tra, in Trieste, a seeding scheme has been implemented, in order to imprint in
the output the seed spectral phase coherence, and produce single shot gaussian
spectra with very little fluctuations shot by shot (with prevailing central fre-
quency fluctuations) [77]. As opposed to the SASE, this would produce a very
high value of the statistical correlation coefficient. The two limiting cases are
depicted in the first and third column of Figure 6.2.

We submitted, and obtained, a beamtime at FERMI in order to apply the co-
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variance based method to transmitted FEL pulses. The choice of submitting a
proposal at a seeded FEL was made because of the possibility of using FERMI
in SASE mode (even if it is not meant to work in this configuration), and of
detuning the seed from the undulator resonance to impart spectral coherence
only on part of the spectrum (see middle panel of Figure 6.2).

Following the results obtained in the laboratory, several configurations of
the FEL were explored, from the seeded to the SASE mode through several in-
termediate configurations. Other FEL parameters were changed to monitor the
effects on the experiment. The spectrum central wavelength was chosen to
coincide with a transparency region of the samples in order to favor inelastic
scattering from vibrational levels over one photon absorption, or to coincide
with an absorption edge to increase the cross section of inelastic scattering
from electronic levels. Being the fundamental seed wavelength λSEED = 255 nm,
we worked with its 7tℎ harmonic, λ7 = 36.43 nm, and its 6tℎ harmonic, λ6 = 42.5
nm, as a seed. Analyzing in real time the acquired data, we were able to grasp
the evolution of the frequency correlation while changing the experimental pa-
rameters.

For the experiments, the FEL was set to operate at the seed 7tℎ harmonic,
thus with a central wavelength λ7 = 36.43 nm. The investigated samples were
crystalline films of Si (with thickness δ = 1 µm), mounted in a vacuum chamber
at the experimental station EIS-TIMEX [78].

The clearest results have been obtained on the silicon film, which shows a
strong resonance. We observed a recurring signal at the frequency of a Raman
resonance of carbon, of about 47 THz, which we attributed to carbon-coated
optics in the beam transport. This means that the optical elements must be
carefully chosen and characterized before performing this experiment, which
can be challenging to accomplish at a user facility. On the other hand, this
means that the FCS technique could be implemented to test the status of the
beam optics themselves, and of course to test the beam spectral properties [79].
With the sample, one more broad but intense feature is visible, centred around
70 THz, shown in Figure 6.3. This was obtained with partially coherent pulses,
when tuning the seed position in the low and high frequency side of the spec-



110 CHAPTER 6. APPLICATIONS

Figure 6.3: Results of the experiment performed at the Fermi FEL on a Si sample, using
partially coherent pulses, with seed tuned on the low (a-c) or high (d-f) frequency side
of the spectrum. Correlation coefficient with (b,e) and without (c,f) the sample. The
gray line is located at 47 THz and present with and without the sample, the black line
at 70 THz appears only when the sample is investigated.

trum. This feature could be representative of the scattering from an electronic
state of a surface reconstruction of Si [80].

The possibility of working with the machine scientists allowed us to scan
many machine parameters. We were able to observe unique patterns on the
covariance maps related to the lasing process and to an enhancement of the Si
signal. In a FEL like FERMI, the electrons can develop micro-bunching insta-
bilities (µBI) which are detrimental to the energy stability of the lasing process.
The laser heater (LH) is a light beam that overlaps to the electrons to induce a
uniform increase of the energy spread of the bunch, damping the µBI. The LH
pulse shaping is used to imprint an energy and/or density modulation onto the
bunch, and therefore affects the lasing. This allows to control the properties of
the output [81]. If two delayed and chirped copies of the LH pulse recombine
onto the electron bunch, they interfere and generate a beating that modulates
the bunch. This modification is preserved up to the interaction with the seed
laser. The presence of two different wavelengths leads to a frequency mixing
process that produces controlled sidebands, whose position with respect to the
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Figure 6.4: Measurements performed with SASE FEL pulses, produced introducing a
modulation with the LH with wavelength �LH = 7.44, 16.5, 19.3 �m.

central seeded peak varies with the beating frequency (and that can be ampli-
fied separately by tuning the machine parameters). It was shown that when
the FEL is operated in SASE mode, the current modulation produces a regular
spike train [82].

We tested the covariance based acquisition applying a LH modulation with
wavelength λLH = 7.44, 16.5, 19.3 µm. The results obtained in SASE config-
uration are shown in Figure 6.4. The correlation maps show a diagonal line
whose position is proportional to the frequency of the modulation introduced
by the LH. The correlation reveals a process taking place during the laser light
generation, and involving frequency pairs along the whole spectrum, therefore
it might me revealing of the frequency mixing process leading to the sidebands
generation, which cannot be distinguished from the average spectrum.

We used this machine configuration by repeating the experiment on Silicon
using partially seeded pulses produced with a low wavelength LH modulation.
We used a wavelength of λ6 = 42.5 nm. In Figure 6.5 we report the correla-
tion coefficient calculated on this set of measurements. First, we notice that
the background of ρ is reminiscent of amplitude fluctuations, as intensity is
removed from the central peak to be transferred to the sidebands. We also no-
tice the presence of sidebands with a distance proportional to the modulation,
present with as well without the sample. A value of λLH = 19.3 µm was chosen
as it matches the vibrational mode at νSi = 15.5 THz of crystalline Si. As can be
seen from the bottom plots of Figure 6.5, the signal from this mode seems to
be enhanced at resonance.

We chose to fix λLH = 19.3 µm and change the energy of the FEL pulses
(values E = 8, 6, 4, 2, 1 µJ), in a partially seeded configuration. The result is
shown in Figure 6.6. The sidebands are visible on the maps calculated on the
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Figure 6.5: Measurements on crystalline Si performed with partially seeded FEL
pulses, with a low wavelength laser heater modulation at �LH = 7.44, 16.5, 19.3 �m.
a) Average spectra, c) correlation coefficient, and b) integral of the correlation coeffi-
cient, with or without the sample during the three measurements.

Figure 6.6: Measurements on crystalline Si performed with partially seeded FEL
pulses, with a low wavelength laser heater modulation at �LH = 19.3 �m, scanning the
pulse fluence.. a) Average spectra, c) correlation coefficient, and b) integral of the cor-
relation coefficient, with or without the sample.
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transmitted spectra, and seem to be enhanced by the increasing pulse energy,
therefore confirming that they origin from scattering in the sample.

6.3 ■ Scattering process

Resonant Inelastic X-ray Scattering (RIXS) is a photon in - photon out tech-
nique capable of probing elementary excitations in complex materials by mea-
suring their energy, momentum, and polarization dependence. The incoming
photon energy is tuned to resonate with an atomic absorption edge. When the
sample is illuminated, the incident photon promotes a different type of core
electron into an empty valence shell. The presence of a hole in the electronic
core implies a highly energetic and therefore unstable state for the system,
that decays within few femtoseconds. RIXS is governed by fluorescent decay,
in which the empty core-state is filled by an electron and at the same time a
photon is emitted [83]. The emitted photons map a portion of the electronic
excitations in between the two levels. Therefore a RIXS experiment needs a soft
to hard X-ray tunable source, and is widely used at SASE FELs facilities. The
necessity of measuring the RIXS response at different incoming photon ener-
gies, though, calls for a scan of the energy of the incident beam, which needs to
be monochromatized, leading to huge energy fluctuations and the necessity to
acquire a very large amount of scattered spectra. We performed a simulation to
demonstrate that no energy filtering is needed if a covariance based detection
is applied to the scattered spectrum [84–86].

The idea of a correlation based retrieval of the RIXS signal stems from the
fact that the statistical distribution of the scattered photons is representative
of the spectral content of the single SASE pulse even though on average a few
photons will be counted on the inelastically scattered region. We performed a
simulation of a RIXS experiment on CuGeO3, in resonance to the oxygen K-edge.
The simulation starts from the wavelength dependent RIXS data measured in
[87]. The RIXS process is simulated by means of realistic parameters for the
lasing in SASE mode (bandwidth ∆E/E ≈ 1% and width of the correlation spike
5% of the full bandwidth). It is assumed that the scattering cross section is
smaller than 10−6, so that every single shot SASE pulse generates a very small
number of counts on a detector acquiring the inelastically scattered light. It is



114 CHAPTER 6. APPLICATIONS

Figure 6.7: Simulation of the covariance based detection applied to a RIXS experiment
on CuGeO3 performed with SASE pulses. a) Data adapted from [87]: few selected RIXS
spectra (coloured curves in inset) and absorption coefficient of the sample (gray curve).
Example of SASE spectrum used in the simulation (pink curve). Auto (b) and cross (d)
correlation calculated on the output spectra. c) Single scattered spectrum (gray line)
and average scattered spectrum (black curve). Cuts off the cross correlation coefficient
representing the RIXS response obtained at different input wavelengths.

important to note that the acquisition of the scattered light averaged over mul-
tiple pulses results in a spectrum where contributions scattered from different
incoming energies cannot be distinguished.

In the same Figure we plot the frequency correlation of the scattered spectra.
It is easy to identify the inelastically scattered features (which are highlighted
by colored vertical lines and plotted to the left). If we compare the signal ex-
tracted from ρwith the measured RIXS spectra, we see that the spectral features
are well reproduced. We stress that in a noise correlation based analysis the
measurement is performed in full bandwidth mode and the inelastic scattering
features at different incoming photon energies are acquired simultaneously.
Therefore the full RIXS response across the absorption edge could be retrieved
in an experiment lasting few minutes. Moreover, the elastic peak does not hide
inelastic excitations. For this reason, the FCS method is particularly suited to
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study the collective excitation dispersion in systems where the inelastic exci-
tation has a small cross-section.

6.4 ■ Higher order correlation coefficients

The analysis conducted so far aims at revealing the coupling between spec-
tral components, assuming no interactions between the excited states. In the
specific case of a system in the electronic ground state, whose only excited
states are due to the lattice, this could be interpreted as the absence of any
vibrational anharmonicities. In a broader perspective, excited states of dif-
ferent nature could be coupled. As an example, competing collective phases of
matter emerge in "complex" materials where various degrees of freedom (spin,
charge, orbital, lattice) interact. The role of these excitations is often addressed
by means of time resolved spectroscopy, which allows to disentangle their con-
tributions based on their different dynamical time scales, which are determined
by the origin of the excitation. Raman scattering is another popular technique
used to extract the coupling constants and to selectively study low energy elec-
trons (at the Fermi surface) from different regions of the Brillouine zone by
changing the polarization of light [88].

To reveal the coupling between energy states determining the properties of
a material, Femtosecond Covariance Spectroscopy could be a powerful asset,
providing the excitation spectrum as well as a map of the correlation, therefore
the coupling, among the levels. The technique should be extended to exploit the
inelastic light signal scattered off of different low energy levels to directly esti-
mate the entity of their mutual interaction. While this passage is conceptually
straightforward, the appropriate analytical routine still needs to be addressed.

One possible direction is that of using multiple intensity points within the
spectrum to define a n-body correlation coefficient, whose meaningful param-
eter would clearly be the product <I(ω1)I(ω2)...I(ωn)>. The frequency vari-
ables ω1,ω2, ...,ωn can be redefined as differences Ω1,Ω2, ...,Ωn−1 from a single
independent variable ω. Upon integration over ω, the correlation coefficient
becomes function of the frequency differences Ωi, therefore of the excitation
spectrum scale. This formulation could provide a direct insight on the inter-
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action between the low energy levels. A preliminary analysis has been carried
out using a three body correlation coefficient defined as

�(3)(Ωi,Ωj) = ∫ dω
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function of the variables Ωi and Ωj, representing in this case the vibrational
spectrum of the sample.

Figure 6.8: Three body correlation coefficient �(3) calculated on a) reference spectra
and b) transmitted spectra by �-quartz (whose vibrational spectrum from [41] is plot-
ted on top and on the left of the colour map).

The coefficient ρ(3) in Figure 6.8 is calculated on data measured in a trans-
mission experiment on α-quartz with randomized pulses. It reveals vertical
and horizontal structures at the vibrational frequencies of the sample. We in-
terpret these structures as two body correlations originated by the vibrational
resonances which show up regardless of a third intensity factor (hence the line).

Finally, a univocal connection must be established with the time first and
second order correlation functions g(1,2)(t1, t2) of quantum optics [39, 89–92].



7 ■ Conclusions

In order to reveal a signal arising from a nonlinear interaction, several spectro-
scopic techniques are nowadays adopted. In spite of their practical and funda-
mental differences, they have in common to rely on pulse to pulse consistency
to deliver information on a nonlinear process. With the work presented in this
thesis we show, instead, that we can successfully leverage upon noise to retrieve
a nonlinear signal. To achieve this goal, we exploited the fact that a weak signal
introduces a strong spectral correlation, which can be revealed even when the
output spectra fully spectrally and spatially overlap with the excitation pulse.
Based on these principles, we propose a novel approach to a nonlinear spec-
troscopy experiment, called Femtosecond Covariance Spectroscopy.

To provide a solid basis for the validation of the technique, we focused on a
third order nonlinear process, inelastic light scattering, which is prompted by
the mixing of intense electric fields in a transparent material. The interaction
implies that the measured intensity at some point in the transmitted spec-
trum is statistically related to the intensity at other points of the spectrum,
whenever their energy distance coincides with an energy level of the sample
involved in the scattering. We performed inelastic light scattering experiments
from vibrational modes of a benchmark sample, α-quartz. We employed a near
infrared laser with central wavelength in a transparency region of the sample,
and bandwidth larger than its lowest energy vibrational modes. We found in
the correlation coefficient sidebands that reproduce the vibrational spectrum
of the sample. Their lineshape changes according to the presence or absence
of a non modulated portion of the spectrum, heterodyning the scattered ra-
diation. In fact we find that a partial spectral randomization is most efficient
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in preparing a pulse with no pre existent correlation, that, at the same time,
provides a local oscillator for the sample-induced fluctuations to be amplified.
In this scheme, the ultrashort pulse provides, at the same time, intense electric
fields to stimulate a response, and noninteracting components to reveal it. The
self-heterodyned nature of the acquisition is accounted for in a fully quantum
model.

The technique can be adapted to a pump - probe scheme by exciting the
sample with a separate, intense and spectrally coherent pump pulse. Our mea-
surements of the average transmitted probe intensity performed using a pump
to excite coherent vibrational states, reveal that oscillations in the response
are initiated in-phase by the pump and evolve at the vibrational frequencies.
Such a response is an ideal candidate to test a covariance based probe, as the
spectrum undergoes a red-shift or a blue-shift alternatively in time, and the
correlation coefficient is found to oscillate in time at the phonon frequency. The
investigation we started with this Thesis aims at establishing the signatures in
the correlation that resolve a thermal from a coherent vibrational state. In fact,
if a quantum optics model describes accurately the results of a standard pump
probe experiment on α-quartz, the theoretical framework must be completed
in order to describe a pump probe approach employing randomized pulses and
a covariance based retrieval.

The proposed method has proven to be a powerful probing scheme in a op-
tical spectroscopy experiment, and can be successfully translated into different
languages. To further motivate the interest in the investigation we initiated,
and open a possible future direction, let us imagine a scenario where noise
is unavoidable as it is intrinsic to the generation of light. One such stochastic
source is the sun [2, 93], whose light sustains life on this planet. Clearly its sta-
tistical properties must be taken into account when studying systems absorb-
ing light in a natural environment, as photosynthetic and photovoltaic systems.
The absorption of sunlight in photosynthetic organisms results in the creation
of electronic excitations, which are transferred to dedicated reaction centres,
where ultimately chemical bonds are produced to store energy in the long term
[94]. Because of the ultrafast scale of the energy transfer between the pig-
ment and the reaction centre, ultrafast spectroscopy is employed to investigate
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the mechanism of the transfer, which is not yet well understood. Nonetheless,
in the natural environment, light harvesting complexes experience excitation
through the incoherent light from the sun [95]. It has theoretically been shown
that quantum beatings in the dynamical response, therefore coherent excita-
tions exist under incoherent excitation [96]. Noisy light sources are exploited
to reproduce the effect of sunlight, and have provided the experimental veri-
fication of the theoretical expectations [97–99]. A statistical approach to the
light interaction with such a complex system could provide new insight on the
dynamical coupling between the electronic levels.

The experiments have shown that consistent information is present in the
correlation maps, but more incisive analytical and conceptual tools are needed
to assess the different contributions. To fully characterize the FCS technique
there are still steps to take. Nonetheless we believe that the present work sets
the basis for the development of a technique that successfully conveys infor-
mation beyond traditional schemes.
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Appendix A

Correlation coefficient

Here we describe the correlation coefficient used in the Thesis to reveal the
nonlinear signal and discuss its properties.

A.1 Auto correlation

We call auto correlation the Pearson correlation coefficient ρwhen it is calculated
on a set of frequency dependent intensity spectra from a single measurement
channel. In other words an auto correlation is calculated on spectra which
were all transmitted by the sample or measured from the reference beam. ρ is a
normalized form of the covariance, therefore its values range from ρ = 1 to ρ = -
1, representing a positive correlation or a negative correlation (anticorrelation),
respectively, between the variables. It is defined as:

� =
[

< I(!i)I(!j) > − < I(!i) >< I(!j) >
]

∕�i�j (A.1)
where the indices i, j refer to the frequency component within the pulse spec-
trum.

The Pearson coefficient assumes a linear relationship between the variables.
Its value is related to the goodness of a linear fit of the distribution. In Fig-
ure A.1 we show scatter plots of simulated data. They are produced plotting, for
each repetition, I(ωi) versus I(ωj). The corresponding value of the Pearson cor-
relation coefficient is reported on top of each scatter plot. On the top row we
observe a transition from the maximum value ρ = 1, to the minimum, ρ = -1,
through smaller absolute values. It can be inferred that higher values of ρ are
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Figure A.1: Scatter plots of example data distributions and corresponding value of the
Pearson correlation coefficient. On the top row we observe a transition from the max-
imum to the minimum value of � through smaller absolute values. In the middle and
bottom row we report different cases that lead to the same value for �.

obtained when the data points are very close to a linear fit of the distribution.
In other words, the closer the Pearson coefficient value is to ±1, the more the
relationship between the variables is linear. The value of the correlation coef-
ficient must be used carefully. In fact, stronger or weaker linear associations
lead to the same value of the coefficient (see middle row of Figure A.1). More-
over, when ρ → 0, it is not possible to draw any conclusions on the relationship
between the variables. They could be uncorrelated, as in the middle plot of the
top row, where randomly distributed points lie in the plane. The same value is
obtained, however, when the distributions have a non monotonic association,
as in the cases of the bottom row of the same Figure. We conclude that a scatter
plot is a useful way to clarify the meaning of a value of ρ.

As mentioned above, ρ assumes a linear relationship between the variables,
therefore it is not testing a hypothesis for the origin of the data, so does not
distinguish dependent and independent variables. This could be inferred also
by the symmetry of ρ upon exchange of the factors I(ωi) and I(ωj). ρ, moreover,
does not properly weigh the data points, which would be needed when a subset
of the data is measured with greater precision (not the present case).
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A.2 Cross correlation

It is instructive to rewrite ρ as a function of the frequency difference δ = ωi−ωj.
Therefore, substituting ωi = ω and ωi = ω + δ:

�(!, �) =
< I(!)I(! + �) > − < I(!) >< I(! + �) >

�!�!+�
(A.2)

which reveals that any meaningful information extracted from the analysis of
the covariance is actually a function of the frequency distance between two
components δ, whose sign is not defined.

We could also input ρ one intensity from the transmitted beam and one
from the reference beam. We refer to this as a cross correlation coefficient, ρc.
It reads:

�c =
< IR(!i)IS(!j) > − < IR(!i) >< IS(!j) >

�Ri �
S
j

(A.3)
This coefficient has a normalized amplitude, but the result is clearly different
when IR(ωi) > IS(ωj) or IS(ωi) < IR(ωj), therefore we cannot rewrite it explicitly
as a function of δ. In this case, the degeneracy under exchange of the intensity
factors is lifted. We will make use of ρc to investigate processes with a well
defined directionality within the spectrum.

A.3 Simulated pulses

We simulated numerically a set of Gaussian spectra with fluctuating parame-
ters representing a global instability of the intensity. A few limiting cases are
sketched in Figure A.2, along with the Pearson correlation coefficient ρ calcu-
lated on each set.

We randomize shot to shot the simulated spectra, with fluctuations pre-
vailing in the central frequency, amplitude or width. When the amplitude of
the pulses is strongly fluctuating, everywhere ρ ≈ 1, as the fluctuation involves
the whole spectrum. When the spectra are oscillating rigidly around a aver-
age frequency position, the correlation coefficient shows areas of negative or
positive correlation when considering pairs of components on the same side or
on opposite sides of the spectrum, respectively. In fact, one component and
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Figure A.2: Correlation coefficient calculated on sets of simulated spectra with pre-
vailing a) amplitude, b) central frequency, c) envelope width noise, or d) narrowwidth
noise. In a,b,c) large regions of the spectrum are correlated or anticorrelated when,
shot by shot, the components within fluctuate in phase or out of phase. In d) all the
components are uncorrelated.

its neighbours will behave similarly, but in opposition to components on the
other side of the spectrum. Finally, when the spectrum is "breathing", spec-
tral weight is distributed from the peak to both sides (or vice versa), therefore
components belonging to these portions are negatively correlated to those in
the middle. This basic simulation, even if representing an overly simplified
system, allows to become familiar with the meaning of broad features in the
correlation maps, which, when present, are related to global spectral weight
shifts. In the opposite limiting case, the pulses can suffer from narrow spectral
width noise that results in a vanishing correlation coefficient for all the pairs of
components within the spectrum. The diagonal has still a value close to 1, as it
represents the correlation of a component with itself, and its width is propor-
tional to the average width of a spike (referred to, in the Thesis, as correlation
width ∆corr). This is the most favourable condition to reveal any correlations
introduced by a nonlinear interaction.



Appendix B

Supplementary analytical tools

Here we present a few analytical tools necessary to integrate the theoretical
and phenomenological models presented in Chapter 2 for the description of the
single and double pulse experiments.

B.1 Notes on the Liouville representation

In Chapter 2 we adopted the formalism based on the density operator in the
Liouville representation. We summarize here some of its properties, which will
help clarifying its physical interpretation.

The state of the material is represented by molecular wavefunctions
ΨM (r, t) =

∑

n
cnΨn(r, t) (B.1)

where Ψn constitute a basis of molecular eigenstates of the molecular unper-
turbed Hamiltonian ĤM , and cn the projections of ΨM along the eigenstates.
Given the difficulty in calculating ΨM in most practical cases, we adopt a new
formalism based on the density operator [6]. Let us consider a statistical en-
semble of equally prepared physical states and suppose that the probability Pk
for the system to be in the ktℎ normalized state |Ψk(t)⟩ is known. The statis-
tical mixture of states is represented by the density operator, defined as the
weighted average of the projectors on the states |Ψk(t)⟩:

�̂(t) ≡
∑

k
Pk|Ψk(t)⟩⟨Ψk(t)| (B.2)

where Pk are non negative (Pk ≥ 0) and normalized ∑

k Pk = 1. The density
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operator allows to access the expected value of a generic operator Â(t) as:

⟨Â(t)⟩ =
∑

k
Pk⟨Ψk(t)|Â|Ψk(t)⟩ =

∑

m

∑

k
Pk⟨Ψk(t)|Â|m⟩⟨m|Ψk(t)⟩

=
∑

m
⟨m|�̂Â|m⟩ = Tr

(

�̂Â
)

(B.3)

where we have introduced the completeness condition ∑

m |m⟩⟨m| and denoted
with Tr

(

Ô
) the trace of a generic operator Ô, calculated summing its diagonal

elements in any complete set of states.

Fixing a basis, the values �nm = ⟨m|�̂|n⟩, are elements of the so called density
matrix. The diagonal elements �nn give the probability that the system is in the
eigenstate |n⟩ and are called populations. The off-diagonal terms imply instead
that the system is in a coherent superposition of the eigenstates |n⟩ and |m⟩ with
n ≠ m and provide the amplitude of what is called the coherence of the two states.

Let describe the time evolution of the density operator using its equation of
motion. Let us first consider a pure state and calculate the time derivative of
its density operator:

)�̂
)t
=
( )
)t
|Ψ(t)⟩

)

⟨Ψ(t)| + |Ψ(t)⟩
( )
)t
⟨Ψ(t)|

)

. (B.4)
Using now the time-dependent Schrödinger equation iℏ

[

dΨ(t)∕dt
]

= ĤΨ(t) with
a generic Hamiltonian Ĥ, we obtain:

)�̂
)t
= − i

ℏ
Ĥ|Ψ(t)⟩

⟨

Ψ(t)
|

|

|

|

+ i
ℏ
|

|

|

|

Ψ(t)
⟩

⟨Ψ(t)|Ĥ

= − i
ℏ
(Ĥ�̂ − �̂Ĥ)

(B.5)

The last equality in the equation has been specifically worked out for pure
states. However, since pure and mixed states are related by a linear trans-
formation (the density operator describing a mixed state is a superposition of
pure state density operators), Equation B.5 can be also extended to mixed states
and has, therefore, general validity. In a more compact notation

)�̂
)t
= − i

ℏ
[Ĥ, �̂] (B.6)

The previous relation is known as Liouville-Von Neumann equation and rules
the time evolution of the density operator.
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The Liouville-Von Neumann equation, as the Schrödinger equation in the

standard quantum mechanical approach, constitutes the starting point for the
development of the time-dependent perturbation theory. Nevertheless, the two
equations are formally very different: the former describes the time evolution of
a matrix through the action of a commutator, the latter the time evolution of a
vector ruled by a Hilbert operator. In order to make the Liouville-Von Neumann
equation formally equivalent to Schrödinger Equation, we redefine the notation
on the basis of the following points, moving to the Liouville representation:
• the density matrix is represented by a column vector. For a N-level sys-

tem, the N ×N density matrix will become a column of N2 elements.
• we introduce the Liouville space operator O(t), called superoperator. Its

action on an ordinary Hilbert operator Â is defined through:
O(t)Â ≡ [Ô(t), Â]. (B.7)

It follows that Liouville space operators O(t) are represented by N2 × N2

matrices.
These rules allow the construction of the Liouville space, that is the result of
the cartesian product of two Hilbert spaces.

Within the Liouville representation, the Liouville-Von Neumann equation
can be recast into the form

d�̂
dt
= − i

ℏ
ℍ�̂. (B.8)

The results of quantum mechanics can be used to search for a solution to Equa-
tion B.8. Such a solution represents the time evolution of �̂(t), which reads:

�(t) = U
(

t, t0
)

�
(

t0
)

. (B.9)
We introduced the Liouville space propagator U (

t, t0
). By substituting Equation

B.9 in Equation B.8, we find that U satisfies the Liouville-Von Neumann equa-
tion:

)U
(

t, t0
)

)t
= − i

ℏ
ℍU

(

t, t0
) (B.10)

with the initial condition U
(

t0, t0
)

= 1. By integrating Equation B.10 and solv-
ing iteratively, it is possible to get an explicit expression for the superoperator
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U
(

t, t0
). When the Hamiltonian is time-dependent, the formal solution for the

time evolution superoperator becomes:
U
(

t, t0
)

=  e−
i
ℏ ∫ tt0 d�ℍ(�) (B.11)

where  is the time ordered exponential in Liouville space, an abbreviated no-
tation for

U
(

t, t0
)

= 1 +
∞
∑

n=1

(

− i
ℏ

)n

∫

t
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d�n ∫

�n
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�2
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d�1×

× ℍ
(

�n
)

ℍ
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�n−1
)

…ℍ
(

�1
)

. (B.12)

Making use of Equation B.11, we get an exact solution of the Liouville-Von
Neumann equation (Equation B.8)

�(t) =
{

 e−
i
ℏ ∫ t−∞ d�ℍint(�)

}

�(−∞). (B.13)

The action of the superoperator U
(

t, t0
) is therefore:

U
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t, t0
)
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)

= 1 +
∞
∑

n=1
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(B.14)

where we have used the definition of superoperator in Equation B.7.

The expression obtained in Equation B.12 treats the total Hamiltonian (that
cannot be considered weak in general) perturbatively. Such a perturbative ex-
pansion only holds for short times, while breaking down for longer times. An
immediate solution to this problem is to derive another expansion for U

(

t, t0
)

which treats the interaction Hamiltonian perturbatively and the free Hamilto-
nian Ĥ0 exactly. As in the Hilbert space, this can be accomplished by reformu-
lating the time evolution superoperator in the interaction picture. Within the
interaction picture the time-dependence of the states is partially moved to the
observables. The interaction picture in the Hilbert space is defined as follows:

|

|

ΨI (t)⟩ = e
i
ℏ Ĥ0t |

|

ΨS(t)⟩

ÔI (t) = e
i
ℏ Ĥ0tÔSe

− i
ℏ Ĥ0t

(B.15)

where the subscripts S and I denote the Schrödinger and the interaction picture,
respectively. Similarly, we can introduce the interaction picture in the Liouville
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space by splitting the superoperator ℍ in a free Hamiltonian and an interaction
term, respectively

ℍ = ℍ0 + V (B.16)
So we can rewrite the time evolution superoperator as the following product:

U
(

t, t0
)

= U0
(

t, t0
)

Uint
(

t, t0
) (B.17)

with
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Uint
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i
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(B.18)

where we have defined Vint(�) = U†0
(

�, t0
)

V (�)U0
(

�, t0
), the superoperator V in the

interaction picture. We express the superoperator in Equation B.17 in its time-
ordered expanded form:
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)

= U0
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(B.19)

which is equivalent, using the  operator, to:
U
(

t, t0
)

= U0
(

t, t0
)

 e−
i
ℏ ∫ tt0 d�Vint(�) (B.20)

We can use these tools to work on the perturbative expansion of �(t),
�̂(t) = �(0)(t) + �(1)(t) + �(2)(t) + �(3)(t) +… (B.21)

where �(n)(t) is the ntℎ-order contribution in the electric field and �(0)(t) = �(−∞)

is the unperturbed (at thermal equilibrium) density matrix. Through this ex-
pansion any observable can be computed.

B.2 General solution for a forced harmonic oscillator

In this paragraph we derive a solution for the differential equation describ-
ing the dynamics of a forced harmonic oscillator [17]. We want to solve the
following equation

d2Q(t′)
dt2

+ !2R
dQ(t′)
dt

= F (t) (B.22)
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where Q(t) is the amplitude of the oscillator as a function of time, !R is the sys-
tem proper frequency and F (t) is the driving force. We set as initial conditions,
at time ti, the maximum elongation and minimum momentum

⎧

⎪

⎨

⎪

⎩

Q(ti) = Q0
dQ
dt
|ti = 0

(B.23)

Using Green’s functions [100], we find the solution
Q(t) = Q0 cos

(

!R
(

t − ti
))

+ ∫

�

0
dt′
sin

(

!R
(

t − t′
))

!R
F
(

t′
) (B.24)

In this framework the force is impulsively applied only for a short time, �,
corresponding to the pulse duration. Hence the force, oscillating at !f with
phase �f is approximated by the following function

F (t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, ti < t < 0

f sin
(

!f t + �f
)

, 0 < t < �

0, � < t < tf

(B.25)

Inserting this definition in Equation B.24 we obtain
Q(t) = Q0 cos

(

!R
(

t − ti
))

+ ∫

�

0
dt′
sin

(

!R
(

t − t′
))

!R
f sin

(

!f t
′ + �f

) (B.26)
The integral in the last term can be manipulated as follows
− f
2!R

∫ �
0 dt

′ [cos
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)
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)

− cos
((
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=
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]
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(B.27)

The forcing is most effective when !f = !R. Using this condition and Equation
B.27, Equation B.26 becomes

Q(t) = Q0 cos
(

!R
(

t − ti
))

−
�f
2!R

cos
(

!rest + �f
)

+

+

[

sin
(
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− sin
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−!Rt + �f
)]
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(B.28)

It is reasonable to assume that the force, being an oscillating function, rises and
vanishes periodically, in other words that sin (�f) = sin

(

!R� + �f
)

= 0, which
gives a condition on the phase �f = n� and allows to rewrite the parameter
� = n �

!R
. Making these assumptions Equation B.28 becomes

Q(t) = Q0 cos
(

!R
(

t − ti
))

−
�f
2!R

cos
(

!Rt + �f
) (B.29)
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Equation B.29 can be further simplified using the following relation in the com-
plex plane

a cos
(

x + �a
)

− b cos
(

x + �b
)

=

=
√

(a − b)2 + 4ab sin2
(

�a−�b
2

)

cos
(

x + �a+�b
2 + arctan

(

a+b
a−b tan

(

�a−�b
2

)))
(B.30)

resulting in the following expression for the amplitude of the harmonic driven
oscillator

Q(t) =

√

(

Q0 −
�f
2!R

)2

+ 2
Q0f�
!R

sin2
(−!Rti − �f

2

)

cos
(

!Rt + Φ
) (B.31)

where we defined the oscillator phase Φ = !Rti+�f
2 + arctan

(

Q0+
�f
2!R

Q0−
�f
2!R

tan
(

!Rti−�f
2

)

)

.
Because of the simple relation between sine and cosine (sin(x) = cos(x− �∕2)) we
define an effective phase difference Δ� = −!Rti −�f +�∕2 between vibration and
force and rewrite Equation B.31 as

Q(t) =

√

(

Q0 −
�f
2!R

)2

+
Q0f�
!R

(1 − sin(Δ�)) cos
(

!Rt + Φ
) (B.32)

The oscillator thus evolves at its proper frequency but its amplitude is influ-
enced by the parameters of the applied force. We notice in particular the depen-
dence on the force phase: when Δ� = −�∕2 the amplification of the amplitude
is maximum, while when Δ� = +�∕2 the amplitude is decreased.
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Appendix C

Pulse shaper calibrations

In this Appendix we provide the description of the pulse shaper calibration pro-
cedure.

C.1 Phase

Our pulse shaper based is based on a liquid crystal spatial light modulator. We
described, in Section 3.1.2, the working principle of this device: despite being
a phase only modulator, the application of a sawtooth grating allows to simul-
taneously and independently control the amplitude and phase of the spectral
components which are dispersed onto the matrix. First of all, therefore, a "look
up table" must be generated for the effective liquid crystals phase values to
match the software generated values. These might not correspond exactly as
the liquid crystals have a frequency dependent response, there could be imper-
fections in the electrodes, and so on.

To calibrate the phase, a binary phase grating is applied to the liquid crys-
tal matrix, and the diffracted intensity is measured by one linear photodiode
array as the amplitude of the grating is scanned in the range allowed by the
SLM electronics. In Figure C.1 we show the appearance of such a pattern for
three amplitude values. The measured intensity is shown in panel c) of the
same Figure. As the intensity drops to zero multiple times within the voltage
extrema, we deduce that the liquid crystals undergo more than one complete
rotation during the scan. We focus on the first rotation as this will be enough
to produce a 0 - 2π phase interval, and it will allow us to increase the number
of points within the range, therefore increasing the voltage, and phase, sensi-
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Figure C.1: a) Applied pattern to reproduce a binary grating. The bottom plots are
vertical cuts representing the grating profile. b) First order diffraction intensity as a
function of the applied voltage, in the full available range. c) Integral of the diffraction
intensity along the wavelength axis, in the voltage range where the phase goes from 0
to 2 π (blue curve), compared to the expected efficiency (brown curve).

tivity. Because we do not detect any appreciable frequency dependence of the
diffracted intensity, we integrate the photodiode array signal and compare the
curve to the expected diffraction efficiency. The latter reads [50]

Im=1 ∝ sin
2 (AG∕2

) (C.1)

where AG is the amplitude of the binary diffraction grating. The function map-
ping each point of the measured curve onto the expected one allows to translate
the effective voltage into any desired phase values.
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C.2 Amplitude

To account for further imperfections in the device, an amplitude calibration of
the applied sawtooth grating is performed. This must necessarily follow the
phase calibration, to guarantee that a proper sawtooth is applied in the vertical
direction.

Figure C.2: a) Applied pattern to reproduce a sawtooth grating. The bottom plots are
vertical cuts representing the sawtooth profile. b) First order diffraction intensity as a
function of the applied phase, normalized to 2�. c) Integral of the diffraction intensity
along the wavelength axis (red curve), compared to the diagonal representing a linear
relationship.

To accomplish an amplitude calibration, a sawtooth function must be applied
all along the SLM matrix, and its amplitude has to be scanned, as shown at the
top of Figure C.2. As the measured diffracted intensity is only weakly dependent
on the wavelength, we normalize the measured intensity at each wavelength
and integrate the intensity along the wavelength axis. The amplitude of the
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diffracted field is expected to be linearly proportional to the amplitude of the
sawtooth grating, as reported in Equation 3.10 [50]. Therefore any variations
are encoded in a second "look up table" that is used by the software to adjust
the voltage values in order to produce a scattering intensity varying linearly
with the sawtooth amplitude.

C.3 Frequency

A relationship must be found between the wavelength content of the pulse, the
SLM pixel and the photodiode pixel. This can only be done with the aid of some
external device which is able to recognize or select specific wavelengths.

Figure C.3: a) Pattern consisting of multiple narrow diffraction gratings, and b)mea-
sured intensity spectrum as a function of the calculated frequency scale. c) Fit of the
frequency at the peak position as a function of the SLM pixel. d) Map of the peak as
measured by one of two photodiode arrays, as a function of the its pixel index and of
the SLM pixel index.

A pattern is applied on the SLM matrix consisting of narrow sawtooth grat-
ings, with pixel width roughly corresponding to the horizontal dimension of a
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frequency component diffraction spot. The comb is measured, after the pulse
shaper, using the aforementioned spectrometer, which allows to retrieve the
frequency at the centre of each peak. Therefore a relation between frequency
and SLM pixel is found. A pattern consisting of a single narrow diffraction
grating is used to scan the SLM horizontal pixel and build a map consisting of
a single peak whose coordinates are the SLM pixel (given) and the the single
photodiode array pixel. Therefore the dispersion is calculated on each of the
photodiode arrays independently. The pattern consisting of multiple spikes is
finally exploited to optimize the alignment of the beam onto the photodiode
arrays, in order to match the dispersion. In practice, the photodiode arrays are
translated manually by means of mechanical stages, up to the point when the
measured narrow spikes overlap.

Figure C.4: Phase offset applied along the horizontal direction to compensate for the
output angle mismatch (left). Same pattern after wrapping the voltage pattern along
the vertical direction to create a sawtooth grating (right).

Finally, one can perform the frequency correction that allows to reshape the
beam focus and eliminate the frequency chirp along the vertical direction, as
shown in Figure 3.5. A phase offset is applied along the horizontal direction,
then the map is wrapped along the vertical direction to create a sawtooth, as
shown in Figure C.4.
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