
Adami



Page ii



Contents

Introduction ix

Riassunto xiii

I Out-of-equilibrium first order phase transitions and
phase separation 1

1 The out-of-equilibrium Verwey transition and phase separa-
tion in magnetite 5
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Equilibrium optical properties . . . . . . . . . . . . . . . 9
1.3.2 Out-of-equilibrium optical properties . . . . . . . . . . . 12

1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.1 Out-of-equilibrium phase transition and supply of latent

heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.2 Nucleation of the metallic phase, out-of-equilibrium phase

separation, and non-separability of the response . . . . . 20
1.4.3 Equilibrium optical properties across the phase transition 27
1.4.4 Spectral response of the phase transition . . . . . . . . . 28

1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.6 Non-separable dynamics as a general signature of phase separa-

tion? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 Modelling of the optical properties of solids 41
2.1 The dielectric function at equilibrium . . . . . . . . . . . . . . 41

iii



2.1.1 The Lorentz oscillator . . . . . . . . . . . . . . . . . . . 42

2.1.2 Other kinds of oscillators . . . . . . . . . . . . . . . . . 43

2.2 Out of equilibrium fits . . . . . . . . . . . . . . . . . . . . . . . 44

II Exciting materials in the mid-infrared 53

1 The experimental set-up 55

1.1 Introduction to nonlinear optics . . . . . . . . . . . . . . . . . . 55

1.1.1 Second-order nonlinear phenomena . . . . . . . . . . . . 57

1.1.2 Phase matching . . . . . . . . . . . . . . . . . . . . . . . 59

1.1.3 Photon downconversion . . . . . . . . . . . . . . . . . . 60

1.1.4 Third-order nonlinear phenomena . . . . . . . . . . . . 62

1.2 The set-up and its characterization . . . . . . . . . . . . . . . . 62

1.2.1 The set-up . . . . . . . . . . . . . . . . . . . . . . . . . 63

1.2.2 Characterization of the mid-infrared pulses . . . . . . . 69

1.2.3 Commercial solution: characterization . . . . . . . . . . 76

1.3 A model experiment: exciting a vibrational mode in CuGeO3 . 77

1.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 78

1.3.2 Experiment and results . . . . . . . . . . . . . . . . . . 79

2 Pump-probe experiments on Bi2Sr2Ca0.92Y0.08Cu2O8 87

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . 91

2.3.1 Room temperature . . . . . . . . . . . . . . . . . . . . . 91

2.3.2 Pseudogap phase . . . . . . . . . . . . . . . . . . . . . . 102

2.3.3 Superconducting phase . . . . . . . . . . . . . . . . . . . 103

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

III Fluctuations of the out-of-equilibrium optical prop-
erties 119

1 Time-dependent mean-field approach 125

1.1 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . . 126

1.2 Equilibrium state . . . . . . . . . . . . . . . . . . . . . . . . . . 128

1.3 Displacive excitation from the symmetry-broken state . . . . . 131

1.4 What mean field does and does not capture . . . . . . . . . . . 134

Page iv



2 Dynamical mean-field theory approach - theory 137

2.1 Introduction to nonequilibrium DMFT . . . . . . . . . . . . . . 137

2.1.1 Kadanoff-Baym formalism for time evolution from a ther-
mal state . . . . . . . . . . . . . . . . . . . . . . . . . . 138

2.1.2 Dynamical mean-field theory . . . . . . . . . . . . . . . 143

2.1.3 Nonequilibrium dynamical mean-field theory . . . . . . 145

2.2 Nonequilibrium DMFT for the Holstein model . . . . . . . . . 145

2.2.1 Equations for the two different sites . . . . . . . . . . . 148

2.3 Current-current correlators . . . . . . . . . . . . . . . . . . . . 149

2.3.1 Optical susceptibility . . . . . . . . . . . . . . . . . . . . 149

2.3.2 Optical susceptibility with two sublattices . . . . . . . . 152

2.3.3 Fluctuation-dissipation relations . . . . . . . . . . . . . 153

2.3.4 Fluctuations of the optical properties . . . . . . . . . . 154

3 Dynamical mean-field theory - Results 159

3.1 Displacive excitation . . . . . . . . . . . . . . . . . . . . . . . . 160

3.2 Thermalization of the system . . . . . . . . . . . . . . . . . . . 172

3.3 Fluctuations of the optical properties . . . . . . . . . . . . . . . 180

3.4 Comparison with experiments on bismuth single crystals . . . . 182

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

IV Time-resolved photoemission: room for enhance-
ments 191

1 Time-resolved photoemission beyond the energy-time uncer-
tainty 193

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

1.2 Generalized time-resolved photoemission . . . . . . . . . . . . . 195

1.2.1 Theoretical formulation . . . . . . . . . . . . . . . . . . 195

1.2.2 Double-probe photoemission: Tomography of G<(t, t′) . 197

1.3 Illustration and proposals for the double probe experiment . . . 201

1.3.1 Buildup of the Kondo resonance: standard time-resolved
photoemission . . . . . . . . . . . . . . . . . . . . . . . . 201

1.3.2 Buildup of the Kondo resonance: double probe photoe-
mission . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

1.3.3 Melting of Mott gaps and amplitude mode in a super-
conductor . . . . . . . . . . . . . . . . . . . . . . . . . . 207

1.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Page v



2 Time-resolved photoemission: the non-separable case 209
2.1 Photoemission with non-coherent states of light . . . . . . . . . 209
2.2 Theory of time-resolved photoemission spectroscopy with non-

classical light pulses . . . . . . . . . . . . . . . . . . . . . . . . 212
2.3 Pulse correlation for a multimode squeezed state . . . . . . . . 217
2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Conclusions 227

List of publications 233

Acknowledgements 235

Page vi



Page vii



Page viii



Introduction

Many macroscopic properties of solids are determined by the behaviour of the
electrons they contain. In elemental crystals or in crystals containing elements
solely from the first three periods of the periodic table, the electrons in the
highest energy levels can easily hop from one atom to its neighbours. They are,
therefore, (potentially) highly mobile and the atomic levels give rise to very
dispersive bands. Given the crystalline structure of the solid, its electrical
conductance is determined by the availability of empty states for the electrons
to move through the crystal. In the cases in which the bands are sequentially
filled and do not overlap, whether the solid is a metal or an insulator can,
therefore, be determined by simple counting of the electrons in a unit cell.

The situation changes when the character of the highest energy states make
the electrons less mobile. For example, the movement of electrons is difficult
through alternating d- and p-orbitals, because the hopping integral between
them is low. In this context, the correlation between the position of the elec-
trons becomes, therefore, strongly relevant in the determination of the macro-
scopic properties of the system. On the most “basic” level, strong correlation
may determine the insulating character of a system, even though the number
of electrons per unit cell would suggest a metallic character. This is the case of
the Mott insulator, which cannot be captured by the mean-field models which
accurately describe the properties of s- and p-metals.

More in general, strongly correlated materials display very rich phase dia-
grams, containing many phases in reach with small variations of the external
parameters or of the chemical doping. The variety of phases encompasses
superconducting states, antiferromagnets, insulators, Fermi liquid metals and
strange (non-Fermi liquid) metals, charge density wave, nematic states, and
others. Strong correlation is most famously realized in the oxides of the tran-
sition metals.

The rich phase diagrams of strongly correlated materials provide deep intel-
lectual problems, such as the emergence of collective phenomena in condensed
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matter, but also a wealth of possible technological application exploiting their
phase transitions. For example, insulator-to-metal transitions in transition
metal oxides are good candidates for new fast electronic switching.

In general, condensed matter can be studied both at and out of its equi-
librium state. The first reason to perform out-of-equilibrium experiments is
to gain a deeper insight on the interactions between degrees of freedom in the
solid. They will, in fact, react to a strong perturbation with different relaxation
timescales. If their interactions cannot be clearly identified from their equi-
librium properties (e.g. their spectra), there is a higher chance to do it when
they are out of equilibrium. Since the relevant timescales in condensed matter
are of the order of the pico- and femtosecond, out-of-equilibrium experiments
have to be perfomed using ultrashort light pulses in pump-probe experiments.
An intense ultrashort light pulse, called pump, perturbs the system bringing it
out of equilibrium and a second, delayed, and less intense pulse, called probe,
probes its optical properties (e.g. its reflectivity) as a function of time after
the excitation.

Moreover, in many cases the technological exploitation of strongly corre-
lated materials lies in the very fact that their phase transitions can be triggered
on ultrashort timescales. Out-of-equilibrium pump-probe experiments allow
therefore to study, characterize, and discover new ultrafast out-of-equilibrium
phase transition.

The case of magnetite (Fe3O4) is probably the most studied in this context,
and one of the oldest. In 1939 E.J.W. Verwey identified a first-order transition
at Tc =123 K between the high-temperature metallic phase of magnetite and
a low-temperature insulating phase [1]. The crystalline structure of magnetite
in the insulating phase has been particularly difficult to determine, and the
exact nature of its refinement is still under debate [2]. In the system kept below
the Tc the insulator-to-metal transition can be triggered by light pulses and is
complete within picoseconds [3], i.e. it is far quicker than anything that can
be called quasistatic. What happens when first-order phase transitions occur
too quickly? This question is addressed in part I of this thesis in the case of
the photoinduced insulator-to-metal transition in magnetite. In particular, I
will discuss the occurrence of phase separation in a specific regime, and its
interesting effects on the out-of-equilibrium optical properties of the system.

The experiment on magnetite has been performed with two tacit assump-
tions, whose justifications and limitations are addressed in part II and III of
this thesis. The first and probably most evident one concerns the photon
energy (or wavelength) of the light pulses used to photoexcite the system.
Technical reasons constrain commercial ultrafast pulsed lasers to very narrow
spectral regions. In particular, titanium-doped sapphire lasers produce light
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with photon energies close to 1.5 eV. Pump-probe experiments have therefore
been traditionally performed with such pulses, in the assumption that the ex-
citations they create in the system are “right”, in that they are either tuned
to the relevant transitions or that the excitations they produce are sufficiently
general in character.

This issue is of particular relevance for the excitation of degrees of freedom
with energies of the order of 0.1 eV or below, which are far removed from
the 1.5 eV photon energy of the Ti:Sapphire lasers. For example, in the high
critical temperature cuprate superconductors the relevant energies of the su-
perconducting state are of the order of tens or one hundred millielectronvolts.
The mismatch between these energy scales and the available photon energies
can be cured building pulsed light sources with tunable photon energy in the
mid-infrared spectral range. These exploit nonlinear optical phenomena to
produce light pulses at the desired photon energy using the pulses from the
commercial laser source. In chapter II.1 I will describe the optical set-up we
have built for this purpose.

Bi2Sr2Ca0.92Y0.08Cu2O8 is a representative member of the familiy of the
cuprates and is a superconductor at temperatures below 96 K. In chapter II.2
I will discuss how we were able, thanks to the tunable mid-infrared pulses,
to identify a scattering channel for electronic excitations at room temperature
and to study the response of the system along different directions both at room
temperature and in the low-temperature phases of the system.

The second tacit assumption done in the experiment on magnetite is that
the state of the system after the photoexcitation rapidly becomes an effectively
thermal state. In many cases this is a safe assumption. For example, in
simple metals, photoexcited electrons will quickly relax down to states close
to the Fermi energy and thermalize. Their state will then display the standard
features of thermal states, such as the fact that their occupation of electronic
levels is described by the Fermi function.

There are more complicated situations in which this need not be the case.
For example, when coherent dynamics are present in degrees of freedom with
whom electrons are coupled, electrons may not be able to thermalize at all
times. In part III, this situation is discussed for the case of coherent lattice
vibrations in solids, with the aid of numerical calculations. For particular
phases of the vibration, the electronic subsystem is indeed “less thermal” than
for other phases, and I discuss how such kind of information can be retrieved
from the out-of-equilibrium optical properties of the solid, comparing our cal-
culations with experimental results obtained on bismuth single crystals.

Besides optical spectroscopy, a very important tool to study condensed
matter is photoelectron spectroscopy, which allows to measure the single par-
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ticle spectrum of the system. At equilibrium it gives access to the band struc-
ture of the occupied levels in the system. The spectroscopy of electrons pho-
toemitted from a solid can be performed also in a time-resolved manner in a
pump-probe scheme. A first pulse (usually with a photon energy of 1.5 eV)
brings the system out of its equilibrium, and a subsequent ultraviolet pulse
photoemits the electrons. In this way, the occupation of the bands can be
studied as a function of time after the excitation. Moreover, changes in the
band structure itself can be detected.

Time-resolved photoemission is affected by the so-called energy-time uncer-
tainty relation. In fact, the light pulses employed to photoemit the electrons
necessarily have a spectrum of finite width, which increases upon decreasing
the temporal duration of the pulses. This is reflected in a spread in the kinetic
energy of the photoemitted electrons. Therefore, a tradeoff must be made be-
tween the temporal and energetic resolution in time-resolved photoemission.
Such limitation becomes extremely relevant in the study of the nonequilibrium
dynamics of the emergent properties of strongly correlated materials. While
these become manifest in very sharp spectral features, it is known that some of
them can evolve on timescales shorter than the inverse width of their spectro-
scopic fingerprint [8]. This kind of dynamics beyond the spectral uncertainty
limit cannot be resolved in standard time-resolved photoemission.

The energy-time uncertainty relation is often erroneously associated to
the uncertainty relations stemming from the Heisenberg principle. Its con-
sequences on time-resolved photoemission have been, therefore, always con-
sidered as an unavoidable limitation. However, the energy-time uncertainty
is not of fundamental nature [9]. In part IV I discuss how time-resolved pho-
toemission can be enhanced. In chapter IV.1 we theoretically propose an
experimental scheme which allows to bypass the energy-time uncertainty in
time-resolved photoemission using two photoemitting pulses. Moreover, in
chapter IV.2, we theoretically study the features of time-resolved photoemis-
sion if it were performed with statistical and quantum light.

Page xii



Riassunto

Molte delle proprietà macroscopiche dei solidi sono determinate dal comporta-
mento degli elettroni che essi contengono. Nei cristalli elementali e nei cristalli
formati solamente da elementi dei primi tre periodi della tavola periodica, gli
elettroni nei livelli energetici più alti possono saltare facilmente da un atomo
ai suoi vicini. Essi sono, perciò, potenzialmente molto mobili e i livelli atomici
danno origine a delle bande molto dispersive. Data la struttura cristallina del
solido, la sua conducibilità elettrica è determinata dalla disponibilità di stati
vuoti che gli elettroni possano sfruttare per muoversi attraverso il cristallo.
Nei casi in cui le bande sono riempite in successione e non si sovrappongono,
se il solido sia un metallo o un isolante può essere determinato dal semplice
conteggio degli elettroni in una cella unitaria.

La situazione cambia se il carattere degli stati a più alta energia è tale da
rendere meno mobili gli elettroni. Ad esempio, il moto degli elettroni attraverso
un’alternanza di orbitali d e p è difficoltoso, poiché l’elemento di matrice in-
teratomico tra di loro è piccolo. In una tale situazione, la correlazione tra le
posizioni degli elettroni gioca un ruolo molto rilevante nella determinazione
delle proprietà macroscopiche del solido. L’effetto più “basilare” che ciò può
produrre è che la forte correlazione renda un solido isolante, a dispetto del fatto
che il numero di elettroni per cella unitaria suggerisca un carattere metallico.
Questo è il caso degli isolanti di Mott, che non possono venire descritti dai
modelli di campo medio, i quali invece riescono a descrivere accuratamente le
proprietà dei metalli s e p.

Più in generale, i materiali fortemente correlati presentano dei diagrammi
di fase molto ricchi, contenenti varie fasi raggiungibili attraverso piccole vari-
azioni dei parametri esterni o del drogaggio chimico. La moltitudine delle fasi
possibili include stati superconduttivi, antiferromagnetici, isolanti, metallici
del tipo liquido di Fermi e non (metalli strani), stati nematici, onde di den-
sità di carica e altri. Le più conosciute realizzazioni della forte correlazione
elettronica si trovano negli ossidi dei metalli di transizione.
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I ricchi diagrammi di fase dei materiali fortemente correlati forniscono ques-
tioni intellettuali profonde, come l’emergenza di fenomeni collettivi nella ma-
teria condensata, ma anche una varietà di possibili applicazioni tecnologiche
delle loro transizioni di fase. Ad esempio, le transizioni di fase da isolante a
metallo negli ossidi dei metalli di transizione sono buone candidate per ottenere
nuove elettroniche di switch ultraveloci.

In generale, la materia condensata può essere studiata sia all’equilibrio che
fuori equilibrio. La prima ragione per effettuare esperimenti fuori equilibrio è
che essi possono fornire nuove informazioni sulle interazioni tra i gradi di lib-
ertà nel solido. Questi ultimi, infatti, risponderanno a una forte perturbazione
con diversi tempi di rilassamento. Se le loro interazioni non possono essere
identificate chiaramente dalle proprietà del solido all’equilibrio (ad esempio
dai suoi spettri), ci sono più possibilità di farlo quando esso è fuori equilib-
rio. Siccome i tempi caratteristici in questione nella materia condensata sono
dell’ordine del pico- e femtosecondo, gli esperimenti fuori equilibrio devono
essere effettuati con impulsi di luce ultracorti in esperimenti di pompa e sonda
(di pump-probe). Un primo impulso di luce ultracorto e intenso (detto im-
pulso di pompa, o pump) perturba il sistema portandolo fuori equilibrio. Un
secondo impulso, meno intenso e ritardato rispetto al primo (detto impulso di
probe), sonda le proprietà ottiche del sistema (ad esempio la sua riflettività)
in funzione del tempo trascorso dall’eccitazione.

Inoltre, in molti casi lo sfruttamento tecnologico dei materiali fortemente
correlati sta nel fatto stesso che le loro transizioni di fase possono essere indotte
su tempi scala ultracorti. Gli esperimenti di pump-probe permettono quindi
di studiare, caratterizzare e scoprire nuove transizioni di fase ultraveloci.

Il caso della magnetite (Fe3O4) è probabilmente il più studiato in questo
contesto, e uno dei più antichi. Nel 1939 E.J.W. Verwey identificò, a Tc = 123
K, una transizione di fase del primo ordine tra la fase metallica ad alta tem-
peratura e una fase isolante a bassa temperatura [1]. La struttura cristallina
della magnetite nella fase isolante è stata particolarmente difficile da deter-
minare e l’esatta natura dei suoi raffinamenti è tuttora dibattuta [2]. In un
campione tenuto a temperatura minore di Tc, la transizione di fase da isolante
a metallo può essere fotoindotta tramite un impulso di luce intenso [3] con una
fluenza 1 al di sopra di una soglia, ed è completa entro qualche picosecondo,
ovvero avviene molto più velocemente di qualsiasi cosa che si possa chiamare
quasistatico. Cosa succede quanto una transizione di fase del primo ordine
avviene troppo velocemente?

1La fluenza è la densità di energia depositata da un impulso nel campione per unità di
superficie
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La parte I di questa tesi si occupa dello studio di questa transizione di fase
fuori equilibrio in esperimenti di pump-probe con impulsi nel vicino infrarosso
e visibile. I nostri dati rivelano che, in prossimità della soglia per l’innesco
della transizione di fase, esiste un regime strettamente legato alla fornitura
del calore specifico nella transizione di fase all’equilibrio. In questo regime, la
transizione di fase procede attraverso la nucleazione di eccitazioni locali in vo-
lumi del campione nella fase ad alta temperatura, ovvero nel campione avviene
separazione di fase fuori equilibrio. Per fluenze degli impulsi di pompa ben al
di sopra della soglia, il campione viene portato nella fase ad alta temperatura
immediatamente ed omogeneamente.

Uno dei risultati più interessanti che ho riportato è che, in prossimità della
soglia, ovvero nel regime in cui avviene la separazione di fase, la variazione
relativa della riflettività del campione ∆R

R (hν, t) mostra una specifica proprietà
matematica: non è separabile (o fattorizzabile) nello spazio degli spettri e delle
evoluzioni temporali. Questo è un modo formale per dire che ∆R

R (hν, t) non
può essere scritta come il prodotto di una singola caratteristica spettrale e
una singola evoluzione temporale uguale per tutte le energie del fotone (o
lunghezze d’onda) della luce, ma deve essere scritta come una somma di due o
più di questi termini (o componenti spettro-temporali). Ben al di sotto e ben
al di sopra della soglia, ∆R

R è invece separabile, ovvero può essere espressa come
una singola componente spettro-temporale. Siccome questa è una proprietà
puramente matematica dei dati, che non coinvolge nessun modello specifco, si
può congetturare che essa sia una caratteristica generale della separazione di
fase fuori equilibrio, al di là del caso specifico della magntite. Analizzando i
dati presenti nella letteratura riguardo ad esperimenti simili [4], ho mostrato
che questa caratteristica può essere trovata in almeno un altro materiale, il
biossido di vanadio (VO2).

L’esperimento sulla magnetite è stato effettuato facendo uso di due assunti
sottaciuti, delle cui giustificazioni e limitazioni si occupano le parti II and III
di questa tesi. Il primo di essi, e probabilmente il più evidente, riguarda
l’energia del fotone (o lunghezza d’onda) degli impulsi di luce utilizzati per
fotoeccitare il sistema e indurre la transizione di fase. Per ragioni tecniche, i
laser impulsati commerciali sono limitati alla produzione di luce in intervalli
di energie del fotone molto stretti. In particolare, i laser allo zaffiro drogato
con titanio producono luce con energie del fotone di circa 1.5 eV. Pertanto,
tradizionalmente gli esperimenti di pump-probe sono stati effettuati con questo
genere di impulsi, assumendo che le eccitazioni che essi creano nel sistema
siano “giuste”, ovvero che essi siano risonanti con le transizioni rilevanti o che
le eccitazioni prodotte abbiano un carattere sufficientemente generale.

Questa questione è di particolare rilevanza per le eccitazioni di gradi di
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libertà con energie dell’ordine di 0.1 eV o minori, molto diverse dall’energia del
fotone di 1.5 eV dei laser al Ti:Al2O3. Per esempio, nei cuprati superconduttori
ad alta temperatura critica, le scale di energia più importanti per lo stato
superconduttivo sono dell’ordine di 0.1 o 0.01 eV. La discrepanza tra queste
energie e le energie del fotone disponibili può essere curata costruendo sorgenti
di luce impulsata con energia del fotone regolabile nel medio infrarosso. Queste
sorgenti sfruttano processi ottici non-lineari per la produzione, a partire dagli
impulsi prodotti dai laser commerciali, di impulsi di luce all’energia del fotone
desiderata. Nel capitolo II.1 descrivo l’apparato ottico che ho costruito con
questo scopo.

Bi2Sr2Ca0.92Y0.08Cu2O8 è un membro rappresentativo della famiglia dei
cuprati ed è un superconduttore a temperature minori di 96 K. Esso è il com-
posto a drogaggio ottimale di ittrio della famiglia di materiali detta Bi2212,
il cui composto madre è Bi2Sr2CaCu2O8. Nel capitolo II.2 descrivo esperi-
menti di pump-probe che abbiamo condotto su questo materiale con impulsi
di pompa nel medio infrarosso, ovvero con energie del fotone tra 0.1 e 0.2
eV. I nostri dati rivelano che la dinamica indotta dall’eccittazione dipende
fortemente dal vettore d’onda degli stati elettronici. A temperatura ambiente,
riportiamo evidenze di un accoppiamento degli elettroni con un ordine di carica
fluttuante ed eccitazioni di spin. In particolare, eccitazioni totalmente simmet-
riche e eccitazioni lungo le direzioni che nello stato superconduttivo sono le
direzioni antinodali sono accoppiate a coppie di eccitazioni di spin. Lungo
le direzioni che a bassa temperatura sono le direzioni nodali, le eccitazioni
sono accoppiate anche ad un modo vibrazionale associato a una modulazione
superstrutturale del reticolo, che oscilla coerentemente dopo l’eccitazione da
parte dell’impulso di pompa. Abbassando la temperatura al di sotto di 130
K, il campione entra nella fase di pseudogap e questa oscillazione reticolare
coerente scompare. Ciò può significare o che l’accoppiamento tra gli elettroni
e la modulazione superstrutturale cambia, oppure che quest’ultima scompare
abbassando la temperatura. Nella fase superconduttiva, siamo stati in grado
di osservare separatamente la dinamica delle eccitazioni di pseudogap e un
altro tipo di dinamica mediante misure selettive in vettore d’onda.

Il secondo assunto impiegato nella discussione dell’esperimento sulla mag-
netite è che lo stato del sistema dopo la fotoeccitazione diventi rapidamente
uno stato efficacemente termico. In molti casi questa è un’ipotesi che può essere
fatta in modo sicuro. Ad esempio, nei metalli semplici gli elettroni fotoeccitati
rilassano velocemente verso stati vicini all’energia di Fermi e termalizzano. Il
loro stato avrà quindi le caratteristiche di uno stato termico, tra cui il fatto
che l’occupazione degli stati elettronici è descritta dalla funzione di Fermi.
Esistono situazioni più complicate in cui questo non avviene necessariamente.
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Ad esempio, gli elettroni potrebbero non riuscire a termalizzare continuamente
quando sono presenti delle dinamiche coerenti in gradi di libertà a cui essi sono
accoppiati.

Un sottile assunto che consegue dall’assunzione di un generico stato termico
è che le informazioni che si possono ottenere in un esperimento “ottico” si
esauriscano nel valor medio delle proprietà ottiche. Gli esperimenti “ottici”
di pump-probe (ovvero che fanno uso di soli impulsi di luce) sono effettuati
misurando l’intensità degli impulsi di probe a ritardi diversi tra pump e probe.
Per rimuovere il rumore, ad ogni ritardo tra pompa e probe la misura avviene
mediando le intensità di centinaia o di migliaia di impulsi. Le fluttuazioni
dell’intensità sono quasi sempre transcurate.

Nella parte III discuto queste due questioni. Che informazioni aggiun-
tive possono essere ottenute misurando le fluttuazioni delle proprietà ottiche
di un sistema fuori equilibrio? Come avviene la termalizzazione di un sis-
tema quando la dinamica non è “banale”? Abbiamo mostrato che, in gen-
erale, le fluttuazioni delle proprietà ottiche sono legate alle fluttuazioni delle
correnti nel sistema. Per contestualizzare questo risultato, abbiamo effet-
tuato simulazioni numeriche delle vibrazioni reticolari coerenti in teoria di
campo medio dinamico fuori equilibrio [5,6] (nonequilibrium dynamical mean-
field theory), utilizzando il modello di Holstein. Abbiamo mostrato che la
teoria di campo medio dinamico fuori equilibrio è in grado di descrivere le
caratteristiche principali delle vibrazioni coerenti nei sistemi di Peierls dopo
un’eccitazione impulsiva, ovvero l’eccitazione tramite dislocazione (displacive
excitation), l’ammorbidimento della frequenza della vibrazione, lo smorza-
mento della dinamica e, infine, la fusione della fase a simmetria rotta. Queste
caratteristiche forniscono una basilare dinamica non banale per esplorare teori-
camente che informazioni aggiuntive possono essere ottenute misurando le
fluttuazioni delle proprietà ottiche. Verificando se le relazioni di fluttuazione-
dissipazione fossero rispettate fuori dall’equilibrio, abbiamo mostrato che, men-
tre la gap viene modulata a seguito dell’eccitazione, il sistema oscilla tra stati
termici e stati non-termici. Ciò produce delle proprietà caratteristiche nello
spettro delle fluttuazioni della corrente, che possono essere sondate attraverso
la misura delle fluttuazioni dell’intensità degli impulsi di probe. Con le nos-
tre simulazioni siamo stati in grado di riprodurre dati sperimentali ottenuti
in esperimenti di questo tipo su cristalli elementali di bismuto, mostrando
che questo genere di esperimenti può dare accesso a nuove informazioni nelle
spettroscopie ottiche fuori equilibrio.

A parte le spettroscopie ottiche, uno strumento molto importante nello stu-
dio della materia condensata è la spettroscopia fotoelettronica, che permette
di misurare lo spettro di singola particella del sistema. All’equilibrio, essa dà

Page xvii



accesso alla struttura a bande dei livelli occupati. La spettroscopia degli elet-
troni fotoemessi da un materiale può essere effettuata anche in modo risolto in
tempo, in uno schema di pump-probe: un primo impulso (comunemente con
un’energia del fotone di 1.5 eV) porta il sistema fuori equilibrio e un successivo
impulso ultravioletto (o di raggi X) fotoemette gli elettroni. In questo modo si
può studiare come cambia l’occupazione elettronica delle bande in funzione del
tempo trascorso dall’eccitazione. Inoltre, si possono anche misurare eventuali
cambiamenti nella struttura a bande stessa.

La fotoemissione risolta in tempo è influenzata dalla relazione di indeter-
minazione tra energia e tempo. Infatti, gli impulsi di luce impiegati per fo-
toemettere gli elettroni hanno necessariamente uno spettro di largezza finita,
la quale aumenta al diminuire della durata dell’impulso. Ciò si riflette in un
allargamento dello spettro delle energie cinetiche degli elettroni fotoemessi.
Per questo motivo, negli esperimenti di fotoemissione risolta in tempo è nec-
essario scendere a un compromesso tra le risoluzioni temporale ed energetica.
Questa limitazione diventa di grande rilevanza nello studio delle dinamiche
delle proprietà emergenti nei materiali fortemente correlati. Mentre queste
proprietà si manifestano solo in delle caratteristiche spettrali molto strette, è
noto che alcune possono evolvere su scale temporali più corte dell’inverso della
larghezza energetica della loro impronta spettrale [8]. Questo tipo di dinamica,
al di là del limite di indeterminazione spettrale, non può essere misurato con
la tradizionale fotoemissione risolta in tempo.

La relazione di indeterminazione tra il tempo e l’energia è spesso erronea-
mente associata alle relazioni di indeterminazione che derivano dal principio di
Heisenberg. Pertanto, le sue conseguenze sulla fotoemissione risolta in tempo
sono sempre state considerate come inevitabili [7]. Tuttavia, la relazione di in-
determinazione tra energia e tempo non è di natura fondamentale [9]. Nel capi-
tolo IV.1 descrivo la nostra proposta teorica per aggirare l’indeterminazione
tra energia e tempo nella fotoemissione risolta in tempo. Ciò può essere fatto
utilizzando due impulsi di probe per fotoemettere gli elettroni dal sistema.
Questo doppio impulso si può ottenere dividendo, ritardando e ricombinando
un singolo impulso originario. In funzione del ritardo tra i due impulsi di
probe, la probabilità totale che un elettrone venga fotoemesso cambia. Grazie
a questa dipendenza è possibile ricostruire tomograficamente la funzione di
Green G(t, t′), la quale contiene tutte le informazioni riguardo alla risposta
di singola particella del sistema. Abbiamo illustrato questa proposta teorica
attraverso simulazioni numeriche della formazione della risonanza di Kondo,
un prototipo di dinamica di un fenomeno emergente che avviene al di là del
limite di indeterminazione spettrale, ovvero su tempi scala più corti rispetto
all’inverso della larghezza della sua caratteristica spettrale. Inoltre, abbiamo
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discusso come l’apparato sperimentale proposto sia rilevante a possa trovare
delle applicazioni anche in altri casi, come ad esempio nello studio della fusione
di gap di Mott o delle dinamiche dei superconduttori.

Infine, nel capitolo IV.2 presento la nostra discussione dell’utilizzo di luce
quantistica o statistica nella fotoemissione. Impulsi di luce quantistici o statis-
tici con forme specifiche permetterebbero di misurare delle correlazioni speci-
fiche nella dinamica dei sistemi fuori equilibrio con una singola misura, senza
il bisogno di effettuare una sequenza tomografica di misure con impulsi classici
come discusso nel capitolo IV.1.
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insulator-metal transition in magnetite. Nat. Mater., 12:882–886, 2013.

[4] S. Wall, L. Foglia, D. Wegkamp, K. Appavoo, J. Nag, R.F. Haglund,
Jr., J. Stähler, and M. Wolf Tracking the evolution of electronic and
structural properties of VO2 during the ultrafast photoinduced insulator-
metal transition Phys. Rev. B 87, 115126 (2013).

[5] A. Georges, G. Kotliar, W. Krauth, and M.J. Rozenberg “Dynamical
mean-field theory of strongly correlated fermion systems and the limit
of infinite dimensions” Rev. Mod. Phyis. 68, 13 (1996).

[6] H. Aoki, N. Tsuji, M. Eckstein, M. Kollar, T. Oka, and P. Werner
“Nonequilibrium dynamical mean field theory and its applications” Rev.
Mod. Phys. 86, 779 (2014).

[7] J. K. Freericks, H. R. Krishnamurthy, and Th. Pruschke. “Theoretical
description of time-resolved photoemission spectroscopy: Application to
pump-probe experiments”, Phys. Rev. Lett., 102, 136401 (2009).

[8] B. Lechtenberg and F. B. Anders, “Spatial and temporal propagation of
Kondo correlations”, Phys. Rev. B 90, 045117 (2014).

xxi



[9] L. Landau and E. Lifschitz, “Quantum mechanics - Non-relativistic the-
ory”, Course of theoretical physics 3, 157 (§44: The uncertainty relation
for energy), Pergamon Press (1977).

Page xxii



Part I

Out-of-equilibrium first
order phase transitions and

phase separation

1





In the modern classification, phase transitions fall into two main categories.
First-order phase transitions involve latent heat. Phase transitions that do not
involve latent heat are called second-order or continuous phase transitions. In
first-order phase transitions a finite amount of heat has to be supplied (or
extracted) for the transition to be complete over the whole system. While the
latent heat is exchanged, phase coexistence takes place, i.e. part of the system
will be in one phase and the rest in the other.

In such a process, the temperature of the system remains constant. To
introduce a notation that I will use later in this part of the thesis, let us
consider a system which is heated from below the critical temperature of the
transition. At the critical temperature Tc, we can say that its temperature is
T−c when no portion of the latent heat has been supplied, while it is T+

c when
the latent heat has been fully supplied.

What happens when a first-order phase transition occurs too quickly? The
most common example of such a situation comes from our everyday life. When
water is heated over fire and latent heat is supplied, water boils, i.e. phase
separation takes place. Here and in the following, I will generally refer to phase
separation not as the simple phase coexistence with just two separate volumes
(in the current example, a volume of liquid and a volume of gasueous water),
but to the situation in which there are more than two different volumes with
boundaries that dynamically evolve.

This does not happen only in liquid-to-gaseuous or solid-to-liquid transi-
tions, but also in solid-to-solid phase transitions. In chapter 1 of this part I
will discuss the occurrence of phase separation during the supply of latent heat
in an insulator-to-metal transition which takes place in magnetite (Fe3O4), the
so-called Verwey phase transition [1].

We studied its occurrence out of equilibrium in pump-probe experiments
with ultrashort light pulses, which can be used to trigger the phase transition
when the sample is at a temperature below the critical temperature [2, 3].

We have shown that, when out-of-equilibrim phase separation occurs, the
variation of the reflectivity of the sample has a specific mathematical property,
i.e. it is non-separable (or non-factorizable) as a function of pump-probe delay
and probe photon energy.

Since the occurrence of phase separation during the delivery of latent heat
is a general phenomenon, one would naturally expect that the behaviour found
in magnetite would appear also in other similar out-of-equilibrium phase tran-
sitions. In particular, the non-separability of the variation of the reflectivity
would be a signature of phase separation to look for. Using data from the
literature [4], I will show that this may indeed the case at least for another
sample (vanadium dioxide, VO2).
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In chapter 2 I will briefly describe the modelling of the optical proper-
ties of solids both at and out of equilibrium, with a small reference for its
implementation.

Page 4



Chapter 1

The out-of-equilibrium
Verwey transition and
phase separation in
magnetite

1.1 Introduction

The Verwey phase transition 1, occurring at TV = 123 K in magnetite (Fe3O4),
is presumably the most studied metal-to-insulator transition in the large fam-
ily of transition metal oxides [1, 5]. Detailed investigations of the structure
revealed a stunning complexity [6–17]. Magnetite crystallizes with an inverse
spinel structure (figure 1.1a), characterized by two different groups (A and
B) of Fe ion sites. Group A is constituted by tetrahedrally coordinated Fe3+

A

sites with a 3d5 electronic configuration with spin S=5/2. Group B, instead,
is made of octahedrally coordinated sites formally occupied by Fe3+

B (3d5,
S=5/2) and Fe2+

B (3d6, S=2) ions. At Tc = 858 K, ferrimagnetic order sets
in with ferromagnetic coupling within the B sublattice and antiferromagnetic
coupling between A and B sites such that the A sites carry minority spins ↓.
The original picture of the Verwey transition at TV involves a metallic high-
temperature phase showing an equal number of Fe3+

B and Fe2+
B ions randomly

1The content of this chapter, apart from part of section 1.6, has been published in Physical
Review B [3]. Here, it has been partly reformulated and restructured, to best fit the thesis.
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Chapter I.1 Section 1.1

distributed on the B sites opposed to an insulating low-temperature phase
with a charge-ordered B sublattice [1], breaking the cubic symmetry in favour
of a monoclinic one. Since the B ions form a frustrated pyrochlore lattice,
the charge-order superstructure is rather involved, reflecting the competition
between Coulomb interactions and the coupling to both the lattice and the
orbital degrees of freedom [5,15]. Recently, it has been shown that the picture
may need to be refined even further [6]. On top of the charge order, x-ray
studies suggest that the single minority ↓ electron of an Fe2+

B ion is delocal-
ized over the neighbouring Fe3+

B sites, forming linear units of three Fe sites
dubbed trimerons [6]. Such units are organized in a network where different
trimerons are connected via angles of 60◦ or 120◦. Since the Fe3+

B sites are
part of up to three different trimerons (sharing different t2g orbitals [6]), the
trimeron lattice tends to equalize the charges on the FeB sites and to increase
the polarizability [18]. Furthermore, having the minority spin delocalized on
different sites reduces the expected entropy associated to the Verwey transition
to values closer to experimentally observed ones [6,19]. In this interpretation,
it has been proposed [6] that the Verwey transition should be seen as a transi-
tion between a frozen trimeron network and a fluctuating network with shorter
correlation length.

Time-resolved X-ray diffraction experiments [2] investigated the destruc-
tion of the insulating phase after the excitation with ultrashort pulses at
1.55 eV. It has been found that the photo-induced structural change occurs in
a two-step process: after the initial local destruction of charge order triggered
by photoexcitation, phase separation occurs, yielding metallic and residual
insulating regions.

Optical measurements are an efficient tool to study the changes of elec-
tronic and structural properties at the phase transition [20–23]. In magnetite,
the equilibrium optical conductivity [24–26] shows a broad Drude peak in the
metallic phase as well as its suppression at the metal-to-insulator transition.
The optical properties at higher energies are dominated by two features peak-
ing at about 0.6 eV and 2 eV. By comparison with LSDA+U results, [27] these
features were attributed to excitations of the minority ↓ electrons from the
Fe2+
B t2g levels to the Fe3+

B t2g and eg levels, respectively (see figure 1.1b).
However, alternative interpretations invoking the A sites were proposed for
the feature at 2 eV. [26, 28] Thus far, the behavior of these peaks at the Ver-
wey transition has only been addressed at a qualitative level.

In this chapter I discuss our detailed equilibrium and out-of-equilibrium
measurements of the optical properties of magnetite, which cover broad spec-
tral and temperature ranges. With the ellipsometric data we were able to
quantify the variation of the equilibrium optical properties across the Ver-
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b

a

Figure 1.1: a) Inverse spinel high-temperature structure of magnetite. b)
Sketch of the Fe2+

B →Fe3+
B transitions.

wey transition. The out-of-equilibrium measurements were performed under
the same excitation conditions of the time-resolved X-ray diffraction in ref-
erence [2], to study the correspondence between the structural and optical
data, and at different temperatures, to identify the analogies between the out-
of-equilibrium and the equilibrium insulator-to-metal transitions. Our data
confirm and extend the previous description of the dynamics of the phase
transition. Moreover, we studied the consequences of out-of-equilibrium phase
separation on the out-of-equilibrium reflectivity. From our observations, we
propose a simple analysis to identify a mathematical property of the variation
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of the reflectivity in pump-probe experiments that may be generally linked
to out-of-equilibrium phase separation. Based on the modelling of the equi-
librium data, we finally studied the dynamics of the spectral features of the
photo-induced transient state.

1.2 Experiments

We performed pump-probe experiments on magnetite using pump pulses with
a spectrum centred at 1.55 eV and a duration of 80 fs and broadband pulses
with spectral components extending from 1.7 eV to 2.5 eV as probes. The laser
repetition rate was 250 kHz. More details of the set-up have been described
by Novelli et al. in reference [29]. No physical correction of the chirp of the
broadband white light pulses was performed, but a post-processing correction
of the chirp was applied to the data. Corrections to compensate the mis-
match between the penetration depths at the pump photon energy and at the
various probe photon energies (as described by Novelli et al. [30]) have been
found not to be significant. The experiment was performed with the sample
at 35 K, 80 K, and 140 K, i.e. at two temperatures below and one tempera-
ture above the Verwey transition. For the out-of-equilibrium measurements,
two different samples were used, grown by the floating-zone technique in in-
dependent laboratories. [2, 31] One of the samples was the same as used by
de Jong et al. [2] in the time-resolved X-ray diffraction experiment. For the
measurements of the equilibrium properties, we used a sample oriented in the
[100] direction and polished to obtain an optically smooth surface. In the
energy range from 0.75 eV to 3.5 eV, ellipsometric data were acquired with
a rotating-analyzer ellipsometer (Woollam VASE) equipped with a retarder
between polarizer and sample. The angle of incidence was 70◦. The sample
was mounted in a liquid-He flow cryostat with optical windows under UHV
conditions (< 10−9 mbar). For the analysis of the ellipsometric data and the
correction of the effects of the surface roughness, we assumed a cubic symme-
try and considered a surface roughness of 4 nm. The analysis directly yields
the dielectric function ε(ω) = ε1(ω) + iε2(ω), or, equivalently, the optical con-
ductivity σ(ω) ∝ i[ε(ω)− 1].
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1.3 Results

1.3.1 Equilibrium optical properties

Figures 1.2a and b show the real part of the optical conductivity σ(hν) and
the real part of the dielectric function ε1(hν), for different temperatures. The
solid parts of the lines represent the data measured via ellipsometry, while the
dashed lines are their extrapolation based on the model of the ellipsometric
data, which will discussed below.

In σ(hν), the strong absorption related to O2p →Fe3d sets in at about
2.5 eV, while the absorption bands peaking at 0.6 and 2.0 eV have been at-
tributed to excitations among the Fe3d states [25–28]. Qualitatively speaking,
the spectral weight (i.e. the integral of σ1(hν)) of the band at 0.6 eV de-
creases with increasing temperature, in agreement with the results obtained
via Kramers-Kronig transformation of reflectivity data [25, 26]. However, the
literature [25,26] does not precisely address the behaviour at the Verwey transi-
tion, and there is no agreement about the temperature dependence for photon
energies larger than 1.5 eV. Such spectral range is very important for the
analysis of the out-of-equilibrium data presented in this chapter, which ex-
tend from 1.7 to 2.5 eV. Ellipsometry is a self-normalizing technique which
directly yields the real and imaginary part of the dielectric function, without
the need to perform any Kramers-Kronig transformation. It is, therefore, well
suited to measure the details of the temperature dependence of the optical
properties [32–34] across the Verwey transition.

The first observation can be made directly on the data. The inset of fig-
ure 1.2a shows the real part of the conductivity as a function of temperature
for three selected photon energies. As can be seen, at the critical temperature
the conductivity displays a discontinuity.

To perform more detailed considerations about the equilibrium optical
properties of the sample, we fitted them with a model, consisting of “oscil-
lators” representing the various transitions in the system (for a brief overview
on the modelling of the optical properties of solids, see chapter I.2). We em-
ployed different lineshapes in the model. The features above 1.5 eV are best
described by Gaussian oscillators, while we assumed a Tauc-Lorentz lineshape
for the optical band at 0.6 eV, since the latter displays a gap-like feature when
the system is an insulator. Moreover, in the metallic high-temperature phase,
also a Drude oscillator σDrude

1 = σDC/(1 + ω2τ2) is included in the model, to
describe the free carriers and the DC conductivity of the system.

Since the Drude oscillator mainly contributes to the optical properties be-
low the lower limit of our photon energy range, we constrained its parameters
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Figure 1.2: Real parts σ1(ω) and ε1(ω) of the optical conductivity (a) and
of the dielectric function (b) as determined by ellipsometry (solid lines). The
dashed lines show extrapolations based on fits of the ellipsometric data (see
main text). The opening of a gap in σ1 at low temperatures gives rise to the
peak in ε1 at about 0.3 eV. Inset: The temperature dependence of σ1 at three
photon energies (0.8, 1.2, and 1.8 eV, indicated in the main panel) highlights
step-like changes at TV .

using previous results. In particular, σDC was obtained by the measured DC
conductivity, while τ was obtained from a temperature-independent scatterng
rate 1/τ adapted to describe the room-temperature data by Park and his col-
laborators in reference [26].
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Such external constraints on the Drude peak allow for a reliable determina-
tion of the properties of the 0.6 eV band. The analysis of such feature has, in
fact, to be performed with particular care, since our data only covers its high-
energy side. Nevertheless, ellipsometry measures both the real and imaginary
part of the dielectric function, and the data impose a strong constraint on the
fit. The contribution of the 0.6 eV oscillator is significant and distinctive up
to high energies. This can be seen in figure 1.3, where the fitted Tauc-Lorentz
oscillator at 0.6 eV is plotted for two different temperatures. Once the assump-
tion of a Tauc-Lorentz lineshape is done, such a fit gives reliable estimates of
its properties. This is confirmed by the reasonable agreemen between the re-
sults of our fits and the low-energy results in the literature for ε1 [24] and
σ1(ω) [25, 26]. In particular, both the photon energy of about 0.6 eV and the
gap ∆ in the insulating phase are matching. In fact, our fit yields ∆ = 0.2 eV
at 15 K, while Park et al. [26] report 0.14 eV. While the quantitative results
for the low-energy band have to be taken with some care, the fitted model
provides a solid starting point for the analysis of the out-of-equilibrium data,
which lie well within the range covered by the ellipsometric data, also given
the fact that the fit fully reproduces the data.

Figure 1.4 shows the reflectivity at selected temperatures, calculated from
the ellipsometric data. Also the reflectivity shows step-like changes at the
critical temperature.

What happens to the oscillators identified in the model at the critical tem-
perature? The discontinuous changes of the optical properties do not necessar-
ily correspond to discontinuities in the spectral weight, as shown in figure 1.5.
The spectral weight of the Drude feature decreases with decreasing temper-
ature, until it vanishes at the Verwey transition. This change of the Drude
spectral weight is approximately compensated by an increase of the weight of
the 0.6 eV Tauc-Lorentz oscillator. In fact, figure 1.5 shows that the sum of the
two spectral weights is almost constant as a function of the temperature. This
is consistent with the results by Gasparov et al. [25], who reported that the
spectral weight below 0.8 eV is approximately independent of the temperature.
Such agreement further supports the reliability of our model.

Short-range order has been associated to the fact that the Drude and Tauc-
Lorentz oscillators keep changing also above TV [26]. Note that such an obser-
vation can be made independently of the model. In fact, σ1(T ) also displays
such fluctuations-related behaviour (see inset of figure 1.2a).

The variation as a function of temperature of the total spectral weight
in the visible range (blue circles in figure 1.5) is qualitatively similar to the
one of the Tauc-Lorentz 0.6 eV oscillator, but with opposite sign. The origin
of this behaviour, together with the detailed assignment of the oscillators to
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Figure 1.3: Real (a) and imaginary (b) parts of the dielectric function of
the sole oscillator centred at 0.6 eV (Tauc-Lorentz lineshape). At 15 K the
presence of a gap in ε2 gives rise to the formation of a peak in ε1 at about
0.3 eV. Vertical line: lower limit of the measured photon energy range in the
equilibrium experiments.

transitions, will be discussed in section 1.4.3.

1.3.2 Out-of-equilibrium optical properties

Our out-of-equilibrium data can be split into two classes, depending on the
sample temperature. The data measured with the temperature of the sample
below the critical temperature TV (35 and 80 K) show similar behaviours,
which in the following I will argue to be the spectroscopic signature of the
out-of-equilibrium analogue of the Verwey transition. With the sample above
the transition temperature (140 K), the data do not display the distinctive
features shown below TV and linked to the photo-induced phase transition.
Since the results at 35 K and 80 K are almost completely equivalent, for the
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Figure 1.4: Equilibrium reflectivity derived from the ellipsometric results plot-
ted in figure 1.2.

Figure 1.5: Temperature dependence of the spectral weights of different oscil-
lators used in the model (see dashed lines in figure 1.2).

sake of clarity I will describe and discuss explicitly only the results at 35 K,
underlining where the differences with the data at 80 K arise and how these
differences support the picture drawn for 35 K. The results measured at 80 K
are reported at the end of the chapter.

The results at 35 K allow us to identify three regimes of pump fluence
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Figure 1.6: Normalized relative variation of the reflectivity 1
F

∆R
R (hν, t) at 35

K for pump fluences F of (a) 0.5 mJ cm−2, (b) 4.6 mJ cm−2, and (c) 7.1
mJ cm−2, characteristic of the three regimes of low, intermediate, and high
fluence. Insets: ∆R

R (t) at 1.74 eV for the respective fluences. Dashed lines:
photon energy corresponding to the insets.
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Figure 1.7: Normalized relative variation of the reflectivity 1
F

∆R
R (hν =

1.74 eV, t) at 35 K for all the available pump fluences.

F in which the relative variation of the reflectivity (∆R
R (t, hν)) behaves in

qualitatively different ways. The only difference of the results at 80 K are the
pump fluences delimiting these intervals, which are shifted to lower values for
higher temperature. Figure 1.6 shows three data sets for selected fluences,
each of them representative of one of the three regimes. In figure 1.7 instead,
1
F

∆R
R (t) is plotted for all the fluences F at hν=1.74 eV, a representative probe

photon energy.
Below a pump fluence of F1 = 2.7 mJ cm−2, the relative variation of the

reflectivity ∆R
R (t, hν) behaves as shown in figure 1.6a. In this regime, which in

the following will be called low fluence regime, the response has two distinctive
features. First of all, after a very fast increase at pump-probe delay t= 0 at
probing energies around 1.8 eV, ∆R

R decays exponentially with a characteristic
time scale of 0.9 ps to a non-zero thermal plateau (see inset of figure 1.6a and
figure 1.7). The second feature is that ∆R

R scales linearly with the fluence, as
can be seen in figure 1.7. This behavior is typical of the creation of excitations,
whose density scales linearly with the pump fluence. The excitations then
decay, bringing the system to a thermalized state with a temperature different
from the initial one. The lifetime of this transient state is determined by the
thermal conductivity of the system.
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In the intermediate fluence regime, with F1 < F < F2 = 5.1 mJ cm−2,
a behavior like the one plotted in figure 1.6b becomes visible. Again, we
can identify two characteristic features. First, the excitation is followed by
two distinct dynamics. After quickly decaying for a very short time (<1 ps),
the response grows again on a slower time scale τ2 (see inset of figure 1.6b).
This happens more pronouncedly on the low-energy side of the probed range.
Second, while the amplitude of the initial peak (t ' 0.2 ps) still scales linearly
with the fluence (as in the low fluence regime), the amplitude of the long-
time dynamics does not and its characteristic timescale is not constant with
the fluence (see figure 1.7). In particular, the latter becomes faster as the
fluence increases. From these considerations, we can say that the creation
of a sufficient number of excitations in the system triggers a new dynamical
response, which evolves on a timescale which is larger than the one of the
decay of the primary excitations.

In the high fluence regime, for F > F2, ∆R
R progressively loses the men-

tioned features, as shown in figure 1.7, up to the point that, for the highest
fluence used (7.1 mJ cm−2), it behaves as a switch on the low-energy side of
the spectrum, as shown in figure 1.6c and 1.7. In this regime, ∆R

R is almost
independent of the fluence. Moreover, apart from a small relaxation on the
high-energy side of the spectrum, ∆R

R displays a step-like behavior at t = 0
and does not evolve anymore for times at least longer than 10 ps.

1.4 Discussion

By means of time-resolved X-ray diffraction, de Jong et al. [2] have shown
that holes in the charge-ordered lattice, purportedly the trimeronic lattice [6],
are produced upon excitation by the pump pulse. If the pump fluence is lower
than F1, the lattice thermalizes to a higher temperature, but retains the global
symmetry of the low-temperature charge-ordered phase (low fluence regime).
If the fluence exceeds F1, the nucleation of volumes with the symmetry of the
high-temperature phase is triggered. This leads to phase separation, i.e., coex-
istence of uncorrelated charge-ordered regions and metallic ones (intermediate
fluence regime). Our time-resolved spectroscopic data confirm this scenario.
Moreover, we also explored higher fluences (F > F2), where the dynamics is
different.

The discussion will proceed as follows. First, I will discuss the intermedi-
ate fluence regime and I will show that the spectral feature of the long-time
response corresponds to the nucleation of the high-temperature phase. I will
afterwards discuss what we have identified as a possibly general consequence of
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phase separation on a mathematical property (the separability) of the out-of-
equilibrium reflectivity of a system. In the high fluence regime, we have then
shown that the system is, instead, immediately (i.e., on a timescale smaller
than our experimental resolution) and homogeneously brought to the high-
temperature phase and the nucleation process can no longer be observed in
the out-of-equilibrium optical properties. Residual localized charge order is
still present in the system, but the insulating region is progressively reduced
as the fluence increases. This scenario emerges from the comparison of the
out-of-equilibrium with the equilibrium measurements and from the study of
the separability of the variation of the reflectivity as a function of time and
probe photon energy.

The results obtained at 140 K confirm that our observations can be ascribed
to a photo-induced phase transition. Above the Verwey transition temperature
and for the measured fluences, the response is linear and there is no evidence for
a photo-induced phase transition. In the following, we will use this substantial
difference to benchmark part of the proposed analysis.

1.4.1 Out-of-equilibrium phase transition and supply of
latent heat

Having outlined the conclusions that can be drawn from the data, the first
question that should be answered is why phase separation should be expected
at all in this experiment. To do this I will first extract parameters from the data
which will allow us to identify the fluences F1 and F2 at which the response
qualitatively changes. Then I will describe how F1 and F2 are related to final
effective temperatures of the sample and compare them with temperatures
relevant at equilibrium.

Up to a certain fluence the amplitude of the initial peak in ∆R
R scales

linearly with the fluence. To see this, we can take, as a parameter, ∆R
R at

a probe photon energy of 1.74 eV and a pump-probe delay of 0.2 ps. This
quantity is shown in figure 1.8 (blue squares). The fluence below which it
scales linearly with the fluence is F2=5.1 mJ cm−2. Above F2, where the
switching-like behaviour is present, it saturates. The magnitude of ∆R

R (0.2 ps)
becomes less dependent on the fluence.

The linear behaviour ceases before for larger pump-probe delays. Plotting
∆R
R (1.74 eV) at 8 ps (green triangles in figure 1.8), it can be seen that ∆R

R
at large times is linear up to F1=2.7 mJ cm−2. Between F1 and F2, the
long-time response is nonlinear and ∆R

R (8 ps) steeply departs from the low-
fluence behaviour. Above F2, also in this case the variation of the reflectivity
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saturates.
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Figure 1.8: “Fast response” (blue squares): ∆R
R at 1.74 eV photon energy

and 0.2 ps pump-probe delay. “Long-time response” (green triangles): ∆R
R

at 1.74 eV photon energy and 8 ps pump-probe delay. Inset: The squares
are the characteristic fluences extracted from the out-of-equilibrium data as a
function of the sample’s temperature, corresponding to: onset of the nonlinear
response (magenta) and saturation of the nonlinear response (orange). The
lines represent equivalent fluences calculated from thermodynamic data needed
to reach T−V (magenta), T+

V (red), and 140 K (orange). The red shaded area
corresponds to fluences bringing the sample to T−V and supplying part of the
latent heat. The vertical lines and the vertical shaded area in the main figure
mimic the inset.

If we assume that after the excitation the sample quickly reaches an effec-
tively thermal state, we can estimate its final effective temperature considering
the volume energy density deposited by each pump pulse. We can approximate
the situation to the one in which the sample is excited uniformly. The volume
of the sample is taken to be the area illuminated by the pump beam times the
penetration depth α of light at the pump photon energy.

From the equilibrium thermodynamic properties we can calculate the en-
ergy Q needed to bring such a volume of magnetite from its initial temperature
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Ti to a temperature T , which reads

Q(T ) = nmol

T∫
Ti

dT̃ cmol(T̃ ), (1.1)

where cmol is the molar specific heat and nmol is the number of moles contained
in the volume of the sample. For this calculation we used the specific heat
measured by Takai et al. in reference [35], reported in figure 1.9. Since the
surface of the sample reflects part of the pump pulse and only a fraction
(1-R) of the total energy will cross the surface, the total energy carried by
the pump pulse must be larger than Q(T ) in order for the sample to reach T.
Moreover, out of the energy entering into the sample, only a fraction 1

α (1−e−1)
is deposited within the penetration depth α. Therefore, the fluence FTi(T )
needed to heat the sample from Ti to T is given by

FTi(T ) = q(T )
α

1− e−1

1

1−R, (1.2)

where q(T ) is the surface density of Q(T ). Inverting this equation one can
obtain the effective final temperature as a function of the fluence.
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Figure 1.9: Molar specific heat of magnetite, adapted from reference [35].

The reason why in the interemediate fluence regime (F1 < F < F2) phase
separation should be expected is the following. With the sample at 35 K, a
pump pulse with fluence F1 raises the temperature of the sample to T−V , i.e.
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right to the transition temperature without supplying any portion of the latent
heat. The intermediate fluence regime starts with the supply of at least part of
the latent heat. As concluded via time-resolved X-ray diffraction [2], fluences
above F1 trigger the dynamic nucleation of the metallic phase and, therefore,
the phase transition. The full latent heat is supplied by a fluence F+

1 =4.1
mJ cm−2, while the qualitative change of behaviour of ∆R

R is evident only
above F2 = 5.1 mJ cm−2, which brings the sample to a temperature of 140
K. A more detailed anaysis allows to discover that the qualitative change in
behaviour starts at F+

1 and is complete at F2, as discussed in the next section.

Between T (F+
1 ) = T+

V and T (F2) = 140 K the fluctuations towards charge
ordering are clearly visible in the equilibrium optical properties (see the inset of
the figure 1.2). While time-resolved X-ray diffraction data are not available for
fluences larger than F2, we argue that above F2 the variation of the electronic
properties progressively becomes a sudden process, and that the nucleation of
the metallic phase is not present anymore. In fact, above F2, ∆R

R progressively
loses all the features of the response at the lower fluences, as it will be shown
in more detail in the next sections.

The inset of figure 1.8 shows the values of F (T−V ), F (T+
V ) and F (140 K) as

a function of the initial temperature of the sample. The squares are the values
of F1 and F2 for the sample at 35 K and 80 K. As shown, the characteristic
fluence F1 and F2 correctly scale with the temperature and at 80 K are lower
than the ones at 35 K. In fact, with a starting temperature of 80 K, less heat
is needed to bring the sample to the critical temperature TV .

1.4.2 Nucleation of the metallic phase, out-of-equilibrium
phase separation, and non-separability of the re-
sponse

In this section an analysis is presented, suggesting that the response of mag-
netite is homogeneous over the illuminated sample for base temperatures below
TV in the low and high fluence regimes, while the dynamics triggered in the
intermediate regime involves phase separation.

The discussion will proceed as follows. At first, I will discuss the fact
that in the intermediate fluence regime ∆R

R (hν, t) is non-separable, i.e. it can,
and must, be written as the sum of two different spectral features evolving in
time in two different ways. Subsequently, the two observed spectro-temporal
features will be linked to: i) the production and relaxation of excitations in the
charge-ordered phase, and ii) the nucleation of the high-temperature phase.

As a visual reference for what follows, 1
F

∆R
R at 1.74 eV is plotted in fig-
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ure 1.10a for representative fluences of the three regimes.

Since the fast response scales linarly up to F2, but the long-time response
does just up to F1, we can ask ourselves what differentiates the two dynam-
ics between F1 and F2. We can extract the nonlinear contribution from the
intermediate-fluence ∆R

R , which we can call ∆R
R

′
, by calculating

1

F

∆R

R

′
=

1

F

∆R

R
− 1

F0

∆R

R

∣∣∣∣
0

, (1.3)

where F0 is the lowest fluence used in our experiment and which we take
to produce a purely linear response. In the low fluence regime the above
subtraction is trivially zero.

As a sample result of the subtraction (1.3) in the intermediate fluence

regime, figures 1.10b and c show ∆R
R

′
for F = 4.6 mJ cm−2. Three prop-

erties of ∆R
R

′
can be underlined. The first one is that at 0.2 ps (i.e. the

temporal position of the fast peak in the total response) ∆R
R

′
is zero at all

probe photon energies. This confirms that the fast peak is linear at all pho-
ton energies throughout the intermediate regime. The nonlinear contribution

to ∆R
R is therefore a purely slow dynamics. The second property of ∆R

R

′
is

that the timescale τ2 with which it grows matches the one obtained from the
time-resolved diffraction experiment for the nucleation of the metallic phase [2]
in the same excitation conditions. These two aspects show that the decom-
position in equation (1.3) is physically meaningful. This itself is the third

important property of ∆R
R

′
. In fact, it is remarkable from the spectroscopic

point of view that the total reflectivity can be written as the sum of two phys-
ically meaningful terms. The additivity of the response is consistent with the
scenario in which the total reflectivity of the sample is the sum of the reflec-
tivities of different regions in different phases, which are sufficiently defined to
have their own optical properties. In the case of out-of-equilibrium magnetite,
these different regions are patches in the insulating and in the metallic phases.

Also the fluence dependence of τ2, reported in table 1.1 supports this pic-
ture. With increasing fluence the density of local excitations in the charge-
ordered lattice increases, and the nucleation time τ2 becomes shorter, eventu-
ally leading to a percolative path in the high-temperature phase.

The analysis described above seems sufficiently justified in the interme-
diate fluence regime, because the linearity of the fast peak clearly indicates
a common feature of the low and intermediate fluence regimes. Moreover,
the result of the decomposition in equation (1.3) is consistent with the time-
resolved X-ray diffraction data [2] and with the fact that latent heat is being
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Fluence (mJ cm−2) τ2 (ps)
3.1 5.6
3.6 5.3
4.1 3.8
4.6 3.6

Table 1.1: τ2 at 35 K for different pump-fluences in the intermediate regime.

supplied when F1 < F < F+
1 . In the high fluence regime the latent heat is

fully delivered and the X-ray data are missing. How can we know whether
the decomposition (1.3) is applicable also for F > F2? Furthermore, how can
we check that in the intermediate fluence regime such decomposition is sound
and that it does not originate from a biased physical picture of the underlying
dynamics? One could, in fact, argue that any function (∆R

R ) can be written
as the sum of two other functions (linear and nonlinear contributions, in this
specific case).

To answer these questions, we have to use singular value decomposition, a
so-called blind decomposition. Such algorithm allows to decompose ∆R

R (hν, t),

which for the present case can be written as a matrix [∆R
R ]hν,t where the row

and column indices are the probe photon energy and the pump-probe delay,
respectively. Differently from equation (1.3), this analysis does not involve
physical assumptions, nor the usage of other data sets (as is the case for the
linear response at F0 in equation (1.3)). Singular value decomposition allows
to write ∆R

R as a sum of spectro-temporal components

∆R

R
(hν, t) =

∑
i

si spectrumi(hν)⊗ evolutioni(t), (1.4)

where the spectra and the evolutions are the so-called left and right singular
vectors and si are the singular values. Singular value decomposition is obtained
from the general problem of the factorization of a matrix imposing that the
sets of left and right singular vectors be orthonormal bases. This may lead to
singular vectors which are not suitable for a physical interpretation.

Despite this limitation, there is one result of the decomposition which is
independent of the constraints. If there is more than one relevant 2 singular
value, then the matrix is not separable, i.e. it cannot be factorized as a single
product of a spectral feature with one single temporal evolution for all the
photon energies.

2with respect to the noise level
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In the measured ∆R
R (hν, t) at all fluences, the relevant singular values are at

most two. Figures 1.11a and b show the singular values (ordered by magnitude)
of ∆R

R (hν, t) for a fluence in the low regime and a fluence in the intermediate
regime. As can be seen, the majority of the singular values forms a continuous
distribution and corresponds to noise. An indicator of whether more than one
component is needed to describe ∆R

R is the ratio of the second largest singular
value to the largest one 3. A large ratio means that two spectro-temporal
components are needed to describe the data and that ∆R

R is not separable (i.e.
not factorizable) in (hν, t) space. We can call such ratio “non-separability” in
(hν, t) space.
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Figure 1.11: Ordered singular values obtained from the singular value decom-
position of [∆R

R ]hν,t at 0.5 mJ cm−2 (a) and 3.5 mJ cm−2 (b).

3From both, the noise level needs to be subtracted.
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Figure 1.12 shows the “non-separability” of ∆R
R as a function of the fluence.

At the lowest pump fluence the non-separability is zero, meaning that ∆R
R

contains a single spectro-temporal component. As the flunce is increased up
to F+

1 , the non-separability of ∆R
R increases. While only a portion of the

latent heat is supplied, the relevance of the second spectro-temporal component
increases, because the holes in the charge-ordered lattice have to nucleate to
form islands in the high-temperature phase.

Beyond F+
1 , the non-separability decreases instead, and above F2, ∆R

R
approximately becomes separable again. Once the latent heat is fully delivered,
the transition homogeneously occurs over the whole sample, as confirmed by
the fact that ∆R

R can be expressed almost as a single spectro-temporal feature.
To benchmark this kind of analysis on the out-of-equilibrium reflectivity,

we performed it on the data measured at 140 K. Since this temperature is
larger than TV , we expect no phase separation after the excitation, and the
sample to be homogeneous. Singular value decomposition shows that ∆R

R at
140 K is exactly separable (i.e. factorizable in (hν, t) space) at all fluences.
This result supports the picture outlined so far.

There is a minor problem that should be addressed, i.e. the specific shape
of the onset of the non-separability. In figure 1.12 there is no sharp increase
of the non-separability at the threshold F1, as one would expect from the
picture of the triggering of the phase transition. The explanation for this is
the following. The constraint of orthogonality for the singular vectors produce
effects also on the singular values. In fact, if a small perturbation of the form

B = b f(hν)⊗ g(t) (1.5)

is added to a separable matrix M

M = s u(hν)⊗ v(t), (1.6)

then the singular values of the matrix

M +B = s′1u
′
1(hν)⊗ v′1(t) + s′2u

′
2(hν)⊗ v′2(t) (1.7)

will not be exactly s and b, but will depend also on the scalar product of f(hν)
and g(t) with the singular vectors of M+B. For this reason, the quantitative
relation between the singular values and the weights of the physical compo-
nents (in the present case, linear and nonlinear) must be considered with some
care, and the shape of the non-separability at the threshold fluence does not
resemble the edge of the physical components (figure 1.8). On the other hand,
the minimal interpretation of the result, i.e. the existence of one or more
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Figure 1.12: Ratio of the second largest and largest singular values (from both,
the noise level was subtracted), as a function of fluence. Inset: same inset as
in figure 1.8, with the addition of the fluences at which the “non-separability”
starts to decrease (red squares), as measured at 35 and 80 K. These match
the calculated equivalent fluences needed to deliver the full latent heat to the
sample (red line).

than one non-zero singular values, is not affected by the above quantitative
considerations.

The convergence of all these indications allow us to conjecture that the non-
separability of ∆R

R (t, hν) may be a necessary condition for the identification of
phase separation in out-of-equilibrium systems, as will be discussed further in
section 1.6.

It should be noted that, alternatively, phase separation may be occurring
between different depths in the sample. Since the pump intensity decreases ex-
ponentially with depth from the surface, the probe may be measuring an exter-
nal and internal “layer” of the sample, respectively above and below threshold.
However, the time-dependent coherence length of the low-temperature phase
measured via X-ray diffraction [2] indicates the presence of islands in one phase
embedded in a matrix in the other phase.
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1.4.3 Equilibrium optical properties across the phase tran-
sition

In this section, the assignment of the oscillators included in our model to
transitions between different states in magnetite is discussed, considering the
LSDA+U calculations by Leonov et al. [27]. The O2p →Fe3d charge-transfer
excitations have, in general, a large dipole moment and, therefore, a spectral
weight which is much larger than for transitions between different 3d states of
iron. The strong charge-transfer transitions are found above 2.5 eV [26, 27].
The spectral features below 2.5 eV (at 0.6 and 2 eV) can therefore be attributed
to transitions between Fe3d states. Magnetite presents two inequivalent classes
of Fe sites (A and B) and Fe sites with valencies 2+ and 3+. This produces
many possible transitions. Nevertheless, it is possible to exclude some of them
with the following simple argument. The 3d5 configuration with S = 5/2,
i.e. with all the spins parallel, is very stable, and the transitions of the type
3d5
i 3d

5
j → 3d4

i 3d
6
j are typically observed at energies above 3 eV [36,37]. There-

fore, the 0.6 eV and 2.0 eV features are reasonably due to 3d6
i 3d

5
j → 3d5

i 3d
6
j

transitions.
The results by Leonov et al. [27] indicate that the occupied state with the

energy closest to the Fermi level is the one of minority spins ↓ in the t2g level
of the Fe2+

B sites. The lowest unoccupied state has been identified as the t2g ↓
on the Fe3+

B sites. The optical band at 0.6 eV can be assigned to the intersite
Fe2+
B t2g ↓ →Fe3+

B t2g ↓ transition [27]. Its spectral weight increases as the
charge disproportionation between Fe2+

B and Fe3+
B sites increases, i.e. upon

decreasing the temperature and going towards the charge-ordered phase.
In Fe3O4, neighbouring FeB sites are connected via 90◦ Fe-O-Fe bonds.

This allows, in addition to the t2g → t2g intersite hopping, also the t2g → eg
hopping (see, e.g., reference [5]). The LSDA+U results position such Fe2+

B t2g ↓
→Fe3+

B eg ↓ transition at about 2 eV. 4 The temperature dependence of the
spectral weight of the t2g → eg excitation is more subtle than for the t2g → t2g
one. In fact, since in both cases the transition involves a minority spin ↓
hopping from Fe2+

B to Fe3+
B sites, one would expect that the spectral weights

shoud change in the same way. This does not agree with what we observe
experimentally. The measured variation with temperature of the two spectral
weights is opposite. This is, however, consistent with the considerations made
by Leonov et al. [27]. In fact, they find that charge order is strongly screened
by a change of covalency. This means that, below TV , the Fe3+

B sites show an

4Note that the assignments of the 0.6 and 2.0 eV oscillators confirm that a pump photon
energy of 1.5 eV is suited to produce excitations that induce the phase transition, since they
tend to destroy the charge order.

Page 27



Chapter I.1 Section 1.4

enhanced occupation of the eg ↓ level, as a consequence of the hybridization
with O2p states. Therefore, the spectral weight for excitations to eg states is
reduced entering the charge-ordered phase.

Other possible transitions between Fe3d states can be excluded. The Pauli
principle prohibits a hopping of the minority electrons on a Fe2+

B to FeA sites,
since the minority spin states on the A sublattice are fully occupied. Alterna-
tively, it hase been proposed [26, 28] that the band at 2.0 eV corresponds to
the excitation of majority ↑ spin electrons from a Fe2+

B site to an eg state on
an FeA site. The LSDA+U calculations show however that this excitation is
expected at a slightly larger energy than the one descibed above [27].

1.4.4 Spectral response of the phase transition

Based on the previous section, I present the last evidence that supports the
intepretations proposed so far. The spectral analysis of the features appearing
in ∆R

R allows to show that they are indeed associated to the charge-ordered
(linear component) and charge-disordered phase (nonlinear component). To
do this, we fitted ∆R

R by varying parameters of the oscillator model of the
equilibrium optical properties. From such fits two kinds of information can
be obtained. The first is the minimal set of free parameters (or oscillators)
needed to account for the observed ∆R

R . The second is the temporal evolution
of the free parameters. Out of the numerical results that can be obtained, the
evolutions of the spectral weights of the oscillators are the most robust, and
our discussion is limited to them.

In the low fluence regime, the variation of the reflectivity, which is linear
with F, can be described by variations of the 0.6 and 2.0 eV oscillators. i.e. of
the Fe2+

B t2g → Fe3+
B t2g and the Fe2+

B t2g → Fe3+
B eg transitions. The fit is shown

in figure 1.13a for pump-probe delay t=0.2 ps (blue line). Modifications of the
charge-transfer excitation between O2p and Fe3d are, instead, not needed to
describe the observed dynamics. Figure 1.13b shows the temporal evolution of
the spectral weights of the two oscillators involved. As excitations are created
in the system at t = 0, the spectral weight of the Fe2+

B t2g → Fe3+
B t2g (0.6

eV) transition decreases, while the one of the Fe2+
B t2g → Fe3+

B eg transition
(2 eV) increases, then relaxing to a thermal plateau. The opposite signs of
these variations are consistent with the opposite temperature behavior of the
two features observed in the equilibrium data, see figure 1.5. On one side the
partial destruction of the charge order reduces the spectral weight of the 0.6
eV oscillator, while on the other the de-hybridization of the Fe3+

B eg and O2p

states increases the weight of the 2 eV oscillator.
These fits have been performed imposing the conservation of the total spec-
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tral weight. This constraint makes the result of the fitting procedure more sta-
ble. It is also an appropriate constraint, since, without it, the spectral weight
is approximately conserved and the result of the fit are, both qualitatively and
quantitatively, very similar to the constrained results. While the constraint
helps to reduce the noise, it enhances the correlation between the two spec-
tral weights in figure 1.13b. As can be seen, the noise of the two curves is
evidently correlated, as a consequence of close-by minima in the space of the
parameters. Nevertheless, the amplitudes and the signs of the variation of the
spectral weights are independent of the details of the fitting procedures.

In the intermediate fluence regime, the nonlinear term ∆R
R

′
is linked to the

nucleation of the metallic phase. As shown in figure 1.13a (cyan line), the non-

linear ∆R
R

′
can be accounted for by the sole change of the Fe2+

B t2g → Fe3+
B t2g

transition at 0.6 eV. Figure 1.13c shows that its spectral weight decreases with
the characteristic timescale of the slow dynamics, consistently with the picture
in which the charge-disordered phase is nucleating. 5

These results suggest that the hybridization of Fe3+
B eg and O2p states is

not involved in the nucleation process, but is exclusively linked to the increase
of the temperature of the system.

1.5 Conclusions

We reported measurements of both equilibrium and out-of-equilibrium optical
properties of magnetite on a broad spectral range and at different temper-
atures across the Verwey insulator-to-metal phase transition. The equilib-
rium optical properties show a step-like behavior at the transition between
the charge-ordered and charge-disordered phases. Our measurements allowed
us also to determine the behavior of the spectroscopic features as a function
of temperature. The most important ones in this discussion are the intersite
transitions of minority spins ↓ from the Fe2+

B t2g levels to the t2g and eg levels of
Fe3+
B atoms. As expected, the spectral weight of the Fe2+

B t2g →Fe3+
B t2g oscil-

lator grows upon cooling, i.e. upon increasing the charge disproportionation.
The temperature dependence of the spectral weight of the Fe2+

B t2g →Fe3+
B eg

5Since the out-of-equilibrium data only conver the spectral range from 1.7 to 2.5 eV, we
cannot access all the details of the low-energy response and we cannot ascertain, for instance,
an actual onset of metallicity associated to a Drude feature. However, it can be excluded
that the introduction of the Drude feature alone can describe the data, because such a fit
poduces results which are incompatible with the measurements. Introducing a Drude feature
in addition to the changes of the 0.6 eV oscillator does allow to fit the data, but changes the
results in a mild way. Despite these shortcomings in our analysis, the nonlinear response
can remarkably be fitted with changes of the 0.6 eV oscillator only.
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Figure 1.13: a) Linear and nonlinear terms in ∆R
R at 0.2 ps and 8.0 ps re-

spectively, and their fits. b) Variation of the spectral weight as a function of
pump-probe delay of the 0.6 (red) and 2.0 (green) oscillators as resulting from
the fit of the linear/low-fluence ∆R

R . Inset: sketch of the involved transitions.
c) Variation of the spectral weight of the 0.6 eV oscillator from the fit of the
nonlinear term of ∆R

R .
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oscillator is, instead, opposite. It decreases upon cooling, as charge ordering
enhances the hybridization of Fe3+

B eg with O2p orbitals and hence gives rise
to an increased minority spin ↓ occupation of the Fe3+

B eg states.

The out-of-equilibrium data allowed us to draw various conclusions on the
observed dynamics. Its dependence on the excitation fluence reveals that the
photoexcitation process can trigger the out-of-equilibrium transition analogous
to the Verwey phase transition, as already reported by de Jong et al. [2]. Be-
low a certain threshold fluence (F < F1, low fluence regime), the dynamical
response we observe is the one associated to a warmer charge-ordered lattice,
homogeneous over the sample. With larger fluences (F1 < F < F2, inter-
mediate fluence regime), regions of the high-temperature phase can nucleate,
eventually leading to isolated remnants of the charge-ordered lattice. [2] This
picture of the nature of the nucleating phase is supported by the spectral
analysis of our out-of-equilibrium data. Moreover, the latter contain also in-
dications about the phase separation occurring in the sample. In fact, in the
intermediate fluence regime [∆R

R ]hν,t is not a separable matrix, i.e. it cannot
be expressed as a single spectral feature evolving in time. This supports the
interpretation that the observed response is the sum of the responses of dis-
tinct regions. Finally, we have shown that above a further threshold fluence
(F > F2, high fluence regime), the transition to the high-temperature phase is
homogeneous over the sample, and nucleation is not observed in the electronic
properties as it is in the intermediate fluence regime. The mentioned charac-
teristic fluences are surprisingly linked within the experimental error to the
equilibrium thermodynamics of magnetite and, in particular, to the delivery
of latent heat to the sample. This suggests that the photoexcitation with 1.5
eV photons acts as a sudden heating. Furthermore, the photo-induced phase
can be qualitatively linked to the equilibrium high-temperature phase studying
its spectral fingerprint in the visible, which maps the local charge order. We
stress that our visible probe cannot measure the Drude response associatd to
a metallic behavior. Further measurements addressing the low-energy optical
properties are, therefore, necessary to ascertain the full correspondence be-
tween the photo-induced phase and the equilibrium high-temperature metallic
one.
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1.6 Non-separable dynamics as a general sig-
nature of phase separation?

Our results about the phase separation in the system may have a general
relevance beyond the particular case-study of magnetite. Although the details
as the lattice order and the timescales involved could be different, the behavior
we discussed in this work may be valid in general for photoexcited out-of-
equilibrium systems displaying a first-order phase transition. Furthermore,
the picture emerging from this work suggests also that a non-separable out-of-
equilibrium reflectivity may be a general fingerprint of out-of-equilibrium phase
separation and may represent a straightforward way to highlight the possible
occurrence of phase separation in other out-of-equilibrium experiments.

As a first test of this hypothesis, I performed the analysis of the results
of analogous pump-probe experiments on vanadium dioxide (VO2), by Wall
et al. [4]. Vanadium dioxide displays a first-order insulator-to-metal transi-
tion at Tc = 340 K, linked to a structural transition from a low-temperature
monoclininc (M1) phase to a high-temperature rutile (R) phase. The general
characteristics of the response to photoexcitation of VO2 at T < Tc may there-
fore be expected to be similar to the case of Fe3O4 discussed in this chapter.
This seems indeed to be the case. Performing singular value decomposition
on ∆R

R |VO2(hν, t) and calculating the non-separability (as discussed in sec-
tion 1.4.2), one obtains the result shown in figure 1.14 as a function of the
fluence in units of the threshold fluence (i.e. Fthreshold = 1). As in Fe3O4 (see
figure 1.12), the non-separability is peaked in the close-to-threshold regime
and goes towards zero on both sides. Remarkably, this hints to a possible
generality of the non-separability of ∆R

R as a signature of phase separation in
out-of-equilibrium first-order phase transitions. Further studies on different
systems would be needed to further test such conjecture. It remains also to
be studied in what other conditions, besides phase separation, ∆R

R (hν, t) may
be non-separable.
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Figure 1.14: Non-separability of the relative variation of the reflectivity
∆R
R (hν, t) of VO2, as a function of the pump-fluence. The latter is in units of

the threshold fluence for the triggering of the out-of-equilibrium phase transi-
tion.

Results at 80 K

As mentioned in section 1.3.2, the data at 80 K are completely analogous to
the ones at 35 K, which have been described in detail. The only difference
between the two datasets are the values of the characteristic fluences F1 and
F2. In agreement with the thermal interpretation of the energy delivered to the
sample by the pump pulses, they are lower at 80 K, since the system needs less
energy to reach the transition temperature. In the following figures, from 1.15
to 1.19, we plot the data measured at 80 K and their analysis, as discussed in
the main text for 35 K.

Characteristic timescales The characteristic timescales τ2 for the slow
response in the intermediate fluence regime at 80 K are reported in table 1.2.
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Figure 1.15: a,b,c): Normalized relative variation of the reflectivity 1
F

∆R
R

measured at 80 K as a function of pump-probe delay and probe photon energy
for fluences of 0.6, 2.9, and 5.7 mJ cm−2 respectively. a,b,c) inset: temporal
profile of the colour plots at 1.74 eV. Dashed lines: photon energy correspond-
ing to the insets.
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Fluence (mJ cm−2) τ2 (ps)
2.2 6.5
2.9 4.3
4.3 1.7

Table 1.2: τ2 at 80 K for different pump-fluences in the intermediate regime.
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Figure 1.16: Normalized relative variation of the reflectivity 1
F

∆R
R (1.74 eV)

measured at 80 K for different pump fluences.
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Figure 1.17: ‘Fast response” (blue squares): ∆R
R at 1.74 eV photon energy

and 0.2 ps pump-probe delay. “Long-time response” (green triangles): ∆R
R

at 1.74 eV photon energy and 8 ps pump-probe delay. Inset: The squares
are the characteristic fluences extracted from the out-of-equilibrium data as a
function of the sample’s temperature, corresponding to: onset of the nonlinear
response (magenta) and saturation of the nonlinear response (yellow). The
lines represent equivalent fluences calculated from thermodynamic data needed
to: reach T−V (magenta), reach T+

V (red), reach 140 K (yellow). The red shaded
area corresponds to fluences bringing the sample to T−V and supplying part of
the latent heat. The vertical lines and the vertical shaded area in the main
figure mimic the inset.
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Figure 1.18: Ratio of the second largest and largest singular values (from both,
the noise level was subtracted), as a function of fluence. Inset: same inset as in
figure 1.17, with the addition of the fluences at which the “non-separability”
starts to decrease (red squares), as measured at 35 and 80 K. These match
the calculated equivalent fluences needed to deliver the full latent heat to the
sample (red line).
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Results at 140 K

Figure 1.20 shows ∆R
R measured at 140 K. In agreement with the interpretation

of a photo-induced phase transition for the data at 35 and 80 K, these data
display a completely different behaviour. In fact, the spectrum of ∆R

R |140 K

is different from ∆R
R |35,80K in all fluence regimes. Moreover, ∆R

R |140 K does
not show any nonlinearity or slow dynamics arising as a function of fluence.
As already mentioned in the main text, also the singular value decomposition
points towards an excitation that leaves the sample homogeneous at all the
explored pump fluences, since at all fluences ∆R

R |140 K is exactly separable.
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Figure 1.20: a): Relative variation of the reflectivity ∆R
R at 140 K with 5.7 mJ

cm−2 as a function of pump-probe delay and probe photon energy. b) ∆R
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eV) at 140 K for three different pump-fluences.
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formed the ellipsometric measurements and analysed the equilibrium results.
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Chapter 2

Modelling of the optical
properties of solids

2.1 The dielectric function at equilibrium

The general constitutive relation of a medium relates the electric displacement
in the medium with the electric field [38], and can be written as

Di(t) = ε0Ei(t) + Pi[E](t). (2.1)

If the medium is linear, then the polarization P contains only the first power
of the electric field E and is determined by a retarded response χ(t) of the
medium to the electric field. The electric displacement is therefore

Di(t) = ε0Ei(t) + ε0

∞∫
0

ds χij(t− s)Ej(s). (2.2)

χij(t) is, in general, a tensor relating the polarization on the direction i to
the electric field on the direction j. We can remove the convolution moving to
ω-space:

Di(ω) = ε0Ei(ω) + ε0χij(ω)Ej(ω). (2.3)

To simplify the notation, below I will omit the ω-argument. If the medium is
isotropic, then the susceptibility becomes a scalar quantity, and

D = ε0(1 + χ)E. (2.4)
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ε = (1 + χ) is the relative dielectric function. The dielectric function of a
system gives access to many of its properties. In the next section I will briefly
describe how it can be modelled using various kind of functions. From the
dielectric function the other (linear) optical properties can be calculated. The
(complex) refractive index is n =

√
ε, and the reflectivity at normal incidence

is R =
∣∣n−1
n+1

∣∣2.
Analogously to the dielectric function, also another quantity is used to

describe the optical properties of a system: the conductivity. For an isotropic
medium

J = σE. (2.5)

With no free charges

J(t) =
d

dt
P(t), (2.6)

which can be rewritten in ω-space as

J = −iωP = −iωε0χE. (2.7)

Comparing equations (2.5) and (2.5) we obtain that

σ = −iωε0(ε− 1). (2.8)

A common notation is to call Re ε = ε1, Im ε = ε2, Reσ = σ1, and Imσ = σ2.
Such quantities can be obtained from two main kinds of measurements. The
first is the measurement of the reflectivity of the system with a subsequent
Kramers-Kronig analysis, to obtain the modulus and phase of the complex
reflectance r = n−1

n+1 . The second is ellipsometry, which directly allows to
measure the real and imaginary parts of ε.

2.1.1 The Lorentz oscillator

The most standard lineshape of transitions between energy levels is described
by the solution of the following equation for a forced and viscously damped
oscillator [39],

m
d2

dt2
r +mΓ

d

dt
r +mω2

0r = −eE(r, t). (2.9)

From such an equation one obtains a susceptibility χ(L) of the form

χ(L)(ω) =
A

(ω2
0 − ω2)− iΓω , (2.10)
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where A is an amplitude (corresponding to the plasma frequency), and ω0

and Γ are the parameters defined in the differential equation (2.9). Since such
susceptibility is obtained as a solution of an oscillator equation, the function it
describes is generally called “oscillator”, namely Lorentz oscillator. Note that
for ω0 = 0, such lineshape becomes the Drude lineshape for free electrons in
an effective medium.

The total susceptibility of a system is then described as the sum of Lorentz
oscillators, possibly a Drude lineshape for metals, and a constant which ac-
counts for oscillators at higher energies that are not considered. The dielectric
function is, in general,

ε(ω) = ε∞ +
∑
j

χ
(L)
j (ω). (2.11)

2.1.2 Other kinds of oscillators

The Lorentzian lineshape does not account for all the lineshapes that can be
found in solids.

Gaussian oscillator When disorder is present in a lattice, or when the
lattice structure is very complicated, the lineshape can be a Gaussian. The
imaginary and real part of the dielectric function for a Gaussian oscillator
are [40,41] 1

ε2(ω) = A

[
e
− (ω−ω0)2

Γ2/(4 log(2)) − e−
(ω+ω0)2

Γ2/(4 log(2))

]
, (2.12)

ε1(ω) = A
2

π

[
D

(
ω − ω0

Γ/
(
2
√

log(2)
))−D( ω + ω0

Γ/
(
2
√

log(2)
))], (2.13)

where D(z) is the Dawson function

D(z) = −i
√
π

2
e−z

2

erf(iz). (2.14)

Note that ε1 and ε2 are related by the Kramers-Kronig relations.

1The expression is rather complicated because of the adopted convention for the param-
eters.
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Tauc-Lorentz oscillator Spectra with energy gaps may be well described
by the so-called Tauc Lorentz oscillator [42–44], which gives an imaginary part
of the dielectric function of the form

ε2(ω) =

{
A 1
ω

ω0Γ(ω−∆)2

ω(ω2−ω2
0)+ω2Γ

if x ≥ ∆

0 if x < ∆
(2.15)

The expression for ε1 is very complicated and is omitted. It can be found in
reference [43,44].

2.2 Out of equilibrium fits

The various oscillators described in the previous section are primarily em-
ployed to produce models of the equilibrium optical properties measured in
one or more of the ways mentioned. This is, however, not their only possi-
ble application. In a pump-probe experiment the response of the system is
given by the third-order nonlinear susceptibility χ(3). However, it is usually
assumed that, when the system can be safely considered in an effectively ther-
mal state, the variation of the optical properties (e.g. of the reflectivity) can
be described by variations of the parameters (central frequencies, widths, ...)
of their equilibrium model.

In the case of materials whose spectra are not very simple, a fit of ∆R
R (hν, t)

with the entirety of the parameters held as free can easily become unjustifiable.
A minimal set of parameters has therefore to be found, whose variation is able
to describe the observed ∆R

R (hν, t). The remaining parameters are constrained
to be fixed. On physical grounds one can then choose to impose further con-
straints on the parameters. Apart from constraining single parameters around
certain values, other kinds of constraints with more global character exist. As
an example, it may be imposed that the total spectral weight be conserved
(as done for the analysis of the linear term of the ∆R

R (hν, t) of magnetite in
chapter 1), or that two specific oscillators exchange spectral weight.

Such constraints to the fit can be implemented using the so-called penalty
functions. Instead of using the standard fitting routines, the unconstrained fit
can be performed

1. defining the target (fitting) function;

2. defining an “error” function which uses the target function to calculate
the quadratic difference (error) between the model with a given set of
parameters and the data;
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3. minimizing the error function in the space of the parameters using a
minimization algorithm.

With such a setting, constraints can be implemented adding specific quanti-
ties, called penalties, to the quadratic error. Simple constraints of fixed param-
eters correspond to adding to the quadratic error the square of the difference
between the selected parameter at the current iteration and the desired value
of that parameters (e.g. the initial one). To strictly enforce the constraint,
such difference must be multiplied by a very large coefficient (say, 106). A
“global” constraint like the conservation of the total spectral weight can be
implemented similarly. Within the error function, the spectral weight should
be calculated with the current parameters. The penalty is then simply the
squared difference between the such calculated value and the desired spectral
weight (e.g. the initial one), multiplied, also in this case, by a large coefficient.

Without the penalty, the error function is simply minimized in the param-
eters space according to the landscape determined by the data. When the
penalty is added, such landscape changes to take into account the possibly
highly nontrivial relations among the parameters. Below, I report an example
of such procedure in Python.

def target(x, parameters):

y = ... # E.g., sum of oscillators.

return y

def spectralweight(parameters, ...):

y = ...

return y

def error(parameters, targetfunction, dataX, dataY, parameter1_0, \

spectralweigth, spectralweight_0):

#Standard quadratic error

e = np.sum( np.power(targetfunction(dataX, parameters) - dataY) )

#Simple constraint of fixed parameter, set equal to the initial value

e += 1e6*np.power(parameters[1]-parameter1_0, 2)

#Conservation of spectral weight, set equal to the initial value

e += 1e6*np.power( spectralweight(parameters) - spectralweigth_0)

return e
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#Define the guess initial parameters

intial_parameters = [...]

#Desired value for parameters[1]

parameter1_0 = ...

#Desired spectral weight

spectralweight_0 = spectralweight(initial_parameters, ...)

#Minimization routine

Result = scipy.minimize.optimize(error, x0=initial_parameters, args=(target, \

X, Y, parameter1_0, spectraweigth, spectralweight_0))

final_parameters = Result[’x’]
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Chapter 1

The experimental set-up

1.1 Introduction to nonlinear optics

When light from the Sun passes through the windows, apart from absorption
and reflection, its electric field does not change its oscillation frequency. Reds
remain red and greens remain green. The induced polarization in the glass
of the windows is in fact linear with the impinging electric field. The same
happens with the everyday reflection from a mirror. This is the situation
described by linear optics. Fortunately for the world of the spectroscopic
techniques, linear optics is just a first-order expansion (in the electric field)
of the actual phenomena. When the field amplitude is large, nonlinear optics
comes into play, and the frequency of light can be transformed when it interacts
with matter.

This is of fundamental importance for spectroscopy and in particular for
time-resolved spectroscopies, that use ultrashort pulses. Within ultrashort
pulses, in fact, the peak electric field amplitude is easily large enough for
nonlinear optical effects to be relevant. Therefore, while commercial pulsed
laser sources offer very high pulse energies with a very small frequency (or
wavelength) tunability of the emitted light, nonlinear optical processes can be
exploited to extend the spectral range on which light pulses can be obtained.

The goal of this part of my project has been to perform pump-probe exper-
iments on strongly correlated materials using pump pulses in the mid-infrared
spectral range. From the original source, which produces light pulses with 1.5
eV photon energy, pulses in the mid-infrared range (∼ 100 meV) have been
generated using nonlinear optical processes in specific crystals. In the follow-
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Figure 1.1: Typical nonlinear process. White visible light is generated from
an infrared beam.

ing, I will briefly describe the relevant processes involved and then move to
the description and the characterization of the set-up used.

To introduce how nonlinearities in optical processes arise, let us start from
the Maxwell equations

∇ ·D = ρ (1.1)

∇ ·B = 0 (1.2)

∇×E = −∂tB (1.3)

∇×H = ∂tD + J. (1.4)

We consider regions of space where no free charges nor free currents are present,
i.e. ρ = 0 and J = 0, and we take the medium to be non-magnetic, i.e.
B = µ0H. Since we are interested in the cases in which the medium is nonlinear
we take

D = ε0E + P, (1.5)

where P nonlinearly depends on E.
From the Maxwell equations one can proceed as usual for the derivation

of the wave equation for E [1]. Within the approximation of “slowly varying
amplitude” [2], a forced wave equation is obtained for the electric field, of the
form

�E = −µ0∂
2
tP. (1.6)

In a lossless and dispersionless medium, the role of the nonlinear terms of the
polarization can be made explicit, writing P = P(1) +P(NL). In this way, P(1)
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can be reabsorbed in the left-hand member of the equation, defining �n as
the d’Alembertian operator for a wave travelling with group velocity c

n in a
medium and writing

�nE = −µ0∂
2
tP

(NL). (1.7)

Without any significant nonlinear polarization P(NL), the equation reduces to
the standard wave equation of linear optics for light travelling in a medium. If
P(NL) is instead significant, it acts as a source which forces the electric field.
Given the nonlinear functional form of P(NL)(E), such forcing term produces
electric fields oscillating with frequencies that were not present in the spectrum
of the electric field before its interaction with the medium.

1.1.1 Second-order nonlinear phenomena

The most important nonlinear phenomenon used to generate light pulses in the
mid-infrared range starting from pulses in the near-infrared is photon down-
conversion, or difference frequency generation. This effect is described by the
second-order term in P(NL)(E), i.e. by a term of the form

P
(2)
i (t) = ε0χ

(2)
ijkEjEk. (1.8)

Here χijk is a third-rank tensor connecting the polarization in the direction i
and the electric fields polarized along j and k, which vanishes for centrosym-
metric crystals. As an illustration of the possible effects that can arise from
such quadratic term, let us consider an electric field that, before the interaction
with the medium, contains just two spectral components

E(t) = E1(t) + E2(t), (1.9)

where E1(t) = E1e
i(k1z−ω1t) + cc and E2(t) = E2e

i(k2z−ω2t) + cc are linearly
polarized waves with unspecified polarizations j and k, travelling along ẑ.
The second-order polarization will be (before it has significantly forced any
new electric field)

P
(2)
i (t) = ε0

[
χ

(2)
ijj(|E1|2 + E2

1e
i(2k1z−2ω1t) + cc)+ (1.10)

χ
(2)
ikk(|E2|2 + E2

2e
i(2k2z−2ω2t) + cc)+ (1.11)

2χ
(2)
ijk

(
E1E2e

i((k1+k2)z−(ω1+ω2)t)+ (1.12)

E1E
∗
2e
i((k1−k2)−(ω1−ω2)t) + cc

)]
. (1.13)

P
(2)
i (t), which acts as a source for the electric field, displays four classes of

time dependence. There are two terms which do not oscillate at all. These
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are the static fields which are generated by the process generally called optical
rectification. There are two terms oscillating at twice the original frequencies
ω1 and ω2, produced in the process called second harmonic generation. An-
other term oscillates at the sum of the two incoming frequencies, ω1 +ω2 (sum
frequency generation). Finally there is a term oscillating at the difference be-
tween the original frequencies, ω1 − ω2, which originates from the so-called
difference frequency generation.

In general, the processes of sum frequency and second harmonic generation
are called of photon upconversion, because the resulting photons have higher
energy than the incoming ones. The difference frequency generation instead is
said of photon downconversion, since the resulting photon energies are lower
than the original ones. As described in more detail in section 1.2, this kind
of process allows to transform the 1.5 eV photons produced by a Ti:Sapphire
pulsed laser to mid-infrared photons.

By historical convention, the photons with the highest frequency or energy
are called pump photons (e.g. ω1 = ωp), the photons at frequency ω2 = ωs are
called signal photons and the ones at frequency ω1 − ω2 = ωi are called idler
photons.

The term “photon downconversion” is most easily understood in a second-
quantization picture. The interaction Hamiltonian describing photon down-
conversion can be written as

Hint ∝ P(NL) ·E ∝ χ(2)
ipsa

†
ia
†
sap + hc, (1.14)

where ap, as and ai are the annihilation operators of the pump, signal and
idler modes of the electromagnetic field. Such formulation allows to picture
the process as a high-energy pump photon splitting into two lower-energy
photons (signal and idler), whose total energy is the energy of the original
pump photon. For the energy conservation to hold, in fact, pairs of a signal
and idler photons have to be produced. The net result is that, while idler
photons are produced, the signal beam is amplified.

The difference frequency generation process is experimentally realized in
optical devices which have been historically named optical parametric ampli-
fiers (OPA) or difference frequency generators (DFG), with different names
used when the device is used for different purposes. In particular, the device is
called optical parametric amplifier when its goal is to amplify the signal beam.
It is called difference frequency generator if, instead, its goal is to generate the
idler beam.
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1.1.2 Phase matching

From the discussion done so far, it seems that the only requirement for the
efficient occurrence of photon downconversion is that the relevant component
of the second-order nonlinear susceptibility be large. However, there is an
additional condition which has to be satisfied: the so-called phase matching
condition [2,3]. For the generation of the idler field to be efficient, the forcing
term in equation (1.7) should be in phase with the idler electric field in the
left-hand member of the same equation. Their phase difference is

∆φ =
(
(k1 − k2)− k3

)
z −

(
(ω1 − ω2)− ω3

)
t, (1.15)

where k3 and ω3 are the wavevectors and frequency of the idler field. While
ω3 = ω1 − ω2 everywhere, k3 is not automatically equal to k1 − k2, because
electric fields oscillating at different frequencies will experience different re-
fractive indices in a medium. The request that k1 − (k2 + k3) is called phase
matching condition and it corresponds to the conservation of momentum in
the annihilation of a pump photon and creation of a pair of signal and idler
photons.

In particular, it can be shown that the phase matching condition cannot
be fulfilled in bulk isotropic materials in the normal dispersion region, i.e. in
which ni < ns < np. Phase matching can be achieved in birefringent crystals,
i.e. crystals in which light polarized along different directions experience dif-
ferent refractive indices. The most commonly used birefringent crystals have
one extraordinary axis which is inequivalent to the remaining ordinary two,
and the refractive index ne for light polarized along the extraordinary axis is
smaller than the refractive index no on the ordinary axes. Crystals with such
properties are said negative uniaxial crystals. The phase matching condition
can be achieved by appropriately selecting the projection of the polarizations
of the various field modes on the ordinary and extraordinary axes. This is
done by changing the angle θ between the optical axis of the crystal and the
propagation direction of the beams [3].

If the signal and idler beams are polarized along the ordinary axis orthog-
onally to the pump beam, the phase matching is said to be of type I. If one of
the two is polarized parallel to the pump, we talk about type II phase match-
ing [3]. The condition kp = ks + ki for type II phase matching (with the idler
electric field parallel to the pump one) can be written as

nep(θ)ωp = nosωs + nei(θ)ωi, (1.16)
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where the angle dependent refractive index nex is given by

1

nex(θ)2
=

sin(θ)2

n2
ex

+
cos(θ)2

n2
op

. (1.17)

Figure 1.2 pictorially shows the relation between the optical axis of the crystal
and the propagation direction of the beams.

k

E

optical axis

uniaxial crystal

Figure 1.2: Pictorial view of the angle between the optical axis of the crystal
and the beam propagation direction determining the phase matching.

1.1.3 Photon downconversion

As shown by the interaction Hamiltonian (1.14), a downconversion process
involves three photons and is therefore also called a three-wave mixing. Photon
downconversion can happen either spontaneously or with a stimulus. In a
classical sense, it can only occur if stimulated, in the picture implicitly assumed
in section 1.1.1, in which the original electric field is already oscillating also at
the signal frequency ω2. Analogously to stimulated emission, the presence of
this spectral component stimulates the process.

In the full quantum picture, however, photon downconversion also occurs
spontaneously, in which case it is called parametric fluorescence. Such situ-
ation corresponds to the amplification of the vacuum fluctuations. The oc-
currence of parametric fluorescence is easily captured if we consider the evo-
lution of the modes of the electromagnetic field under the interaction Hamil-
tonian (1.14). Let us consider an initial state of the electromagnetic field in
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which the pump and the signal modes are in the quasiclassical coherent states
|αp〉p and |αs〉s, while the idler mode is in its vacuum |0〉i. The full state is
therefore |Ψ0〉 = |αp〉p|αs〉s|0〉i.

Up to first order, the unitary evolution operator U(t) in the interaction
picture is given by

U(t) ' I− iχ(2)
ipsT

∫
ds
(
a†ia
†
sap + h.c.

)
, (1.18)

where T is the time-ordering operator. The above expression can be simplified
in the limit in which the interaction is considered impulsive, i.e. the interaction
time is sent to zero while keeping a finite interaction probability. In such case,
U(t) can be written as

U(t) ' I− iC
(
a†ia
†
sap + h.c.

)
, (1.19)

where C is a constant, and the final state for the electromagnetic field is

|Ψ〉 ' |Ψ0〉 − iC
(
a†ia
†
sap + h.c.

)
|Ψ0〉. (1.20)

If we calculate the final number of photons in the idler mode 〈Ψ|a†iai|Ψ〉, we
obtain

〈Ψ|a†iai|Ψ〉 = |C|2(1 + |αs|2)|αp|2. (1.21)

|αs|2 and |αp|2 are the number of photons in the signal and pump modes,
respectively. The above equation tells that, even if originally there are no
photons in the signal mode, a pump photon can still split and produce an
idler (and a signal) photon.

When the signal mode is populated also before the interaction with the
nonlinear medium (|αs|2 > 0), the incoming beam at the signal frequency is
called seed. Its generation is discussed briefly in the next section.

The case of ultrashort pulses needs a further consideration. Up to now
we have considered only the case of monochromatic continuous waves. Photon
downconversion with pulses lasting only 10 to 100 fs is affected also by the
mismatch between the group velocities of the light pulses. Since the process
is efficient only when the beams interact, i.e. when the pulses overlap, there
will be a length over which the pulses completely separate, which sets an
approximate limit to the maximum interaction length of the pulses in the
nonlinear medium [3].
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1.1.4 Third-order nonlinear phenomena

At this point of the discussion one encounters the following question. To have
an efficient generation of low-energy photons through downconversion, the
process has to be stimulated by pre-existing seed photons at that energy. How
are they produced if the only available photons before the downconversion are
the ones produced by the laser? The most common way to produce a small
amplitude field that can be used as seed for downconversion, for example in an
optical parametric amplifier, is the process known as white light generation.

The generation of white light pulses, i.e. the broadening of the spectrum
of an original light pulse, is a process produced by the third-order nonlinear
polarization

P
(3)
i = χ

(3)
ijklEjEkEl. (1.22)

The presence of a third-order nonlinear polarization implies that the refractive
index of the medium depends on the intensity of light [2]

n = n(I) = n0 + n2I(r, t), (1.23)

where I is proportional to the squared modulus of the electric field.
Such intensity-dependent refractive index produces two effects which are

relevant for the generation of white light pulses. Since the transverse section of
the beam is not a constant (usually a Gaussian), the transverse dependence of
n(I) will produce an effective positive lense. The beam therefore collapses in
a filament with very high intensity. This process is known as self-focussing [2].
Then, the temporal intensity profile of a pulse produces changes in the fre-
quency of the electric field, shifting it to higher frequencies in the back of the
pulse and to lower frequencies in the front of the pulse. This is known as self-
phase modulation [2] and is the process which actually broadens the spectrum
of the pulse, after self-focussing has produced the high-intensity condition.

1.2 The set-up and its characterization

To generate light pulses with photon energies in the mid-infrared range (∼ 0.1
eV) from near-infrared pulses (∼ 1.5 eV) a single downconversion stage is
not sufficient. To have intense mid-infrared pulses one should first generate
intense pulses with intermediate photon energies (∼ 0.9 eV). The set-up I
will describe in this section contains therefore various stages at which photon
downconversion occurs.

Besides the desired photon energy, we had the further requirement for
the mid-infrared pulses that their phase be stable. When talking about light
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pulses, one talks about the carrier-envelope phase, i.e. the phase of the electric
field relative to the envelope of the pulse. Usually, such quantity is not con-
sidered as important if the period of the oscillation of the electric field is much
shorter than the pulse envelope. As shown in figures 1.3a, b, and c, the global
shape of the electric field is not very much affected by its carrier-envelope
phase.

The carrier-envelope phase becomes, instead, increasingly important when
the oscillation period of the electric field increases with respect to the pulse
envelope. As shown in figures 1.3d, e, and f, the global shape of the electric
field can become significantly different for different phases. The question can
arise, whether the interaction of such kind of pulses with matter depends on
the phase of the electric field in addition to its power spectrum.

Pulsed lasers are not naturally phase stable. Therefore, one needs to devise
phase stabilization methods. For example, the positions of the mirrors in the
laser cavity can be actively controlled to obtain a stable carrier-envelope phase.
As an alternative, passive stabilization methods can be implemented [4], as we
did in our set-up. The key point in such passive methods is that the phase of
an idler beam in difference frequency generation is stable, if the pump and the
seed/signal beams have a fixed phase relation.

Our set-up therefore consists of two “twin” optical parametric amplifiers
seeded by the same white light. The signal beams produced by the two para-
metric amplifiers inherit the same phase from the single seed pulse and their
phase relation is therefore fixed, even though their absolute phase is not con-
stant from pulse to pulse. If they are tuned to different energies, they can be
used as pump and seed beams in a difference frequency generation stage to
produce phase-stable mid-infrared pulses.

1.2.1 The set-up

The set-up we have built to perform pump-probe experiments with mid-infrared
pump pulses is based on a Legend (Coherent) source producing light pulses at
1.54 eV photon energy at the repetition rate of 1 kHz, with a pulse energy of
2.2 mJ. The duration of the pulses is 80 fs. The system is pumped by an Evo-
lution (Coherent) diode laser and seeded by a 78 MHz Mira oscillator. Out of
the total pulse energy, 1.8 mJ are used for the generation of the mid-infrared
pulses.

The optical set-up which generates the mid-infrared pulses consists of a
white light generation part, two twin optical parametric amplifiers tuned at
different photon energies, each with two amplification stages, and finally a
difference frequency generation stage to produce mid-infrared photons starting
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Figure 1.3: Different shapes of the electric field in a light pulse. The first
column shows the case of small oscillation periods with respect to the pulse
envelope, the second large periods with respect to the envelope. The three
rows display the cases for carrier-envelope phase φ = 0, π/2 and π.
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from the products of the optical parametric amplifiers.

2-stage OPA

2-stage OPA

white light
generation GaSe

NIR
1.5 eV

NIR
0.9 eV

NIR
0.8 eV MIR

0.1 eV

Figure 1.4: Scheme of the set-up consisting of a white light generation stage,
two twin optical parametric amplifiers and a final difference frequency gener-
ation stage.

The white light pulses are generated by focussing 24 µJ pulses into an
yttrium aluminum garnet (YAG). According to Bradler et al. [5], white light
generation in YAG produces more energy density in the near-infrared as com-
pared to the commonly used sapphire, as shown in figure 1.5.

The produced pulses are split and used to parallely seed the first ampli-
fication stages of the two optical parametric amplifiers, with pump pulses at
1.54 eV and 72 µJ pulse energy. The photon downconversion process takes
place in two β−barium borate crystals (BBO), suitably cut to satisfy the type
II phase matching conditions, with the signal field orthogonal to the pump
and idler fields. The two amplifiers are tuned to produce signal beams with
an energy difference corresponding to the desired mid-infrared photon energy,
to be produced by difference frequency generation. The first stages of the
OPAs have been built in the non-collinear geometry, which allows to achieve
phase matching over a broader spectral range and to geometrically separate
the signal and idler beams.

The typical photon energies at which the amplifiers were tuned are ∼ 0.9
and ∼ 0.8 eV, in order to generate mid-infrared pulses with photon energies
of ∼ 0.1 eV. Figure 1.6 shows typical spectra of the produced signal pulses.

The signal pulses produced in the first stages are used to seed the second
amplification stages. There, the interaction occurs in the collinear geometry
within other BBO crystals, with a total energy of ∼ 800 µJ for each pump
pulse.
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Figure 1.5: Power spectrum of the white light pulses generated in yttrium
aluminum garnet (YAG) and sapphire, blue and green curves respectively
(adapted from Bradler et al. [5]). The vertical dashed lines delimit the tun-
ability range of our optical parametric amplifiers.

Finally, the two signal beams produced in the two optical parametric am-
plifiers are combined and collinearly interact within a gallium selenide crystal
to produce mid-infrared photons via difference frequency generation. The sig-
nal beam with the highest photon energy is, in this stage, the pump beam
while the one with the lowest photon energy is the seed.

After the difference frequency generation stage, the mid-infrared beam is
isolated using a germanium window, which acts as a filter absorbing photons
with energies above 0.3 eV.
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Figure 1.6: Typical spectra of the two twin optical parametric amplifiers, tuned
at different photon energies. The high-energy photons will act as the pump in
the difference frequency generation, while the low-energy ones as the seed.
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Figure 1.7: Detailed scheme of the set-up. M elements are mirrors, BS beam-
splitters, L lenses, HWP half-wave plates, P polarizers, and MCT is the mer-
cury cadmium telluride photodiode. Straight double arrows denote mechanical
translators, curved double arrows flip mountings. The light pulses come from
the source at the bottom of the figure and go to the pump-probe set-up on its
left.
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1.2.2 Characterization of the mid-infrared pulses

The characterization of the mid-infrared pulses can be performed in two ways.
The first one is to measure its spectrum in an interferometer, which allows to
determine in a practical and quick way the peak photon energy and the spectral
width of the pulses. The second is to perform electro-optic sampling of the
pulse. Electro-optic sampling is a technique which allows to directly measure
the oscillating electric field in a light pulse with femtosecond resolution. It
therefore allows to measure, in addition to the spectral information, the pulse
duration, the carrier-envelope phase, and the possible chirp of the electric field.
In comparison to interferometry, to perform electro-optic sampling is slower
and involves more steps. Therefore, it is ideal to have both instruments at
hand.

Spectral tunability The measurement of the interferogram of the pulses is
sufficient to characterize the spectral tunability of the set-up. To this purpose,
we built a Michelson-type interferometer. The photodiode used is a Hama-
matsu P5274-01 mercury cadmium telluride photoconductive detector, which
has to be cooled to 77 K with liquid nitrogen. The spectral response of the
detector is shown in figure 1.8 [6]. As can be seen, the peak sensitivity is
∼ 0.08 eV and extends over our range of interest.

A typical interferogram is displayed in figure 1.9, which shows the inten-
sity on the detector vs the path difference in the interferometer. Figure 1.10
shows instead three sample power spectra of pulses centred at different photon
energies.

The tunability of the photon energy extends from ∼ 0.2 eV down to ∼ 0.07
eV. However, the efficiency of the generation of the mid-infrared photons at
0.07 eV is one tenth of the efficiency at 0.11 eV, as can be seen in figure 1.11.
There, the circles are the number of photons ( pulse energy

photon energy ) as a function of the
photon energy, with roughly the same pulse energy of the near-infrared pump
and seed pulses. Below 0.1 eV the number of produced photons drops. This
happens because the absorption of GaSe starts growing below such photon
energy.

Electro-optic sampling In addition to the interferometric characterization
of the pulses, one can perform electro-optic sampling of their electric field.
Electro-optic sampling is a technique that exploits the so-called Pockels’ effect,
which is due to the second-order nonlinear polarization. When an intense,
possibly oscillating, electric field travels through a birefringent medium with a
non-vanishing χ(2), the refractive index of the medium changes, together with
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Figure 1.8: Spectral response of the Hamamatsu P5274-01 mercury cadmium
telluride photoconductive detector. Adapted from reference [6].

its birefringence (i.e. the difference between the refractive indices of the two
optically different axes). It can be shown [7] that the induced variation δn of
the refractive index caused via a second-order nonlinear effect is proportional
to the electric field. Such an effect can be detected measuring the variation
of the polarization ∆P of light on timescales shorter than the variation of
the electric field E(t). Since for small δn the variation of the polarization
is proportional to δn, and δn ∝ E(t), ∆P constitutes a measurement of the
intense electric field present in the medium.

In particular, to efficiently measure an E(t) oscillating at frequencies in
the mid-infrared spectral range, one should employ light pulses shorter than
∼ 1/2 of the period of the oscillation, i.e. ∼ 15 fs for 0.15 eV (λvac = 8 µm).

To perform electro-optic sampling of our mid-infrared pulses, we used near-
infrared pulses lasting 15 fs, produced by an argon-filled, 1 m-long, quartz
hollow fiber (Kaleidoscope by Femtolaser) and compressed by a set of chirped
mirrors. As nonlinear medium for the detection we used a thin ZnTe slab.

On the practical side, the measurement proceeds as a pump-probe experi-
ment in the transmission geometry, in which the variation of the polarization
of the near-infrared probe pulses is measured. By changing the delay between
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Figure 1.9: Typical interferogram of the mid-infrared pulses. The photon
energy in this case is 0.09 eV (λ 14 µm).

the mid-infrared pump pulse and the near-infrared probe pulse, the latter will
experience different δn produced by the mid-infrared electric field at different
phases of the oscillation.

Figure 1.12a shows a typical sampling of the mid-infrared electric field.
This is an actual measurement of E(t) and not an interferometric measure-
ment. The pulse duration can therefore be read off from such data. Moreover,
a wavelet analysis allows to extract also information about the chirp of the
pulse. Figure 1.12b shows the time-dependent spectral content of the pulse
in panel a, obtained via a wavelet analysis. As shown, the back of the pulse
contains slightly lower photon energies than the rest of the pulse.

When performing electro-optic sampling with mid-infrared pulses, atten-
tion should be paid to the amplitude of the electric field to be measured. As
pointed out by Sell et al. [8], very large fields will produce higher-order non-
linearities which will eventually mask the measurement of the field via the
Pockels’ effect.
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Figure 1.10: Three sample spectra of the mid-infrared pulses, centred at pho-
ton energies of 0.09, 0.13, 0.17 eV.

Carrier-envelope phase stability The very possibility to perform electro-
optic sampling of the mid-infrared pulses relies on the stability of their carrier-
envelope phase. Since the measurement involves more than one pulse, if the
phase were random from pulse to pulse, no time-dependent variation of the
polarization of the near-infrared pulse would be measured.

However, an electro-optic sampling lasts only a few minutes and is itself a
proof of the carrier-envelope phase stability only over such short time span.
While the phase of the mid-infrared pulse is in principle passively stabilized,
the phase difference between the pump and the seed pulses used for the dif-
ference frequency generation may vary on long timescales. Since it depends
on the relative path difference between the pulses, it can in fact be affected
by a thermal expansion or contraction of the optical table. Previous works on
similar set-ups [9] reported a shift of the phase of the mid-infrared pulses of π
in 60 minutes. To achieve longer phase stability, the authors had to actively
correct the path difference between the pulses used for the generation.

To test the phase stability performance of our set-up, we continuously
performed electro-optic sampling for several hours. The best results have

Page 72



Chapter II.1 Section 1.2

0.06 0.08 0.10 0.12 0.14 0.16
Photon energy (eV)

0

0. 2 1014

0. 4 1014

0. 6 1014

0. 8 1014

1. 0 1014
N

u
m

b
e
r 

o
f 

p
h

o
to

n
s

Figure 1.11: Number of photons contained in one mid-infrared pulse, as a
function of the photon energy (blue circles). The dashed line is the transmit-
tivity of GaSe (arb. u.). As can be seen, the efficiency of the generation is
low for low photon energies, in corrspondence of the spectral region in which
GaSe crystals absorb.

been obtained when no human was in the laboratory. Figure 1.13 shows the
electro-optic sampling as a function of the “pump-probe” delay between the
mid-infrared pulse and the near-infrared probe, and actual time. As can be
seen, in our case a shift of π occurs in 7 hours.

The better phase stability with respect to reference [9] can probably be
attributed to the geometry of the set-up. In fact, the whole set-up for the
generation of the mid-infrared pulses (including the two optical parametric
amplifiers) is built on a separate optical board, and the paths of the pulses
that finally become the pump and seed pulses have roughly equal projections
on the two axes of the board. A thermal expansion or contraction of the board
therefore causes an almost equal variation of the optical paths of the two near-
infrared pulses, giving a good phase stability of the mid-infrared pulses.
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Figure 1.12: a) Typical electro-optic sampling obtained for a mid-infrared
pulse. The photon energy is 0.095 eV (λ = 13 µm, period of the oscillation 44
fs). b) Time-dependent spectral content of the electric field shown in panel a,
obtained via a wavelet analysis.
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Figure 1.13: Continuous acquisition of the electro-optic sampling over 7 hours,
as a function of the pump-probe delay and actual time. The vertical line serves
as a reference to compare the carrier-envelope phase as a function of time.
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1.2.3 Commercial solution: characterization

We have used the home-built set-up described above for the experiment on
copper germanate CuGeO3 discussed in section 1.3 and for the preliminary
measurement for the pump-probe experiments on Bi2Sr2Ca0.92Y0.08Cu2O8,
which will be discussed in chapter 2. Eventually, an equivalent commercial
solution (Orpheus TWIN by Light Conversion) has become available. This
source is based on the Light Conversion Pharos laser, producing 400 µJ pulses
with 1.2 eV photon energy (λvac = 1028 nm) at a repetition rate of 50 kHz.

The characterization we performed of the mid-infrared pulses (produced by
difference frequency generation of near-infrared pulses) is shown in figure 1.14.
The number of photons produced at 0.15 eV is approximately 1/3 of the value
obtained on the home-built set-up, because of the lower initial pulse energy
available. Moreover, the threshold below which the efficiency becomes lower is
∼ 0.14 eV, a higher value with respect to our set-up. Despite these drawbacks,
the commercial solution provides a higher repetition rate (50 vs 1 kHz) and
a much better stability. Figure 1.15 shows the duration of the mid-infrared
pulses. As shown, it rises markedly below 0.12 eV photon energy.
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Figure 1.14: Number of photons contained in one mid-infrared pulse, as a func-
tion of the photon energy, for the Pharos-based set-up by Light Conversion.
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Figure 1.15: Pulse duration as a function of the photon energy, for the Pharos-
based set-up by Light Conversion.

1.3 A model experiment: exciting a vibrational
mode in CuGeO3

Pulses with photon energies of ∼ 1.5 eV usually allow to produce primary
excitations via interband transitions. These excitations scatter with other de-
grees of freedom in the solid (vibrational, magnetic, ...) and decay producing,
in the most common case, an effectively thermal state, i.e. a state in which
excitations are present in energy levels close to the Fermi energy.

What new kinds of primary excitations do mid-infrared pulses allow to
produce? One of them is the direct creation of low-energy excitations, without
the intermediate creation of excitations with energies of the order of 1 eV. This
consists in more controlled excitations, closer to their thermal analogues, and
will be discussed in more detail in chapter 2 in the context of pump-probe
experiments on a Bi2Sr2Ca0.92Y0.08Cu2O8 sample.

Another possibility is to resonantly excite vibrational modes. Since the
coherence time of a coherent vibration in a solid is “long” with respect to the
one of electronic degrees of freedom (∼ 10 ps), such an excitation allows for the
creation of out-of-equilibrium states different from trivially thermal ones. As
an example, recent works have claimed that superconducting-like states can
be photo-induced exciting vibrational modes with mid-infrared pulses [10,11].
In particular, a discussion has started about the possibility of exciting Raman-
active modes through their nonlinear coupling to infrared-active dipolar vibra-
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tions [12].

1.3.1 Introduction

As a model experiment for our set-up, we performed pump-probe measure-
ments on copper germanate (CuGeO3), a Mott insulator [13], tuning the mid-
infrared pump resonantly to a vibrational mode. Its crystal structure at room
temperature is shown in figure 1.16 and it consists of chains of copper and
germanium atoms, respectively octahedrally and tetrahedrally coordinated by
oxygen atoms.

T=300 KCu O Ge

a

b
c

Figure 1.16: Crystal structure of CuGeO3, adapted from reference [14].

CuGeO3 is a good candidate to study the dynamics in systems with copper-
oxygen octahedra, because the optical band arising from the d-d transitions on
copper has an energy ∼ 1.8 eV and is well separated from the charge-transfer
edge (∼ 3 eV). This can be seen in figure 1.17, which shows the real part of the
optical conductivity of CuGeO3 in the near-infrared and visible spectral range.
Because of such a situation, the various degrees of freedom can, therefore, be
directly studied without the need to separate their dynamics.
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Figure 1.17: Optical conductivity of CuGeO3 as a function of the photon
energy, adapted from reference [14], with the light polarization parallel to the
b and c axes as defined in figure 1.16 (blue and green, respectively).

The splitting between the d orbitals of the copper atoms is produced by
their coordination by oxygen. It will therefore be affected by a change of the
position of the oxygen atoms, which can occur if a vibrational mode is excited.

The mid- and far-infrared optical conductivity of CuGeO3 is characterized
by sharp vibrational resonances (see figure 1.18). Out of these, two are in
the tunability range of our mid-infrared pulses. One is centred at a photon
energy of 0.095 eV, while the other at the slightly lower energy of 0.087 eV.
These two vibrational modes differ in polarization. The low-energy one is
polarized along the direction of the copper and germanium chains (c axis of
the crystal) [14] and corresponds to a vibration of the germanium and oxygen
atoms alone [15], as shown in figure 1.19a. The high-energy mode is, instead,
polarized on the b axis, i.e. orthogonally to the chains [14], and inolves a
motion of the oxygen atoms relatively to the copper atoms (figure 1.19b). Its
excitation will therefore perturb the splitting between the Cu d orbitals.

1.3.2 Experiment and results

We performed pump-probe experiments on a cleaved, 110 µm-thick CuGeO3

in the transmission geometry at room temperature, with the sample exposing
the bc plane. We measured the relative variation ∆T

T of the transmittivity of
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Figure 1.18: Optical conductivity of CuGeO3 as a function of the photon
energy, adapted from [14], with the light polarization parallel to the b and c
axes (blue and green, respectively).

a b

Figure 1.19: Dipolar vibrational modes with frequency in the photon energy
tunability range of our setup for the generation of mid-infrared light pulses. a
Normal mode involving only germanium and oxygen atoms. b Normal mode
excited by the pump pulses, involving all the atomic species. Adapted from
reference [15].

the sample and the variation of its birefringence. The pump pulses were tuned
at different photon energies and polarized along the b axis of the crystal. The
probe pulses were produced in a hollow fiber and temporally compressed to 15
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fs with a set of chirped mirrors. Their spectrum extended from 1.45 to 1.75 eV.
For the measurement of ∆T

T , the probe pulses were polarized parallel to the
pump pulses. The variation of the birefringence of the sample was measured,
instead, as the variation of the polarization of the probe with an incoming
polarization at 45◦ with respect to the b and c axes.

Figure 1.20 shows the results obtained with the pump pulses tuned res-
onantly to the copper-oxygen vibrational mode of figure 1.19b, at a photon
energy of 0.099 eV. It can be easily recognized that the variation of the bire-
fringence (∼ ∆P ) and of the transmittivity (∆T

T ) display different dynamics.

The relaxation of ∆T
T is, in fact, slower than the one of the birefringence.

The two responses can be well fitted by a single exponential decay (see
section 2.3.1 for a discussion about the deconvolution of the pump pulse du-
ration). The result of the fit gives a timescale τ for the decay of 0.15 ps and
0.22 ps for the birefringence and the transmittivity, respectively.
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Figure 1.20: Blue (left y-axis): Variation of the polarization of the probe
pulses, as a function of pump-probe delay. Green (right y-axis): Relative
variation of the transmission of the CuGeO3 sample.

The difference in timescales means that the observed variation of the bire-
fringence is not of thermal origin, since it does not decay together with the
out-of-equilibrium population (∼ ∆T

T ). It is instead due to an anisotropy of the
excitations in the sample. It is therefore reasonable that such kind of change
in the birefringence decays faster than the (isotropic) population since, if the
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scattering channel is not too selective, an anisotropic excitation will persist
less than an isotropic one.

A further aspect to be noticed it that neither of the two signals displays
a coherent oscillation at the frequency of the resonantly excited vibrational
mode. A pump-probe experiment in which the intensity of the probe pulse
is measured (e.g. ∆T

T ) can be described as a third-order nonlinear process,
i.e. as a four-wave mixing. At such order, because of parity, the measurement
of the effects of a dipolar (infrared-active) vibration is not permitted. Since
the system is an insulator, and no electronic excitation exists below the pump
photon energy, the signal is therefore given by a population generated in a
Raman-active vibration via a coupling between the latter and the original
dipolar mode. The fact that, differently from the case of electro-optic sampling,
also the variation of the polarization of the probe field does not display any
oscillation, tells us that, also in this case, the signal is due to χ(3) and not to
χ(2).

The experiment can be repeated with different pump photon energies. Fig-
ure 1.21 shows the variation of the polarization of the probe pulse, i.e. the
variation of the birefringence of the sample, obtained with different pump
photon energies. As can be seen, for pump photon energies which are not
resonant to the vibrational mode there is no signal, or it is present but small
(for a photon energy of 0.118 eV).
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Figure 1.21: Variation of the polarization of the probe pulses as a function of
pump-probe delay and for different pump photon energies.
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Chapter 2

Pump-probe experiments
on Bi2Sr2Ca0.92Y0.08Cu2O8

In section 1.3 I discussed the pump-probe experiments we performed on CuGeO3

with mid-infrared pump pulses. In that case, the pump photon energy was
tuned to resonantly excite a vibrational mode. In this chapter I am going to
present the results we obtained on an optimally yttrium doped Bi2Sr2CaCu2O8.
Here, the mid-infrared excitations were not tuned to vibrational resonances
and produce low-energy electronic excitations.

2.1 Introduction

The role played by phonon modes and spin excitation in cuprates is at the core
of the debate regarding the nature of the superconducting phase in cuprates [1–
5]. While electron-phonon coupling alone can hardly account for the high
critical temperature observed, an ample set of evidences has highlighted the
role played by spin fluctuations as an important ingredient to understand
superconductivity in cuprates.

In the proximity to the antiferromagnetic phase, the magnetic excitation
spectrum in the cuprates is well decribed by local spin excitation and superex-
change interaction [6]. On the other hand, upon increasing the amount of free
carries towards optimal doping, features of collective spin excitation emerging
from correlated itinerant electrons are observed in the magnetic spectrum [7,8].
More specifically, the dispersion and width of magnetic excitations observed
via resonant inelastic x-ray scattering and neutron scattering reveal an anoma-
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lous softening in the dispersion along the nodal (π, π) direction for a q vector
of 0.25 [9].

Pump-probe experiments have been widely used to study the dynamical
relaxation in high-temperature superconductors. The most commonly used
schemes are based on high photon energy pump pulses (hν & 1 eV) serving
mainly as a sudden photo-injection of an excess of high-energy electronic ex-
citations. On the one hand, small-density photoexcitations have been used to
study in great detail the relaxation of quasiparticles and, through that, the
coupling between electronic and different degrees of freedom of both magnetic
and vibrational nature [10–13]. On the other hand, the strong perturbation
limit, eventually leading to photo-induced phase transitions, has been used to
study the dynamical response of the superconducting order parameters [14].

In this chapter, I will present results we obtained in pump-probe experi-
ments with mid-infrared pump pulses on the optimally doped Y-Bi2212, i.e.
Bi2Sr2Ca0.92Y0.08Cu2O8, in the strange metal (T > T ∗ ∼ 130 K), pseudogap
(T ∗ > T > Tc = 95 K) and superconducting phases (T < Tc).

At room temperature, our results reveal a strongly k-dependent coupling
between electrons and low-energy excitations. Electronic excitations which
are either fully symmetric or in the “antinodal” directions (i.e. the directions
that become the antinodal directions in the superconducting phase) are mainly
coupled to magnetic excitations, while in the “nodal” directions (i.e. the ones
becoming the nodal directions at low temperatures) they are coupled to both
magnetic excitations and low-energy vibrational modes. The dependence on
the pump photon energy of the relaxation times in the fully symmetric case and
in the antinodal directions allows to identify the energy of the magnetic excita-
tions. Moreover, while the fully symmetric and antinodal responses are linear
with the pump fluence over the whole measured range, the nodal response
displays a nonlinear behaviour above a threshold fluence. This happens in
correspondence to the melting of a superstructural lattice modulation and the
onset of the vibration of a bending mode. The emerging scenario suggests that
electrons in the nodal direction are coupuled to magnetic excitations arising
from itinerant electrons which are strongly influenced by the local distortion
of the Cu-O-Cu angle.

Also in the low-temperature phases the response of the system to the ex-
citation is strongly k-dependent. Our data show that in the pseudogap phase,
despite the fact that the variation of the reflectivity displays a nonlinear be-
haviour as a function of fluence, the response along the nodal direction is
linear throughout the measured fluence range. Moreover, in the supercon-
ducting phase we have been able to separately measure the reponse associated
to the pseudogap excitations and to another kind of excitations along different
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directions.

2.2 Experiment

The pump pulses used in our experiments had photon energies ranging from
100 to 260 meV. The pump pulses were produced with a scheme of the type
discussed in chapter II.1, and their carrier envelope phase was, therefore, sta-
ble. The probe pulses instead were in the near-infrared spectral range, with
photon energies between 1.35 and 1.85 eV, and had a duration of approxi-
mately 20 fs. They were produced using a non-collinear optical parametric
amplifier and were temporally compressed correcting their linear chirp. The
SQUID characterization of the sample yielded a critical temperature Tc = 95
K for the transition to the superconducting state.

The measurements were performed on the probe pulses reflected from the
surface exposing the ab-plane. The sample was kept at different temperatures
spanning the interval from 77 to 296 K. The measurements at room temper-
ature were performed with the sample in air. At lower temperatures, for the
experiment with the pump pulse at 140 meV photon energy, a 60 µm-thick
polypropilene cryostat window was used, while for the experiment with higher
pump photon energies, a 4 mm CaF2 window was used. The latter, in contrast
with the former, preserves the polarization of the probe pulse.

In a pump-probe experiment the signal is produced by the dynamics of the
out-of-equilibrium state, which will be the sum of contributions having the
different symmetries allowed by the point group of the system. In the case
of Bi2212, the point group can be approximated as the D4h group. In the
(a, b)-plane the tensors for the Raman modes are

A1g(
a 0
0 a

)
,

B1g(
c 0
0 −c

)
,

B2g(
0 d
d 0

)
. (2.1)

The upper panels in figure 2.1 show how states of the Ag, B1g and B2g sym-
metries are distributed in the Brillouin zone.

The third-order susceptibility χ3
ijkl can be written as

χ3
ijkl = Aij1gA

kl
1g +Bij1gB

kl
1g +Bij2gB

kl
2g. (2.2)
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Figure 2.1: The upper panels show a sketched weighting of the Raman scatter-
ing transitions for polarization geometries transforming as Ag, B1g and B2g in
a D4h structure. The underlying black lines show a typical Fermi surface for
optimally doped cuprates. The lower panels show the polarizations of the in-
coming light and of the emitted field with respect to the crystalline structure.
Adapted from reference [15].

With i, j, k, l in the (x, y) plane (i.e. i, j, k, l =1,2), the tensor becomes

χ3
ijkl =


(
a2 + c2 0

0 a2 − c2
) (

0 d2

d2 0

)
(

0 d2

d2 0

) (
a2 − c2 0

0 a2 + c2

)
 . (2.3)

From this, one can derive that the variation of the reflectivity will be the sum
of an Ag term, independent of the probe pulse polarization, and B1g and B2g

terms, which are instead dependent on the polarization of the probe [16]

∆R(θ) ∝ ∆RAg + ∆RB1g
cos(2θ) + ∆RB2g

sin(2θ), (2.4)

where θ is the probe pulse polarization angle with respect to the crystalline
axes. The above equation suggests to measure the B1g and B2g signals by
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measuring ∆R
R at different probe pulse polarization angles θ. However, if the

B1g and B2g signals are very small compared to the Ag signal, they can be
masked by the global noise. One can measure such signals considering the way
Raman measurements are performed at equilibrium, i.e. with different com-
binations of the polarization of the incoming light and the one along which
the scattered intensity is measured. We use, here, the convention that the
x and y directions point along the Cu-O bonds, while x′ and y′ are rotated
by 45◦ with respect to the x and y vectors. In the D4h point group [15] the
correspondence between the geometry of the measurement (in the Porto no-
tation) and the signals in the various symmetries is described in table 2.1.
In such notation, z(xy)z̄ means that the incoming light is travelling along z

Geometry Signal
z(xx)z̄, z(yy)z̄ RAg +RB1g

z(x′x′)z̄ RAg +RB2g

z(x′y′))z̄ RB1g

z(x, y)z̄ RB2g

Table 2.1: Correspondence between the scattering geometries (in the Porto
notation) and the accessible signals. Adapted from reference [15].

and is polarized along x, while the outgoing (measured) light is propagating
along z̄ ≡ −z and is polarized along y. In the context of nonlinear spectro-
scopies, the light which is measured along the polarization orthogonal to the
incoming probe light is referred to as “emitted field”. To perform this kind
of experiments, a polarizer should be positioned in front of the photodiode
to select the correct polarization. The measurement of the out-of-equilibrium
B1g and B2g signals can, therefore, be performed in such geometries, with the
addition of the perturbing pump pulses. To maximise the Bi signal strength,
the polarization of the pump pulse should be at 45◦ from the polarizations of
the incoming probe and the outgoing emitted field. For example, to efficiently
measure the B1g signal, i.e. with the z(x′y′)z̄ geometry, the pump should be
polarized either along x or along y.

2.3 Results and discussion

2.3.1 Room temperature

I will start discussing the standard variation of the reflectivity as it is usually
measured in pump-probe experiments, i.e. with no reference to the symmetry
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of the system. I will move to the finer analysis later.

The relative variation of the reflectivity ∆R
R scales linearly with the fluence

F up to the highest fluence used (3.5 mJ cm−2). Figure 2.2 shows ∆R
R (tp), at

1.63 eV and with pump photons at 140 meV, normalized with the fluence F,
and shows that all the curves fall on top of each other. One can see that ∆R

R
is linear with fluence also from the inset of figure 2.2, which shows the peak
variation of the reflectivity as a function of the fluence. Moreover, the shape
of ∆R

R shows a sudden increase at the arrival of the pump pulse, a decay, and
finally a thermal plateau. Such a dynamics, together with the linearity with
the fluence, is the typical behaviour associated to the creation of excitations,
whose number scales linearly with the number of photons in the pump pulse,
and their subsequent relaxation to a new effectively (warmer) thermal state.
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Figure 2.2: Room temperature relative variation of the reflectivity ∆R
R (t) (Ag

signals normalized with the total intensity of the probe pulses) divided by the
pump fluences, for 200 meV pump pulses and 1.6 eV probe pulses. inset)
Peak value of ∆R

R (t) as a function of the pump fluence.

If the polarization of the probe pulses is rotated the signal appears as
isotropic. From equation (2.4) we can therefore conclude that the measured
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signal is of Ag symmetry. However, such procedure can only set the upper limit
for the magnitude of a hypothetical anisotropy to the total noise level and does
not exclude the existence of B1g and B2g signals. Small B signals can be de-
tected using the polarization-selective measurements described in the previous
section. Figures 2.3a, b, and c show the measurements performed in the Ag,
B1g, and B2g geometries, respectively, for different pump photon energies. Fo-
cussing for the moment on the differences between different symmetries, as can
be seen, the B1g and B2g signals are qualitatively different from the Ag signal
(' almost isotropic ∆R

R ). The reason why they have not been detected as an

anisotropy of ∆R
R is that their amplitude is two orders of magnitude smaller

than the one of the Ag signal (as shown in the following figures) and they were
below the noise level. When the measurement is performed in the z(xy)z̄ or
z(x′y′)z̄ geometries, the polarizer in front of the photodiode extinguishes both
the Ag signal and the major part of the noise, which is polarized along the
probe polarization. In these configurations the B signals are easier to detect.

An additional difference between the Ag and B signals is their sign. Both
B signals are of opposite sign with respect to the Ag one. I will now discuss
in more details all three kind of signals. To start, I will consider the Ag and
B1g ones.

Ag and B1g signals Apart from their amplitude and sign, the Ag and B1g

signals display very similar qualitative features. As can be seen in figure 2.4
and its inset for a pump photon energy of 200 meV, also the B1g signal scales
linearly with the fluence, and it also displays the typical dynamics of the
relaxation of excitations produced by the pump pulse.

The decay of both the Ag and B1g excitations cannot be represented by
a single decaying exponential. This is the case when the signal is coming
from the relaxation of different degrees of freedom. In this specific case, the
signal can be well fitted with the sum of two exponentials, with characteristic
timescales τ1 and τ2, convoluted with a Gaussian given by the finite duration
of the pump and probe pulses. Before discussing the fit of the data to extract
τ1 and τ2, one should qualitatively observe that, as a function of the pump
photon energy there are two variations in the signals (figures 2.3a and b). The
first one is a variation of the rise time at pump-probe delay zero. This is
caused by different pulse durations at different photon energies. The second is
a variation of the relaxation times. The change noticed upon visual inspection
is due to two factors, i.e. the longer pump pulses and a slower dynamics.
These two contributions can be deconvoluted appropriately with a fit.

To perform such a fit, one could use a target function in which the convo-
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Figure 2.3: a,b,c) Normalized Ag, B1g and B2g signals (respectively) for dif-
ferent pump photon energies. The insets show the regions in the Brillouin
zone contributing to the signal in the corresponding scattering geometry. In
panels b and c the scattering geometries are depicted, with the black arrows
being the Cu-O directions, the light blue arrows the probe and emitted field
polarizations and the dark blue one the pump polarization.
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Figure 2.4: Variation of the B1g intensity divided by the total probe intensity
and by the fluence. Inset: Peak value of the signal as a function of the fluence.

lution between the intrinsic response of the system and the pulse Gaussian is
calculated numerically. However, the numerical evaluation of convolutions can
be subject to border effects, if the appropriate measures ar not taken. A more
stable way of performing the fit is to perform the convolution analytically, and
use the analytical result as the target function. To do this, let us first note that
the convolution is a linear operation, and therefore we just need to calculate
the result for one single exponential. Let us consider a response f(t) of the
system of the kind

f(t) = θ(t)e−
t
τ . (2.5)

This response is triggered by an excitation of the form

g(t) = e−
t2

2σ2 . (2.6)
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At pump-probe delay tp, the convolution of the two functions is 1

(f ∗ g)(tp) =

∞∫
−∞

ds f(s)g(tp − s) (2.7)

=

∞∫
0

ds e−
s
τ e−

(tp−s)2

2σ2 (2.8)

= e−
σ2

2τ2 e−
tp
τ

∞∫
0

ds e
−
(

s√
2σ
− 1√

2

(
tp
σ −στ

))
(2.9)

= σ

√
π

2
e−

σ2

2τ2 e−
tp
τ

[
erf

(
tp√
2σ
− σ√

2τ

)
+ 1

]
. (2.10)

The free parameters in a fit of the sum of two of the above functions are
potentially too many. To reduce their number we can take into consideration
that at long pump-probe delays the data can be overlapped quite well, as
shown in figure 2.5 for the Ag signal. This fact allows us to conclude that
out of the two relaxation timescales, the largest (τ2) is the same at all pump
photon energies. This is a quite reasonable assumption, because a scattering
channel which is active at late times will not be sensitive to the energy of the
primary excitations created in the system.

The above assumption leads to the useful constraint that, for a given sym-
metry, all τ2s be the same, independently of the pump photon energy. This
can be imposed performing a simultaneous fit of all the data, implementing
τ2 6= τ2(hνpump) as a constraint via a penalty function (as explained in more
detail in section 2.2 of part I).

The fit of the Ag data gives a result of 1.0 ps for τ2[Ag]. The resulting
duration of the pump pulses increases monotonically with decreasing pump
photon energy, as qualitativley discussed above and plotted in figure 2.6 (green
triangles). The most interesting result is the behaviour of τ1[Ag], plotted in

1It is usually assumed that the durations of the pump and probe pulses set the temporal
resolution of a pump-probe experiment, and that, therefore, relaxations timescales τ shorter
than the pulses’ (combined) duration σ cannot be resolved. This general statement is not
entirely correct. As shown by the analytical result of this simple convolution, the functional
form of the dynamics is differnt for any pair of pulses’ duration σ and timescale τ . What
happens is that, as σ increases, the difference between dynamics with different τs becomes
smaller. It is then the noise in the measurement that makes the two dynamics indistinguish-
able. With a sufficiently low noise and with the knowledge of the shape of the pulses, they
can always be told one from the other.
I must especially thank Federico Cilento for the discussion about this topic.
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Figure 2.5: Ag signals at various pump photon energies and fluences normal-
ized on their long-time values. The long-time dynamics for all pump photon
energies and all fluence overlap.

figure 2.6 (blue circles). At a pump photon energy of 260 meV, τ1 ' 170 fs.
Decreasing the photon energy down to 140 meV, τ1[Ag] decreases to a value
of ' 110fs, to increase again for lower photon energies.

The fit of the B1g data gives a τ2[B1g] = 3.5 ps. This means that the B1g

excitations take more time to relax back to equilibrium than the Ag excitations.
Concerning the small timescale τ1[B1g], the behaviour is similar to the Ag one,
as shown in figure 2.6 (red circles). Also the B1g signal displays a minimum
τ1 at 140 meV. Below 140 meV, τ1[B1g] increases in an even more marked way
than τ1[Ag].

Another meaningful information that can be extracted from the fit is the
ratio ρ1,2 between the weights of the quickly and slowly decaying exponentials.
As shown by the crosses and the dashed lines in figure 2.6, this ratio is peaked
at 140 meV for both the Ag and B1g signals. Below 140 meV, the relative
amplitude of the quick relaxations drops almost to zero for the B1g signal,
while it reaches a finite value for the Ag signal.

The behaviours of the timescale τ1 and of the relative amplitude ρ1,2 of the
quick relaxation hint to the fact that for pump photon energies below ∼ 140
meV a scattering channel, through which the primary excitations relax, dis-
appears. This happens because the primary excitations do not have enough
energy to relax creating other excitations (or “emitting quasiparticles”). The
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Figure 2.6: Parameters resulting from the fit of the Ag and B1g with double
decaying exponentials, as a function of the pump photon energy. The green
triangles are the pump pulse duration. The circles are the fast relaxation
timescales τ1 of the Ag (blue) and B1g (red). The τ1[B2g] (grey circles) are
shown for a qualitative comparison, but their quantitative values have to be
taken with some care, as discussed in the text. The crosses are the relative
amplitude ρ12 of the quickly relaxing exponential for the Ag (blue) and B1g

(red) signals. The solid black line is given by equation (2.11), adapted from
reference [20].

energy E = 140 meV is therefore the energy of the emitted excitation. What
kind of excitations provide this scattering channel? The black curve in fig-
ure 2.6 is

W (ω) =
1

2π

d2

dω2

[
ω

τ(ω)

]
, (2.11)

as taken from reference [20] for Bi2212 at T = 10 K, plotted vs a doubled
energy axis. In the above definition τ(ω) is the optical scattering rate

τ(ω)−1 ∝ Re σ−1(ω). (2.12)

The peak in the function W (ω) has been associated to magnetic excitation,
comparing it with the neutron scattering spectra. Let us suppose that it corre-
sponds to the energy of an excitation which persists also at room temperature
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but, differently from low temperatures, is not visible anymore in the optical
conductivity. Since the results obtained from our fit match such curve if it
is plotted vs a doubled energy axis, the primary excitations produced by the
pump pulses decay emitting pairs of such magnetic excitations.

The above result hints to the fact that such magnetic excitations, which are
visible in the optical conductivity only at low temperatures, are present also at
room temperature and determine the scattering of electronic excitations with
energies down to 140 meV.

B2g signal The results of the measurements of the B2g signal are plotted in
figure 2.7a for different pump fluences with a pump photon energy of 200 meV
and a probe photon energy of 1.6 eV. Analogously to the B1g case, the sign of
the B2g signal is opposite to the Ag one, i.e. negative. However, the response
of the material in the B2g symmetry is richer than in the B1g one. In addition
to the decaying dynamics, oscillations are present. Before discussing them,
we point out that in this case, differently from the Ag and B1g signals, the
data are not linear with the pump fluence on the whole measured range, both
concerning the oscillations and the “incoherent” relaxation, i.e. the decaying
exponentials. This can be seen in figure 2.7b (blue points), where the value
of the signal at pump-probe delay 200 fs is plotted as a function of the pump
fluence. Up to a critical fluence F ∗B2g

= 2.1 mJ cm−2, the response is linear to a
good approximation. Above F ∗B2g

, the initial peak in the signal is suppressed
by the emergence of a positive peak, which becomes clearly visible for the
highest fluence.

A relaxation time τ1[B2g] for the dynamics in the B2g symmetry can be
extracted with a fit, analogously to the case of the Ag and B1g signals, and
is shown in figure 2.6 as the grey triangles. As can be seen, also in this case
the relaxation timescale becomes larger as the pump photon energy decreases.
While this result fits in the picture drawn for the Ag and B1g signals, the
quantitative values extracted should be considered with some care. In fact,
because the curve also contain an oscillating term, the fit may be subject to
border effects.

Turning to the oscillating part, depending on the pump fluence, one or more
oscillations are present. At low fluences, the excitation starts an oscillation
at ν1 = 0.86 THz, which lives up to more than 10 ps. Increasing the fluence
the oscillation undergoes “softening”, i.e. the frequency changes during the
dynamics, starting from a lower value and then relaxing back to the low flu-
ence one. This is shown by the green points in figure 2.7c, which displays the
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Figure 2.7: a) Variation of the B2g intensity divided by the total probe inten-
sity and by the fluence. b) As a function of the pump fluence: (blue squares,
left y-axis) value of the signal at 200 fs; (black crosses, red triangles, left y-
axis) normalized amplitude of the oscillation at ν1 and ν2. c) Frequency ν1 of
the low-frequency oscillation in the B2g signal as a function of fluence.

initial frequency ν1 as a function of the pump fluence 2. Frequency softening is
common to the excitation of coherent vibrations in pump-probe experiments,
as the more charge is photoexcited, the more the ionic potential is initially
loosened, until the relaxation of the electrons brings it back to the equilib-
rium shape. A classic example of this is the out-of-equilibrium behaviour of
bismuth crystals [17], which is theoretically discussed in chapter III.3. The
amplitude of this oscillation is plotted as the dark crosses in figure 2.7b. It
grows approximately linearly with the fluence up to the critical fluence F ∗B2g

,

2The frequency ν1 has been obtained with a fit of the data.
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above which it saturates.
For fluences greater than F ∗B2g

, another oscillation sets in, with a frequency
ν2 = 3.8 THz. Its amplitude is shown as the red triangles in figure 2.7b.

For very large fluences a third oscillation can be detected, as shown in
figure 2.8 for a fluence 3.7 mJ cm−2. The frequency ν3 of such oscillation is
very low (ν3 = 14 GHz, damped with a timescale of 84 ps), and it can therefore
be safely attributed to the Brillouin scattering with an acoustic oscillation. It
is however remarkable that such oscillation is visible only in the B2g signal
and not in the other symmetries.
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Figure 2.8: Variation of the B2g intensity divided by the total probe intensity,
for a fluence of 3.7 mJ cm−2.

The oscillations at frequencies ν1 and ν2 can be identified as vibrational
modes on the basis of Raman scattering measurements [18,19]. The frequency
ν1 approximately matches a peak in the Raman spectra at ∼ 27 cm−1 =
0.8 THz, while the second frequency matches instead a peak at ∼ 129 cm−1 =
3.9 THz. Both are vibrational modes associated to the fact that the symmetry
group D4h only approximately describes the lattice, and would therefore not
be present if the lattice symmetry were perfectly tetragonal 3.

A remark should be done concerning the highest fluences used. While for

3Note that the assignments in the references refer to the undoped compound.
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the same fluences there was no sign of sample damaging in the measurement
of the Ag and B1g signals, in this case, fluences above 3 mJ cm−2 produced
a deterioration of the B2g signal. After a prolonged exposure to high-fluence
pump pulses, the characteristic features of the high-fluence response (i.e. the
initial positive peak) disappear and can be obtained again only moving to
another point of the sample. This could hint towards the fact that the signal
in the B2g symmetry is sensitive to a delicate order of the lattice, which is
damaged by prolonged exposure to very intense pump pulses. This is consistent
with the fact that the observed oscillations correspond to vibrational modes
linked to the presence of either an orthorombic distortion of the lattice or a
superstructural modulation.

Apart from the simple correspondence of the observed oscillations and the
vibrational modes identified in the Raman spectra [18,19], the result presented
here fit with other evidences. It has been shown that, in the superconducting
phase, the distortion of the tetragonal lattice is along the nodal directions
and displays a periodicity of 0.25 of the tetragonal unit cell. [9] The resulting
reconstruction therefore involves four unit cells, and it has been shown to be
due to a charge order modulating the density on the copper-oxygen bonds [22],
as show in figure 2.9. The room-temperature vibration with frequency ν1 could
then be due to a fluctuating charge order of such kind and, in fact, it is visible
only in the B2g signal.

Figure 2.9: Sketch of the charge order modulating the density on the copper-
oxygen bonds. Adapted from reference [22].

2.3.2 Pseudogap phase

This sample and the family of systems it belongs to have been intensively stud-
ied to a large extent because of their low-temperature phases, i.e. its pseudogap
and superconducting phases. For this particular doping, Bi2Sr2Ca1−xYxCu2O8

enters the pseudogap phase at approximately T ∗ = 130 K, while the transi-
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tion temperature to the superconducting phase is Tc = 95 K. The pump-probe
measurements with the pump photon energies in the mid-infrared clearly allow
to distinguish the normal, the pseudogap and the superconducting phase. As
shown in figure 2.10 for a pump photon energy of 140 meV and a probe photon
energy of 1.63 eV, below the temperature T ∗, the dynamics of the variation
of the reflectivity starts to deviate from its high-temperature shape, signalling
the presence of the pseudogap. At Tc = 95K there is a sharp transition of the
out-of-equilibrium behaviour of the sample, as it undergoes the transition into
the superconducting phase.

In the pseudogap phase, at 100 K, the out-of-equilibrium reflectivity be-
haves as shown in figure 2.11a for different pump fluences and in figure 2.11b
for different probe photon energies at the intermediate fluence of 0.4 mJ cm−2.
The pump photon energy used was 140 meV. These results match the ones
obtained by exciting the same compound with a pump photon energy of 1.5
eV. The low-fluence ∆R

R at 1.5 eV probe photon energy displays a negative
peak followed by a slightly positive thermal plateau. Increasing the fluence, a
positive initial peak arises, masking the negative one.

As a function of the probe photon energy, the sign of ∆R
R changes at around

1.4 eV, with a negative signal on the visible side of the spectrum and a positive
one on the infrared side, consistently with what previously reported for high
pump photon energies [11,12]. The pump photon energies have not been tuned
to any specific vibrational mode and the excitation involved only the electronic
plasma.

Also in this case the measurements of the B-type signals yield different
information. Figure 2.12a shows the B2g signal divided by the pump fluence,
for pump photon energies of 180 meV. The magnitude of the signal is two
orders of magnitude smaller than the simple ∆R

R . As can be seen also from

figure 2.12b, the B2g signal is linear with the fluence in this range, while ∆R
R

is not. The dynamical response contained in the B2g signal is therefore due to
the creation and relaxation of excitations. Remarkably, no signatures of the
charge density wave or a vibrational mode can be detected, differently from
the strange metal phase at room temperature (figure 2.7). This means that,
as the system enters in the pseudogap phase, either the coupling between B2g

electronic states and the superstructural lattice modulation changes, or the
superstructural modulation disappears.

2.3.3 Superconducting phase

I now describe the results obtained with the sample in the superconducting
phase at a temperature T = 78 K < Tc. Figure 2.13a shows the relative
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Figure 2.10: Relative variation of the reflectivity ∆R
R (t) as a function of pump-

probe delay and sample temperature, with 140 meV pump pulses, 1.6 eV probe
pulses and a pump fluence of 0.8 mJ cm−2. The responses of the normal,
pseudogap and superconducting phases are clearly distinguishable.

Page 104



Chapter II.2 Section 2.3

−4 · 10−5

−3 · 10−5

−2 · 10−5

−1 · 10−5

0

1 · 10−5

2 · 10−5

∆R
R

a

0.1

0.2

0.4

0.7

0.9

1.1

1.3
0.2 0.6 1.0

Pump fluence mJ cm−2

1.0

0.6

0.2

0.2

P
e
a
k
 (

n
o
rm

.)

1 0 1 2 3
Pump-probe delay (ps)

−8 · 10−5
−6 · 10−5
−4 · 10−5
−2 · 10−5

0
2 · 10−5
4 · 10−5
6 · 10−5
8 · 10−5

10 · 10−5
12 · 10−5
14 · 10−5
16 · 10−5
18 · 10−5
20 · 10−5
22 · 10−5
24 · 10−5

∆R
R

b

1.7 eV

1.63 eV

1.55 eV

1.49 eV

1.44 eV

1.42 eV

1.41 eV

1.39 eV

1.38 eV

Figure 2.11: a) Relative variation of the reflectivity ∆R
R of the sample in the

pseudogap phase at a temperature of 100 K, with 140 meV pump pulses and
1.6 eV probe pulses, for different pump fluences. Labels: fluence (mJ cm−2).
inset) Peak value of ∆R

R as a function of the pump fluence. b) ∆R
R at 100

K with 140 meV pump pulses and a pump fluence 0.4 mJ cm−2, for various
probe photon energy.

variation of the reflectivity ∆R
R (t) with pump photon energy 200 meV and

probe photon energy 1.6 eV, for different pump fluences.

The results nicely resemble the ones obtained in the past exciting the sam-
ple with 1.5 eV pump photons [12–14]. At low fluences, the response displays
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Figure 2.12: a) Variation of the B2g intensity in the pseudogap phase, divided
by the total probe intensity and by the fluence. b) Peak variation of the B2g

signal as a function of the pump fluence.
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Figure 2.13: a) Relative variation of the reflectivity ∆R
R (' Ag signal) at 78

K, with 200 meV pump pulses and 1.6 eV probe pulses, for different pump
fluences. b), c) Variation of the B1g and B2g intensity divided by the total
probe intensity and by the fluence. The insets show the regions in the Brillouin
zone contributing to the signal and the corresponding scattering geometry.
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a slow rise-time, and its relaxation timescale becomes faster with increasing
fluence. This is consistent with the scenario described by the Rothwarf-Taylor
equations, in which the dynamics of an out-of-equilibrium superconductor is
determined by the reciprocal energy exchange between phonons and Cooper
pairs. [21]. Above a critical pump fluence, the response of the system starts to
change in a more marked way, signalling the destruction of the superconduct-
ing phase. First, the temporal position of the maximum of ∆R

R starts moving
to larger pump-probe delays, as shown in figure 2.14 (blue points). Then, a
fast response arises at pump-probe delays immediately after the excitation,
i.e. smaller than the rise-time of the low fluence response. The value of ∆R

R (0)
is also shown in figure 2.14 (green points), where also the value of the critical
fluence can be read off (Fc = 0.25 mJ cm−2). Apart from a scaling of the
critical fluence due to the different absorption coefficient, the data obtained
with 140 meV pump pulses are analogous to the ones for 200 meV pump pulses
and are reported in the figure 2.15

The dependence of ∆R
R on the probe photon energy is shown in figures 2.16a

and b for two different pump-fluences and pump photon energy 140 meV.
The plotted dependence is different from the one reported, for example, by
Giannetti et al. [12]. In fact, the previously reported data show a small photon
energy region around 1.45 eV in which the ∆R

R changes sign. However, as
pointed out by Cilento [11], close to optimal doping the spectral dependence
of ∆R

R undergoes a sharp transition from a positive signal in the underdoped
compound and a negative one in the overdoped compound. They reported
that a nominally optimally doped Bi2Sr2Ca1−xYxCu2O8 can acquire the out-
of-equilibrium behaviour of the slightly underdoped case once it is exposed
for some time to the atmosphere, as a consequence of a change in the oxygen
content. The spectral dependence of the response to mid-infrared excitations
reported here is therefore compatible with the one obtained with 1.5 eV pump
photon energy.

From this discussion, it emerges that the behaviour of this sample after an
excitation with mid-infrared pulses is very similar to the one after an excitation
with 1.5 eV pulses. While in our experiments the pump photon energy is only
slightly larger than the energy of the superconducting gap, 1.5 eV is one order
of magnitude larger and an excitation at this energy can potentially induce a
very different dynamics. The similarity resulting from the comparison done
in this section supports the legitimacy of using effective thermal models for
this kind of system in pump-probe experiments with pump pulses in the near-
infrared spectral range.

Also in the superconducting phase the variation of the reflectivity appears
to be isotropic within the noise level, if the polarization of the probe pulses
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Figure 2.14: Blue (left axis): temporal position of the maximum value of
∆R
R as a function of the pump fluence. Green (right axis): Value of ∆R

R at
pump-probe delay 0 (normalized), as a function of the pump fluence.
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Figure 2.15: Relative variation of the reflectivity ∆R
R of the sample in the

superconducting state at 78 K, with 140 meV pump pulses and 1.6 eV probe
pulses, for different pump fluences. Labels: fluence (mJ cm−2).
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is rotated. We can, therefore, identify it as a signal of Ag symmetry. We
can, however, measure the B signals in the scattering geometries described
previously. Both the B1g and B2g results, respectively plotted in figures 2.13b
and c, are qualitatively different from the Ag ones.

The B1g signal reported in figure 2.14 displays an initial positive peak, a
decay and a subsequent crossing of zero. The negative feature decays then
slowly to zero again. Such measurement has been acquired at a fluence F > 1
mJ cm−2.

We can identify the nature of this dynamics comparing it with what dis-
cussed by Coslovich et al. [10, 13]. They performed pump-probe experiments
with 1.5 eV pump photon energy and broadband probe pulses in the visi-
ble range. They were able to decompose ∆R

R (hν, t) in two spectro-temporal
components that they associated to the response of the superconductor and
the response of the pseudogap. By spectro-temporal components we mean
functions A(hν, t) = fA(hν)⊗ gA(t) and B(hν, t) = fB(hν)⊗ gB(t) such that
∆R
R (hν, t) = A(hν, t) + B(hν, t), as discussed in more detail in chapter I.1.

Their conclusion was therefore that the coexisting superconduting condensate
and pseudogap produce two different responses, which are both visible even
below the critical temperature for the transition to the superconducting phase.
The B1g signal we have measured is similar to the temporal behaviour of the
pseudogap excitations in the superconducting phase, and can itself be associ-
ated to the dynamics of the pseudogap.

The B2g signals reported in figure 2.13c have been acquired in the same
conditions of the data in panel a of the same figure. By visual inspection, the
data are clearly linked to the Ag ones, and the main difference concerns the
small pump-probe delays. At low fluences, the B2g signal follows the same
behaviour as the Ag one, in accordance to the Rothwarf-Taylor equations.
With increasing fluence the relaxation dynamics becomes faster.

Above a critical fluence Fc = 0.25 mJ cm−2, the temporal position of
the maximum positive value of the signal becomes larger, as can be seen in
figure 2.17a (blue points). However, above Fc also a major difference sets in.
While the Ag signal displays a fast positive peak, the B2g one shows a negative
initial variation, whose amplitude is plotted in figure 2.17a (green points). It is
noteworthy that the B2g signal is delayed by 400 fs with respect to the pump
pulse.

The difference between the Ag and B2g signals can be studied in more
detail, noting that for large pump-probe delay the dynamics in the two sym-
metries is the same. If we normalize both the Ag and the B2g responses with
their large-time values and take the difference Ag −B2g, we obtain the results
plotted in figure 2.17c (solid lines). The result of this subtraction matches
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the B1g signal and the pseudogap behaviour extracted by Coslovich et al. [10],
as shown by superimposing the latter on the subtraction result Ag − B2g in
figure 2.17c (green dashed line).

From these comparisons, it can be concluded that, as shown by the sub-
traction in figure 2.17c, two different dynamics contribute to the Ag signal (or
∆R
R ), out of which one corresponds to the dynamics previously associated to

pseudogap excitations [10, 13]. Moreover, these two dynamics are separately
present in the antinodal (B1g) and nodal (B2g) directions in k-space.

2.4 Conclusions

In this work we have shown that, after a photoexcitation in the mid-infrared
spectral range, the response of the optimally yttrium-doped Bi2212 is strongly
k-dependent. Our data reveal that, in the (a, b) plane, electronic states with
all symmetries are coupled to magnetic excitations also in the strange metal
phase at room temperatures. In addition, the electronic states in the nodal
direction are strongly coupled to the charge density wave and a bending mode
of the Cu-O planes.

Also in the low-temperature phases the response of Bi2212 is k-dependent.
In the pseudogap phase, we were able to detect that the response in the nodal
direction is linear even with pump fluences which produce nonlinearities in
the totally symetric response. Remarkably, we found that, differently from
the strange metal phase, in the pseudogap phase the nodal response does not
show any coupling to the charge density wave or to vibrational modes.

In the superconducting phase, the antinodal dynamics is dominated by
a response associated to excitations across the pseudogap. The response at
the antinode is delayed by ∼ 400 fs with respect to pump pulse and displays
a dynamics which can be associated to the melting of the superconducting
condensate.
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Figure 2.17: a) Blue (left axis): Temporal position of the maximum value of
the B2g signal as a function of the pump fluence, for a pump photon energy
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Introduction

Pump-probe experiments are the prime way to study condensed matter out of
its equilibrium state on timescales of femto- and picoseconds. In their basic
scheme, an intense ultrashort light pulse, called pump, impinges on a sample
bringing it out of equilibrium, followed by a low-intensity ultrashort pulse,
called probe, whose reflection is collected to measure how the reflectivity of
the sample has changed after the excitation. Since the signals to be detected
are typically very small with respect to the total noise, the experiment usually
consists in measuring the average intensity of many (often thousands) of probe
pulses reflected by the sample, for each pump-probe delay.

Little attention has been given to the accurate measurement of the fluctu-
ation of the intensities of reflected (or transmitted) probe pulses. In the past
such kind of experiments have been performed on systems in which coherent
vibrational oscillations are excited by the pump pulses [1]. However, the mea-
sured statistic of the reflected intensity has turned out to be of instrumental
origin [2]. Only recently, experiments have been performed with low-noise de-
tectors with fast responses, which can significantly give access to such kind
of statistics [3, 4]. In the basic implementation of such set-up, the intensity
of every single probe pulse that has interacted with the sample is separately
acquired with low-electronic-noise detectors. The average of these measure-
ments gives the usual pump-probe signal (e.g. the relative variation of the
reflectivity ∆R

R (tp)), while their variance can provide additional information
about the system that is not contained in the average value.

From the theoretical point of view, additional effort is needed to identify
what kind of information can be extracted, and to what extent general state-
ments can be made about it without reference to specific models. In this work
we studied such kind of statistical information in the out-of-equilibrium Hol-
stein model, which is a good description of the general class of Peierls’ systems.
After an impulsive excitation, Peierls’ systems display coherent lattice vibra-
tions as, for example, in the case of bismuth single crystals [1]. The choice of
this model, apart from fitting in the tradition of the first experiments of this
kind, is due to the fact that it probably displays the simplest out-of-equilibrium
dynamics involving a coherent excitation and not just a thermalization decay.
Although the electronic system of this model is not characterized by strong
correlation, the oscillating dynamics makes the information that can be ex-
tracted nontrivial.

Moreover, this model allows to discuss the common assumption that the
electrons in a solid, after an intense photoexcitation, can be considered in an
effectively thermal state. This may be straightforward in the case of simple
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systems, but is not necessarily the case when coherent dynamics are present
in degrees of freedom to whom the electrons are coupled, as it occurs in out-
of-equilibrium Peierls’ systems.

It is well known that a linear chain of identical and equispaced atoms is
not stable at low temperatures. In fact, below a critical temperature the
translational symmetry of the chain is reduced, and the atoms pair forming
dimers. This process, generally referred to as Peierls’ mechanism, leads to a
metal-to-insulator transition. In the molecular limit (sketched in figure 1), it
can be viewed as the formation of covalent bonds in homonuclear diatomic
molecules. Below a certain temperature the favoured state is the one with two
bound atoms. The bond forms, because the negative electronic charge is not
distributed isotropically around the single atoms, but concentrates in between
the two atoms, in the bonding orbital(s) σ or, eventually, π.

σ σ*σ*

Figure 1: Bonding and antibonding orbitals in a diatomic molecule.

If a linear chain of identical atoms is involved instead, the equispaced lattice
is distorted by the formation of dimers. As can be seen in figure 2, two classes
of sites are defined by this distortion, which can be grouped in two sublattices,
A and B. If we call A and B the sites of the bonding and of the antibonding

A AB BB

Figure 2: Formation of dimers in a linear chain of atoms. Charge concentrates
in the equivalent of the bonding orbitals and two sublattices, A and B, get
differentiated.
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orbitals, respectively, we can see that on the A sites, besides an increase of the
charge density, a reduction XA = +X of the lattice spacing takes place, while
on the B sites, together with a reduction of the charge density, an increase
XB = −X of the lattice spacing occurs.

The Peierls’ mechanism diffusely plays a role in real condensed matter crys-
tals. The bismuth elemental crystal is the classic example of lattice exhibiting
a Peierls’ distortion [5], even though the global system remains metallic also in
the dimerized phase. Moreover, the mechanism is a fundamental ingredient in
a variety of lattice distortions and metal-to-insulator transitions in correlated
materials, sometimes acting together with Mott transitions [5].

Peierls’ systems are well described by the Holstein model, which describes
free electrons coupled to a vibrational mode via an electronic density-atomic
displacement interaction. In real space, the one-dimensional Holstein Hamil-
tonian is

H =
∑
rs

trsc
†
rcs +

∑
r

ω0b
†
rbr + g

∑
r

c†rcr
(
br + b†r

)
, (1)

where trs is the hopping between lattice sites, cr and c†r are the annihilation
and creation operators of an electron at site r, br and b†r are the phononic
operators at site r, ω0 is the bare frequency of the vibrational modes, and
g is the coupling constant between the electrons and the vibrational modes.
In the calculations I will discuss in the following chapters, we employed the
alternative formulation of the Holstein Hamiltonian in momentum space

H =
∑
k

ε(k)c†kck +
∑
k

ωkb
†
kbk + g

∑
kq

(
b†−q + bq

)
c†k+qck, (2)

where ε(k) is the energy dispersion of the electronic band and the operators
are the momentum space versions of the ones described above.

In the following, I will discuss the out-of-equilibrium dynamics of this model
obtained in two main approaches. In the first of the chapters I will describe
the equations and the results obtained in a time-dependent mean-field approx-
imation. Such approximation is able to capture only some of the features of
the actual dynamics of these systems. A more refined approach is therefore
needed, dynamical mean-field theory. In the second chapter of this part I
will, therefore, introduce the framework of nonequilibrium dynamical mean-
field theory, discussing the obtained results and their comparison with the
experiments in the third chapter.
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Chapter 1

Time-dependent mean-field
approach

The physics of systems with interacting particles easily becomes very compli-
cated. This is clearly true for electrons interacting via the Coulomb force.
The probability to find two electrons very close to each other is low because
of the Coulomb repulsion, and, therefore, the motion of each electron becomes
correlated with the motion of all the other electrons. This may also happen
with other kind of interacting particles, e.g. electrons coupled to phonons.

Despite this, there are some cases in which the many-body problem can
be simplified a lot. For example, s- and p-metals, i.e. metals in which the
conduction electrons reside in delocalized s- and p-type bands, are described
very well by rather crude models in which correlations between electrons are
not fully included, and the effect of the electrons on the others is included only
as the effect of a mean density (or mean field). This kind of approximation
transforms the many-body problem into a single-particle one, which can be
solved exactly.

In the case of the Holstein model, such an approach corresponds to the
following two approximations of the interaction term between electrons and
vibrational modes in the Hamiltonian (1). First, the electrons are coupled

only to the expectation value of the atomic displacements 〈bq + b†−q〉 and not

to the operators bq + b†−q themselves (and therefore not to the fluctuations of
the atomic displacements). Second, the vibrational mode is coupled only to the

electronic average density 〈∑k c
†
k+Qck〉 and not to the operators

∑
k c
†
k+Qck

themselves. This means that the Hamiltonian is rewritten as a mean-field
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Hamiltonian

HMF = HMF
e− +HMF

ph − 〈HMF
e−,ph〉, (1.1)

where HMF
e− is a Hamiltonian for free electrons which feel a potential deter-

mined by the mean atomic displacement, and HMF
ph is a Hamiltonian for free

vibrational modes which feel a force determined by the mean electronic charge
density. −〈HMF

e−,ph〉 is the product of the mean-field terms of the Hamilto-
nian describing the interaction between electrons and vibrational modes, and
is included to avoid double countings.

In the following I will first derive equations of motion for the relevant
observables. Then I will discuss the equilibrium states of the model, and finally
I will show the results of the simulation of the out-of-equilibrium evolution of
the system after an excitation.

In the upcoming sections, I will try to write as many details as possible
about the derivation of equations or, at least, about the steps to be done in
the numerical calculations, in the hope they can be useful to other students
from a non-theoretical background to trust the results more easily and get a
view of the steps involved in such simulations.

1.1 Equations of motion

To study both the equilibrium state and the out-of-equilibrium dynamics of
the model, the equations of motion are needed for the expectation values of
the relevant observables. In the present case, the observables we will need
to consider are th electronic operators c†pcp′ and, for the vibrational modes,

the operators b†p and bp′ . In general, the temporal evolution of an operator O
satisfies the equation

i
d

dt
O = −[H,O]. (1.2)

To actually perform calculations, we have to write down the equations of
motion for the expectation values of the above mentioned observables. In
doing so with the full Hamiltonian, terms like 〈c†l cm(b†l + bl)〉 appear in the
equations of motion for 〈c†pcp′〉. Their exact solution involves, therefore, the

solution of equations of motion of 〈c†l cm(b†l+bl)〉 and recursively for expectation
values of higher-order operators. In the mean-field approximation, this process
is truncated by the factorization of 〈c†l cm(b†l + bl)〉 in 〈c†l cm〉〈(b

†
l + bl)〉, which

sets to zero higher-order correlations between the electrons and the vibrational
mode. This truncation leads to the following closed set of differential equations
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i
d

dt
〈c†pcp′〉 =

(
ε(p′)−ε(p)

)
〈c†pcp′〉+g

∑
q

〈b†−q+bq〉
(
〈c†pcp′−q〉−〈c†p+qcp′〉

)
, (1.3)

i
d

dt

(
〈bp〉+ 〈b†−p〉

)
= ωp

(
〈bp〉 − 〈b†−p〉

)
, (1.4)

i
d

dt

(
〈bp〉 − 〈b†−p〉

)
= ωp

(
〈bp〉+ 〈b†−p〉

)
+ 2g

∑
k

〈c†k−pck〉. (1.5)

Above, the equations for 〈b〉 and 〈b†〉 have been combined into equations for
〈b + b†〉 and 〈b − b†〉, which are proportional to the position and momentum
of the vibrational mode.

The number of equations above is still large, since all the momentum space
indices are present. We can reduce it using the assumption that there will be
a well defined wavevector Q for the distortion of the lattice. This corresponds
to omitting the momentum summation for the vibrational modes and selecting
only 〈bQ〉 and 〈b−Q〉. The equation of motion for 〈c†pcp′〉 becomes

i
d

dt
〈c†pcp′〉 =

(
ε(p′)− ε(p)

)
〈c†pcp′〉+g〈b†−Q+ bQ〉

(
〈c†pcp′−Q〉−〈c†p+Qcp′〉

)
. (1.6)

If we now restrict ourselves to i ddt 〈c†pcp〉, we get

i
d

dt
〈c†pcp〉 = g〈b†−Q + bQ〉

(
〈c†pcp−Q〉 − 〈c†p+Qcp〉

)
. (1.7)

As a further Ansatz, let us consider the case in which the electronic band is
half filled. In such case, the Peierls’ distortion will have a periodicity Q = π.
Then p − Q is equivalent to p + Q, and p + 2Q to p. Therefore we get the
following equation

i
d

dt
〈c†pcp〉 = g〈b†−Q + bQ〉

(
〈c†pcp+Q〉 − 〈c†p+Qcp〉

)
, (1.8)

in which 〈c†pcp〉 is coupled to 〈c†pcp+Q〉 and 〈c†p+Qcp〉, which in turn are coupled

also to 〈c†p+Qcp+Q〉. The full system of coupled equations is (reporting again
equation (1.8))

i
d

dt
〈c†pcp〉 = g〈b†−Q + bQ〉

(
〈c†pcp+Q〉 − 〈c†p+Qcp〉

)
,
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i
d

dt
〈c†pcp+Q〉 =

(
ε(p+Q)− ε(p)

)
〈c†pcp+Q〉+ g〈b†−Q + bQ〉

(
〈c†pcp〉 − 〈c†p+Qcp+Q〉

)
(1.9)

i
d

dt
〈c†p+Qcp〉 =

(
ε(p)− ε(p+Q)

)
〈c†p+Qcp〉+ g〈b†−Q + bQ〉

(
〈c†p+Qcp+Q〉 − 〈c†pcp〉

)
(1.10)

i
d

dt
〈c†p+Qcp+Q〉 = g〈b†−Q + bQ〉

(
〈c†p+Qcp〉 − 〈c†pcp+Q〉

)
(1.11)

This set of equations can be rewritten in the form i ddtρ = [H, ρ]. In fact,
recasting the terms as elements of matrices we obtain

i
d

dt

(
〈c†pcp〉 〈c†p+Qcp〉
〈c†pcp+Q〉 〈c†p+Qcp+Q〉

)
=

[(
ε(p) g〈b†−Q + bQ〉

g〈b†−Q + bQ〉 ε(p+Q)

)
,

(
〈c†pcp〉 〈c†p+Qcp〉
〈c†pcp+Q〉 〈c†p+Qcp+Q〉

)]
,

(1.12)

where the position of the vibrational mode 〈b†−Q + bQ〉(t) evolves according to

i
d

dt

(
〈bQ〉+ 〈b†−Q〉

)
= ωQ

(
〈bQ〉 − 〈b†−Q〉

)
, (1.13)

i
d

dt

(
〈bQ〉 − 〈b†−Q〉

)
= ωQ

(
〈bQ〉+ 〈b†−Q〉

)
+ 2g

∑
k

〈c†k+Qck〉. (1.14)

1.2 Equilibrium state

Once the equations of motion are known, to start a simulation of the out-
of-equilibrium dynamics we have to know the initial state of the system, i.e.
the initial values of the quantities for which we solve the equations. Since
the perturbation, which brings the system out of equilibrium, enters through
the equations of motion (as discussed later), and we do not need to take the
excited state directly as the initial one, the latter has to be the equilibrium
state. To find it, we first rewrite the mean-field Hamiltonian in matrix form

H =
∑

k∈RBZ

(
c†k c†k+Q

)(
ε(k) ∆
∆ −ε(k)

)(
ck
ck+Q

)
, (1.15)
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where RBZ is the reduced Brillouin zone and ∆ = g〈b†−Q + bQ〉 will become
an energy gap of the system. The fermions represented by ck and ck+Q are
coupled by the term ∆. Second, we rewrite H so that the central matrix
becomes diagonal,

H =
∑

k∈RBZ

(
c†k c†k+Q

)
U

︸ ︷︷ ︸(
d†k e†k

)

(
E(k) 0

0 −E(k)

)
U†
(

ck
ck+Q

)
︸ ︷︷ ︸dk

ek


, (1.16)

where E(k) =
√
ε2(k) + ∆2. In this representation, the fermions dk and ek

are free particles with energies Ek and −Ek. Therefore, the populations of
the corresponding states at equilibrium are given by the Fermi-Dirac distribu-
tion function f(±Ek), while the coherences, i.e. the off-diagonal terms of the
density matrix, are 0. In this basis, the density matrix is

ρdkek =

(
f(Ek) 0

0 f(−Ek)

)
. (1.17)

Since the equations of motion (1.8)-(1.11) concern the fermions ck and ck+Q,
we need to know the matrix U to use the result (1.17) in the (ck, ck+Q) basis.

The two columns of U are given by the eigenvectors of the undiagonalized
matrix in equation (1.15), which can be written as(

uk
−vk

)
,

(
vk
uk

)
. (1.18)

Therefore

U =

(
uk vk
−vk uk

)
, U† =

(
uk −vk
vk uk

)
. (1.19)

The new fermionic operators are(
d†k e†k

)
=
(
c†k c†k+Q

)
U,

(
dk
ek

)
= U†

(
ck
ck+Q

)
(1.20)

and the inverse relations are(
ck
ck+Q

)
=

(
ukdk + vkek
−vkdk + ukek

)
,

(
c†k
c†k+Q

)
=

(
ukd
†
k + vke

†
k

−vkd†k + uke
†
k

)
. (1.21)

We can postpone the explicit calculation of uk and vk to equation (1.26).
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We now have to calculate the equilibrium value of ∆ = g〈b†−Q+ bQ〉, which
gives the initial position of the vibrational mode and allows to calculate Ek
and f(Ek). In order to do it, we have to obtain what is generally called a gap
equation. The gap equation is obtained imposing the equilibrium condition
on the equation of motion for the momentum of the vibrational mode. We
therefore take

i
d

dt

(
〈bQ〉 − 〈b†−Q〉

)
= ωQ

(
〈bQ〉+ 〈b†−Q〉

)
+ 2g

∑
k

〈c†k+Qck〉, (1.22)

and set

i
d

dt

(
〈bQ〉 − 〈b†−Q〉

)∣∣∣∣
eq

= 0

∆

g
=
(
〈bQ〉+ 〈b†−Q〉

)
eq

= − 2g

ωQ

∑
k

〈c†k+Qck〉eq.

(1.23)

The gap ∆ is given by

∆ = −2g2

ωQ

∑
k

〈c†k+Qck〉eq

= −2g2

ωQ

∑
k

〈
(
ukd
†
k + vke

†
k

)(
− vkdk + ukek

)
〉eq =

= −2g2

ωQ

∑
k

(
− ukvk〈d†kdk〉eq︸ ︷︷ ︸

f(Ek)

+ ukuk〈d†kek〉eq︸ ︷︷ ︸
0

− vkvk〈e†kdk〉eq︸ ︷︷ ︸
0

+ vkuk〈e†kek〉eq︸ ︷︷ ︸
f(−Ek)

)
= −2g2

ωQ

∑
k

vkuk
(
f(−Ek)− f(Ek)

)
= −2g2

ωQ

∑
k

vkuk tanh

(
βEk

2

)
.

(1.24)

In particular, one of the two eigenvectors of the undiagonalized matrix in
equation (1.15) is

(
uk
−vk

)
=

√
1

2

(
1 +

εk
Ek

)(
1

Ek−εk
∆

)
, (1.25)
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and, therefore,

vkuk = − ∆

2Ek
. (1.26)

Inserting this result back in equation (1.24), we get the following gap equation 1

∆ =
2g2

ωQ

∑
k

∆

2
√
ε2k + ∆2

tanh

(
β

√
ε2k + ∆2

2

)

1 =
g2

ωQ

∑
k

1√
ε2k + ∆2

tanh

(
β

√
ε2k + ∆2

2

), (1.27)

which has to be solved iteratively.
Figure 1.1 shows the value of the gap ∆ as a function of the temperature,

with g2/ω = 0.26. For low temperatures, the system is gapped with ∆ = 0.19.

The position of the vibrational mode
(
〈bQ〉+〈b†−Q〉

)
eq

= ∆
g is therefore different

from zero, meaning that the atoms in the lattice are displaced from their
original positions in an alternating way. The system is in a symmetry-broken
state characterized by the formation of dimers. In this phase, two inequivalent
sublattices A and B can be identified, in which A atoms are displaced from
their “undistorted” positions on the one side and B atoms on the other side.
The displacements XA and XB of the two sublattices are therefore opposite
in sign: XA = −XB = X.

As the temperature Tc ' 0.11 is approached, the value of ∆ decreases until
it reaches zero at Tc and remains zero above Tc. For T > Tc the system is in
a translationally invariant phase and, since ∆ = 0, is a conductor.

1.3 Displacive excitation from the symmetry-
broken state

We can now discuss the excitation of the system starting from the symmetry-
broken phase and its subsequent out-of-equilibrium dynamics. As a pertur-
bartion of the system we can use an ultrashort light pulse resonant with the
transition between the two bands across the gap. The light pulse is inserted
in the calculation via Peierls’ substitution, such that

ε(k)→ ε(k −A(t)). (1.28)

1The summations has to be normalized with the number of points.

Page 131



Chapter III.1 Section 1.3

0.03 0.07 0.11 0.15
Temperature

0.00

0.05

0.10

0.15

0.20

G
ap

∆

Figure 1.1: Gap calculated as a function of the temperature, with g
ωQ

= −0.7

and ωQ = 0.07

The excitation of electrons across the gap changes the force on the atoms. If
this happens quickly enough, i.e. if the light pulse is shorter than half the
period of the vibrational mode, then a coherent oscillation is excited.

Figure 1.2a and b show the evolution of X ∝ 〈bQ + b†−Q〉 as a function
of time after the arrival of the pulse, for different excitation intensities. Two
aspects of these results have to be discussed.

First, the stronger the excitation, the larger the amplitude of the oscilla-
tion. In this respect two regimes can be identified. For excitation intensities
below a certain critical value (figure 1.2a), the oscillation of the atomic po-
sitions X takes place around an average value which is smaller than their
equilibrium position but still different from zero. The system, even though in
an excited state, remains in the symmetry-broken dimerized phase. Above the
critical intensity, the symmetry-broken phase is melted (three darkest curves
in figure 1.2b). An oscillation of the atomic positions is still present because
the potential felt by the atoms still changes in a sudden way, but the oscillation
is centred around an average value of zero, which corresponds to the atomic
positions in the translationally invariant phase.

Second, the frequency of the oscillation changes as a function of the inten-
sity of the pump pulse. Figure 1.3a shows the Fourier transform of selected
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Figure 1.2: a) Atomic positions as a function of “pump-probe delay” for dif-
ferent amplitudes of the pulse vector potential that do not melt the symmetry-
broken phase. b) Same as a for vector potential amplitudes close to and above
the critical value for the melting of the symmetry-broken phase.
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curves in figure 1.2. Up to the critical excitation intensity, the frequency ω∗

of the oscillation decreases with increasing pump intensity, because the more
electrons are excited, the more the atomic potential is loosened. This is what
is generally called softening of the vibrational mode, observed for example in
pump-probe experiments on bismuth and antimony single crystals, or in exper-
iments performed on the cuprate Bi2212, reported in chapter II.2. Figure 1.3b
reports the oscillation frequency ω∗ as a function of the pump intensity. Ap-
proaching from below the critical intensity, ω∗ keeps decreasing, eventually
reaching zero at the critical intensity. This is the critical slowing down of the
dynamics close to the out-of-equilibrium phase transition. Once the critical
intensity is crossed the oscillation frequency ω∗ starts increasing again, tending
to the bare frequency of the vibrational mode. This is as expected, since, in the
Hamiltionian in equation (1), the bare frequency is defined as the frequency
of the vibrational mode in the translationally invariant phase.

1.4 What mean field does and does not capture

In this section I have shown that a time-dependent mean-field approach does al-
low to describe certain features of the displacive excitation of vibrational modes
in condensed matter. In the first place, it is able to capture the excitation of
coherent vibrations. It also reproduces a softening of the frequency of the
oscillation with increasing excitation intensity. Above a critical intensity, the
symmetry-broken phase melts, and at the threshold for the out-of-equilibrium
phase transition the mean-field approach reproduces a critical slowing down
of the dynamics.

However, there is one important aspect of coherent vibrations in real con-
densed matter that the mean-field approach is not able to capture: the decay
of the electronic excitations and the damping of the oscillations. Our goal is to
study how the fluctuations of the optical properties can give information about
the out-of-equilibrium state of matter. The decay of the out-of-equilibrium dy-
namics is too important a player in determining the state of the system, not
to be captured in the calculations. Therefore, I will use the results obtained
in the mean-field approach just as a starting point and I will move to the
discussion of calculations performed in nonequilibrium dynamical mean-field
theory (DMFT) in the next sections.
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Figure 1.3: a) Modulus of the Fourier transform of the curves in figure 1.2a.
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Chapter 2

Dynamical mean-field
theory approach - theory

2.1 Introduction to nonequilibrium DMFT

Dynamical mean-field theory (DMFT) is a mean-field approach in which, de-
spite the suppresion of spatial fluctuations, on-site temporal fluctuations are
considered [7]. This is necessary if one wants to take the quantum fluctuations
into considerations. One of the main successes of dynamical mean-field theory
has been to capture the Mott transition in the Hubbard model, but it can be
exploited also in other situations. In this work we use it to approximate the
incoherent scattering between electrons and phonons as an interaction which
is local in space, i.e. k-independent.

Dynamical mean-field theory was originally formulated at equilibrium, but
was later extended also to nonequilibrium situations [8]. The equations of
nonequilibrium dynamical mean-field theory are formulated on an L-shaped
contour in the complex-time plane. This countour straightforwardly arises
when one considers the time evolution of a system from an initial thermal
state [9].

In the following, I will first introduce the contour on the complex-time
plane and the so-called contour-ordered Green’s functions. Then I will briefly
introduce dynamical mean-field theory and its nonequilibrium extension, to
finally move, in section 2.2, to the description of the set-up of equations for
the Holstein model and, in section 2.3, to the discussion of other observables.
Among them are also the fluctuations of the optical properties, which can be
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measured in pump-probe experiments and give additional information about
the system with respect to the traditionally measured quantities.

The content of section 2.1 is mainly a summary of the concepts described
in two reviews on the subject, the first by Georges et al. [7] about dynamical
mean-field theory and the second by Aoki et al. [8] about its generalization to
nonequilibrium dynamics. I have tried to restrict this summary to the concepts
and formulas which are relevant for this work. Three key paragraphs are
reported verbatim from the sources. There is no point of rephrasing sentences
stating key concepts in reviews of a subject, other than making them more
confusing for the reader. These three small paragraphs are formatted in italics.

2.1.1 Kadanoff-Baym formalism for time evolution from
a thermal state

Contour-ordered formulation The formulation of the dynamics of a sys-
tem on the L-shaped contour in the complex-time plane arises directly when
one considers the evolution of a system which initially is in a thermal state.
Let us therefore consider a system in a thermal intial state described by the
density matrix ρ(t = 0)

ρ(0) =
1

Z
e−βH(0), (2.1)

where Z is the partition function

Z = Tr e−βH (2.2)

and H(0) the equilibrium Hamiltonian. The density matrix ρ(t) will evolve
according to the von Neumann equation

i
d

dt
ρ =

[
H(t), ρ(t)] (2.3)

and will therefore be given by

ρ(t) = U(t, 0)ρ(0)U(0, t), (2.4)

where U(0, t) is the unitary evolution operator from time 0 to time t. U(t, t′)
can be written as

U(t, t′) =

{
Tte
−i
∫ t
t′ ds H(s) if t > t′

T̄te
−i
∫ t
t′ ds H(s) if t < t′

(2.5)
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with Tt and T̄t are the time-ordering and anti-time-ordering operators, re-
spectively. Given ρ(t), the expectation value 〈O(t)〉 of an operator O at time
t can be calculated as the trace

〈O(t)〉 = Tr
[
ρ(t)O]

=
1

Z
Tr
[
U(t, 0)e−βHU(0, t)O

]
.

(2.6)

Given the formal analogy of e−βH with the evolution operator U , we can write
e−βH as an evolution operator in imaginary time e−βH = U(−iβ, 0). The
expectation value of the operator O becomes therefore

〈O(t)〉 =
1

Z
Tr
[
U(−iβ, 0)U(0, t)OU(t, 0)

]
. (2.7)

Reading the evolution operators from right to left, they follow the time order-
ing 0→ t→ 0→ −iβ. This sequence of times is the motivation to introduce an
L-shaped contour C in the complex-time plane (figure 2.1) with three branches
C1 : 0→ tmax, C2 : tmax → 0, and C3 : 0→ −iβ. tmax is the time at which the
expectation value of the operator is evaluated, i.e. the maximum time up to
which the system is let evolve [9]. Once the contour C is defined, equation (2.7)
can be rewritten as

〈O(t)〉 =
Tr
[

TC e−i
∫
C ds H(s)O(t)

]
Tr
[

TC e−i
∫
C ds H(s)

] . (2.8)

All the exponentials in equation (2.7) have been merged in a single one under
the new contour-ordering operator TC which orders operators on the contour
C in the order 0→ tmax → 0→ −iβ. O(t) indicates that O is inserted on the
contour at time t. Note that, after the latest time-operator on the contour,
the forward and backward branches cancel. If the operator O were inserted
at time zero, then the real time-branches would cancel out completely, and
equation (2.8) would reduce to the expectation value on the equilibrium state
1
Z [e−βH O].

In the contour-ordered formalism, we can also write higher-order correla-
tion functions as expectation values of contour-ordered products of operators

〈TC A(t)B(t′)〉 ≡ 1

Z
[TC e

−i
∫
C ds H(s)A(t)B(t′)], (2.9)

with A and B combinations of particle creation and annihilation operators.
The contour-ordered product of two operators A and B is defined as

TC A(t)B(t′) = θC(t, t
′)A(t)B(t′)± θC(t′, t)B(t′)A(t), (2.10)
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Im t

Re ttmax

0

Figure 2.1: L-shaped contour in the complex-time plane.

where θC(t, t′) is the generalization of the Heaviside function θ(t − t′) on the
contour, i.e. it is 1 if t comes later than t′ and 0 otherwise. The sign ± is
minus if both operators are fermionic, i.e. contain an odd number of fermionic
operators, and plus otherwise. Note that, since the operators have to be
ordered on the contour C, it has to be specified on which branch their time
arguments lie on. If the time arguments are equal, the convention is to adopt
normal ordering, in which all the creation operators are to the left of all the
annihilation operators [10].

Contour-ordered Green’s function Single-particle Green’s functions are
the fundamental objects of many-body theories. They describe single-particle
excitations as well as statistical distributions of particles [8]. The nonequilib-
rium Green’s function is defined as

G(t, t′) ≡ −i〈TC c(t)c†(t′)〉, (2.11)

where t and t′ lie on the contour C, and the spin and orbital indices are omitted
for notational simplicity. Since t and t′ are on the contour and can belong to
different branches, there can be nine different combinations of branches in the
time arguments of G(t, t′), and therefore nine components of the Green’s func-
tion (G11(t, t′) : {t ∈ C1, t ∈ C1}, G12(t, t′) : {t ∈ C1, t ∈ C2}, ...). However,
there are redundancies [8] in the definition which allow to eliminate three out
of nine components. Usually, combinations of the remaining six components
are used in the form of six linearly-independent physical Green’s functions.
Using the physical Green’s functions instead of all the components in the
calculations, allows to exploit the redundancies and symmetries to make the
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calculations more efficient. Moreover, they are important in the interpreta-
tion of the results, as discussed below. The six physical Green’s functions are
called GR (retarded Green’s function), GA (advanced Green’s function), GK

(Keldysh Green’s function), Ge, Gd, and GM (Matsubara Green’s function),
and are given by

GR(t, t′) = −iθ(t− t′)〈[c(t), c†(t′)]∓〉, (2.12)

GA(t, t′) = iθ(t′ − t)〈[c(t), c†(t′)]∓〉, (2.13)

GK(t, t′) = −i〈[c(t), c†(t′)]±〉, (2.14)

Ge(t, τ ′) = ∓i〈c†(τ ′)c(t)〉, (2.15)

Gd(τ, t′) = −i〈c(τ)c†(t′)〉, (2.16)

GM (τ, τ ′) = −〈Tτ c(τ)c†(τ ′)〉. (2.17)

The upper (lower) sign has to be chosen if the c and c† operators are bosonic
(fermionic), [·, ·]−(+) is an (anti-)commutator, t, t′ ∈ C1 ∪C2, τ, τ ′ ∈ C3, and
Tτ is the time-ordering operator on the imaginary-time axis. In addition to
the ones listed above, two additional Green’s functions can be defined, known
as lesser G<(t, t′) and greater G>(t, t′) Green’s functions:

G<(t, t′) = i〈c†(t′)c(t)〉, (2.18)

G>(t, t′) = −i〈c(t)c†(t′)〉. (2.19)

They are combinations of the retarded, advanced and Keldysh Green’s func-
tions:

G< =
1

2
(GK −GR +GA), (2.20)

G> =
1

2
(GK +GR −GA). (2.21)

As mentioned, the physical Green’s functions are important because of
their intuitive interpretation, which stems from their meaning at equilibrium.
When the Hamiltonian H is time-independent, the real-time components of G
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depend only on the difference between their arguments and can be substituted
with their Fourier transforms. In this case, the imaginary part of the retarded
(or advanced) Green’s function is proportional to the single-particle spectral
function [10]

A(ω) = − 1

π
ImGR(ω) =

1

π
ImGA(ω). (2.22)

Moreover, at equilibrium the imaginary part of the lesser Green’s function
gives the density of occupied states

∓ImG<(ω) = 2πA(ω)f(ω) ≡ 2πN(ω), (2.23)

while the imaginary part of the greater Green’s function gives the density of
unoccupied states.

−ImG>(ω) = 2πA(ω)[1± f(ω)]. (2.24)

As a last remark, all relations concerning contour-ordered Green’s functions
hold also if the integral −i

∫
C dsH(s) in equation (2.9) is substituted with a

more general action S of the form

S = −i
∫
C
ds H(s)− i

∫
C
dt dt′ c†(t)∆(t, t′)c(t′). (2.25)

Non-interacting contour-ordered Green’s function The equation of
motion for the Green’s function in the non-interacting case can be easily cal-
culated. For a tight binding model H0 =

∑
k[εk(t)− µ]c†kck, one can take the

derivative of G0,k(t, t′) = −i〈TC ck(t)c†k(t′)〉 with respect to t and obtain that

[i∂t + µ− εk(t)]G0,k(t, t′) = δC(t, t
′). (2.26)

Taking the derivative with respect to t′ yields an equivalent equation. The
above equation can be rephrased into the definition of the differential operator
on the contour

G−1
0,k(t, t′) = [i∂t + µ− εk(t)] δC(t, t

′). (2.27)

The solution to such equations is

G0,k(t, t′) = −i[θC(t, t′)± f(ε(0)− µ)]e−i
∫ t
t′ ds [εk(s)−µ]. (2.28)

In the general case in which H0 is not diagonal in the orbitals

H0(t) =
∑
ij

[vij(t)− µδij ]c†i cj (2.29)
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and the system evolves according to a more general action of the form

S = −i
∫
C
dtH0(t)− i

∑
ij

∫
C
dt dt′ c†i (t)∆ij(t, t

′)cj(t
′), (2.30)

both G0 and G−1
0 are matrices in orbital indices, and

(G−1
0 )ij(t, t

′) = [δij(i∂t + µ)− vij(t)] δC(t, t′)−∆ij(t, t
′). (2.31)

Fully-interacting Green’s function: Dyson equation
To describe nonequilibrium correlated systems using Green’s functions, one
has to take account of self-energy corrections Σ to the non-interacting Green’s
function G0. In the language of Feynman diagrams, the self-energy is the sum
of all one-particle irreducible diagrams of the interacting Green’s function G,
i.e., diagrams that cannot be separated into two parts by cutting single G0

lines. [8] The fully interacting Green’s function is

G = G0 +G0 ∗ Σ ∗G0 +G0 ∗ Σ ∗G0 ∗ Σ ∗G0 + ... (2.32)

Equation (2.32) can be rewritten in the form of the following Dyson equation

G = G0 +G0 ∗ Σ ∗G. (2.33)

To see how the introduction of the self-energy corrections change the equation
of motion of the fully interacting Green’s function with respect to the equa-
tion (2.26) for the non-interacting one, we can convolute the operator G−1

0

from the left in equation (2.33), obtaining

[G−1
0 − Σ] ∗G = δC . (2.34)

From the above equation we can read off the differential operator G−1, which,
in abstract notation, is G−1 = G−1

0 −Σ. The equation of motion for the fully
interacting Green’s function becomes, therefore

[i∂t − h(t)]G(t, t′)−
∫
C
dsΣ(t, s)G(s, t′) = δC(t, t

′). (2.35)

2.1.2 Dynamical mean-field theory

In general, the goal of a mean-field theory is to approximate a lattice problem
with many degrees of freedom by a single-site effective problem with less degrees
of freedom. The underlying physical idea is that the dynamics at a given site
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can be thought of as the interaction of the degrees of freedom at this site with
an external bath created by all other degrees of freedom on other sites. [7]

Let us consider a model

H =
∑
〈ij〉,σ

vijc
†
iσcjσ +

∑
i

H
(i)
loc, (2.36)

where Hloc is the sum of single-particle terms and local interactions. The
key assumptions of dynamical mean-field theory are i) that the electronic self-
energy is local in space, i.e. k-independent

Σij(iωn) = δijΣii(iωn), (2.37)

and ii) that Σii(iωn) and Gii(τ) can be obtained from an effective impurity
model with an action S of the form

Si = −
∫ β

0

dτ Hloc −
∫ β

0

dτ dτ ′
∑
σ

c†σ(τ)∆i(τ − τ ′)cσ(τ ′). (2.38)

Here, ∆ is the hybridization function of the system to a fictitious bath. Given
such action S, the local Green’s function is

Gii(τ) = − 1

Z
Tr[Tτe

Sici(τ)c†i (0)] (2.39)

and the differential operator G−1
ii

G−1
ii (iωn) = iωn + µ−∆i(iωn)− Σii(iωn). (2.40)

Since the Dyson equation of the lattice model

G−1
ii (iωn) = δij [iωn + µ− Σii(iωn)]− vij (2.41)

relatesG−1
ii and Σii, the hybridization function ∆ can be eliminated and the set

of equations can be closed. A closed functional relation ∆[G] can be obtained,
for example, on the Bethe lattice with nearest neighbour hopping v∗/

√
z, when

the coordination z →∞.1 In fact, in such case

∆(iωn) = v2
∗G(iωn). (2.42)

It can be demonstrated [7] that the dynamical mean-field equations are exact
when the coordination of the lattice is ∞.

1In the Bethe lattice the density of states is semielliptic and is of the form D(ε) =
1

2πv2
∗

√
4v2∗ − ε
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2.1.3 Nonequilibrium dynamical mean-field theory

The dynamical mean-field theory equations can be extended to the nonequilib-
rium case by generalizing their arguments from the imaginary time axis to the
L-shaped contour discussed in section 2.1.1. As discussed in section 2.1.1, the
lattice Green’s function Gij(t, t

′) = −i〈TC ci(t)c†j(t′)〉 can be obtained from
(equation (2.31))

(G−1)ij(t, t
′) = [δij(i∂t + µ)− vij(t)] δC(t, t′)− δijΣii(t, t′),

where, again, the self-energy is considered as local2,

Σij = δijΣi(t, t
′). (2.43)

In order to evaluate the correct functional Σii[G] in d→∞, it is sufficient to
solve a general local model with action

Si = −i
∫
C
dt Hloc(t)− i

∑
σ

∫
C
dt dt′ c†σ∆i(t, t

′)cσ(t′) (2.44)

where the auxiliary field ∆(t, t′) is chosen such that

Gii(t, t
′) = −i〈TC c(t)c†(t′)〉Si , (2.45)

and Σ is implicitly defined via the Dyson equation [8]

G−1
ii (t, t′) = (i∂t + µ) δC(t, t

′)− Σii(t, t
′)−∆i(t, t

′). (2.46)

2.2 Nonequilibrium DMFT for the Holstein
model

I now discuss how the equations presented in the previous sections have to be
written to describe the Holstein model, which has already been discussed in
chapter III.1 in a time-dependent mean-field approach. Such time-dependent
mean-field approximation cannot capture a very important aspect of the dy-
namics of coherent oscillations in the out-of-equilibrium dynamics of the Hol-
stein model: the damping of the oscillations. Since dynamical mean-field
theory takes, instead, also the incoherent scattering between electrons and
phonons in consideration, it is expected that it is able to capture the damping
of the dynamics.

2Also for contour-ordered Green’s functions this is exact in infinite dimensions.
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Coherent oscillations of the atomic positions 〈X〉 take place when the sys-
tem is in its symmetry-broken phase (as discussed in chapter III.1), in which
the atomic sites are separated in two inequivalent sublattices A and B. The
nonequilibrium dynamical mean-field equations discussed in the previous sec-
tions concern one single site. Such equations can therefore appropriately de-
scribe the Holstein model only when the system is in its translationally invari-
ant phase, but not when it is in the symmetry-broken state.

This problem can be fixed writing two sets of equations for the two sublat-
tices. However, the single-site case is simpler and it is useful to discuss it first
in order to make clear which are the objects involved in the calculation. The
Holstein Hamiltonian is (equation (2))

H =
∑
k

ε(k)c†kck +
∑
k

ωkb
†
kbk + g

∑
kq

(
b†−q + bq

)
c†k+qck.

With such a Hamiltonian, the equation for the Green’s function G(t, t′) is(
i∂t + µ− hloc

)
G(t, t′)−

(
∆(t, t′) + Σ(t, t′)

)
∗G(t, t′) = δC(t, t

′), (2.47)

where hloc is the coupling term with the vibrational mode which is local in
time, and Σ(t, t′) is the self-energy describing the retarded interaction be-
tween electrons and vibrational mode. The term hloc(t) is a Hartree term
and corresponds to the off-diagonal element in the mean-field Hamiltonian in
equation (1.15). It is therefore

hloc(t) = −
√

2g〈X(t)〉. (2.48)

The self-energy Σ(t, t′) is calculated in the Migdal approximation and is

Σ(t, t′) = ig(t)g(t′)G(t, t′)D(t, t′), (2.49)

where

D(t, t′) = −2i〈TC X(t)X(t′)〉 (2.50)

is generally called phonon propagator and is the equivalent of the Green’s
function for the vibrational mode. “Migdal approximation” usually can have
two distinct meanings [13]. One is the unrenormalized Migdal approximation,
in which the non-interacting phonon propagator is used in the electronic self-
energy, and therefore the dynamics of the vibrational mode is not considered.
The other is the self-consistent Migdal approximation, in which the dressed
phonon propagator is used. We are going to use the most complete version
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= +

Figure 2.2: Dyson equation for the electronic Green’s function in the self-
consistent Migdal approximation.

of the approximation, i.e. the self-consistent one. In this case, the Dyson
equation for the electrons is of the form displayed in figure 2.2.

In the self-consistent Migdal approximation, also the vibrational mode
evolves as a consequence of the interaction with the electrons. Therefore, we
also need an equation for the phonon propagator D(t, t′). The Dyson equation
for D(t, t′) is depicted in figure 2.3, and gives an integro-differential equation

Figure 2.3: Dyson equation for the phononic Green’s function in the self-
consistent Migdal approximation.

similar to the one for G(t, t′):(
1− P (t, t′) ∗D0(t, t′)

)
∗D(t, t′) = D0(t, t′), (2.51)

where P (t, t′) is the so-called polarization bubble

P (t, t′) = −2ig2G(t, t′)G(t′, t), (2.52)

andD0(t, t′) is the non-interacting phonon Green’s function. The non-interacting
D0(t, t′) can be calculated as

D0(t, t′) =− 2i
[
θC(t− t′)

(
e−iω0(t−t′) + 2 cos(ω0(t− t′)

)
〈b†b〉β

+ θC(t
′ − t)

(
eiω0(t−t′) + 2 cos(ω0(t− t′)

)
〈b†b〉β

]
,

(2.53)

where 〈b†b〉β is given by the Bose function at frequency ω0.
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One last equation is needed, i.e. the equation of motion for the position
〈X(t)〉 of the vibrational mode. The vibrational mode is subject to a time-
dependent force F (t)

F (t) = 2
√

2g
(
〈c†(t)c(t)〉 − 0.5

)
. (2.54)

This equation completes the set of equations which have to be solved self-
consistently at each time t. The self-consistency cycle involves the following
steps. At each time t,

1. propagate the phonon propagator D(t, t′) using the polarization bubble
P (t, t′) (equation (2.51)),

2. calculate the electronic self-energy Σ(t, t′) (equation (2.49)),

3. propagate the vibrational mode position 〈X(t)〉 (equation (2.54)),

4. calculate hloc(t) (equation (2.48)),

5. propagate the electronic Green’s function G(t, t′) (equation (2.47)).

2.2.1 Equations for the two different sites

I now discuss the actual set of equations which have to be solved if one wants to
consider both sublattices A and B and, therefore, be able to study the system
in its symmetry-broken state. The two sublattices A and B are represented,
in the dynamical mean-field approach, by two sites A and B. Each of the sites
will have its own electronic Green’s function, phononic Green’s function and
atomic displacement. The equations for the two Green’s functions GA and
GB , respectively of site A and B, are(

i∂t + µ− hAloc(t)
)
GA(t, t′)−

(
∆A(t, t′) + ΣA(t, t′)

)
∗GA(t, t′) = δC(t, t

′),(
i∂t + µ− hBloc(t)

)
GB(t, t′)−

(
∆B(t, t′) + ΣB(t, t′)

)
∗GB(t, t′) = δC(t, t

′).
(2.55)

The nearest neighbours of a given site all belong to the other sublattice, i.e.
the neighbours of the A sites are only B sites and vice versa. Therefore, the
hybridization functions ∆ will be crossed between the A and B sites:

∆A(t, t′) = GB(t, t′),

∆B(t, t′) = GA(t, t′).
(2.56)
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The time-local part of the equations involve, instead, only the on-site parts.
The time-local Hamiltonians are therefore

hAloc(t) = g〈XA(t)〉,
hBloc(t) = g〈XB(t)〉.

(2.57)

The atomic displacements on the two sublattices however are not indepen-
dent, since 〈XA(t)〉 = 〈−XB(t)〉 = 〈X(t)〉. On the other hand, DA(t, t′) and
DB(t, t′) are only affected by the polarization bubble at site A and site B,
respectively. The equations for the phononic Green’s functions DA and DB

involve, therefore, only the on-site polarization bubbles and are(
1− PA(t, t′) ∗D0,A(t, t′)

)
∗DA(t, t′) = D0,A(t, t′),(

1− PB(t, t′) ∗D0,B(t, t′)
)
∗DB(t, t′) = D0,B(t, t′).

(2.58)

The self-consistency cycle is analogous to the one described for the single-site
set-up. Apart from duplicating it to include both sites A and B, the last
point has to include the crossed hybridization functions ∆ as described in
equation (2.56).

2.3 Current-current correlators

Once the out-of-equilibrium Green’s function is known, the out-of-equilibrium
optical properties of the system can be computed. How a system responds to
impinging light, i.e. to the application of a vector potential, and then re-emits
light is determined by current-current correlators which give the optical suscep-
tibility. At the same time, as I will show, other components or combinations of
current-current correlators determine other properties of the re-emitted light.
In section 2.3.4, I will focus on the calculation of the fluctuations of the inten-
sity of light pulses reflected by the out-of-equilibrium system. In the following
two sections, I will first review the derivation of the expression for the op-
tical susceptibility χ(t, t′) and then I will write down fluctuation-dissipation
relations for such current-current correlators.

2.3.1 Optical susceptibility

This section reviews results discussed by Eckstein and Kollar in Ref. [14] for
the case of a single site. The optical susceptibility of a system is given by

χαβ(t, t′′) =
δ

δAβ(t′′)
〈jα(t)〉, (2.59)
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where α and β are Cartesian indices, and

〈jα(t)〉 = vαn = − ie
V

∑
k

vαG
<
k (t, t). (2.60)

Inserting equation (2.60) in equation (2.59) we obtain

χαβ(t, t′′) = − ie
V

∑
k

(
δvα(t)

δAβ(t′′)
G<k (t, t) + vα(t)

δG<k (t, t)

δAβ(t′′)

)
, (2.61)

where the first term is called diamagnetic susceptibility χdia
αβ (t, t′′) and the sec-

ond one paramagnetic susceptibility χpm
αβ (t, t′′). The diamagnetic contribution

to the optical susceptibility can be directly rewritten as

χdia
αβ (t, t′′) = − ie

V
δ(t− t′′)

∑
k

∂kβ∂kαεk(t)G<k (t, t). (2.62)

To obtain the final expression for the paramagnetic optical susceptibility

χpm
αβ (t, t′′) = − ie

V

∑
k

vα(t)
δG<k (t, t)

δAβ(t′′)
, (2.63)

we have to calculate instead δG<k (t, t). This can be done noting that δGk(t1, t2)
can be obtained from

δGk(t1, t2) = −
(
Gk ∗ δG−1

k ∗Gk
)
(t1, t2). (2.64)

G−1 can be written as the difference between the non-interacting G−1
0 and

the self-energy Σ. Therefore δG−1
k = δG−1

0,k − δΣ. If we neglect the vertex
corrections, we can set δΣ to zero, and equation (2.64) becomes

δGk(t1, t2) = −
(
Gk ∗ [δG−1

0,k] ∗Gk
)
(t1, t2) (2.65)

=
e

~c
(
Gk ∗ [δC(t1, t2)vγ(t1)δAγ(t1)] ∗Gk

)
(t1, t2)

=
e

~c

∫
C
dsGk(t1, s)

∫
C
dr δC(s, r)vγ(s)δAγ(s)Gk(r, t2)

=
e

~c

∫
C
dsGk(t1, s)vγ(s)δAγ(s)Gk(s, t2)

=
e

~c

∫
C1

ds+Gk(t1, s+)vγ(s)δAγ(s)Gk(s+, t2)
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−
∫
C2

ds−Gk(t1, s−)vγ(s)δAγ(s)Gk(s−, t2)

+

∫
C3

idτ Gk(t1,−iτ)vγ(−iτ)δAγ(−iτ)Gk(−iτ, t2). (2.66)

Taking the derivative of Gk(t1, t2) with respect to δAγ(t′) selects δβγ δC(s, t′),
giving

χpm
αβ (t, t′′) =

ie2

~cV
∑
k

vα(t)vβ(t′′)
(
G++
k (t, t′′)G+−

k (t′′, t)−G+−
k (t, t′′)G−−k (t′′, t)

)
= −2

e2

~cV
∑
k

vα(t)vβ(t′′)Im
(
GRk (t, t′′)G<k (t, t′′)

)
= −2

e2

~cV
∑
k

vα(t)vβ(t′′)
(
Gk(t, t′′)Gk(t′′, t)

)R
(t, t′′)

= −2
e2

~cV
∑
k

vα(t)vβ(t′′)
(
GkGk

)R
(t, t′′).

(2.67)

The susceptibility χpm(t, t′′) is, therefore, given by the retarded component of
the so-called polarization bubble (GkGk).

The Green’s function Gk at momentum k actually depends only on εk and
not directly on k, because it is obtained from the equation

Gεk = (i∂t + µ− εk − Σ)−1, (2.68)

where Σ 6= Σ(k). The momentum summation for the paramagnetic term can,
therefore, be substituted with the following integral along the energy axis∫

dεDαβ(ε)Im
(
GRk (t, t′′)G<k (t, t′′)

)
, (2.69)

where Dαβ(ε) =
∑
k δ(ε − εk)vk,αvk,β has the form of a modified density of

states. For the Bethe lattice it takes the form [14]

Dαβ(ε) =δαβ
Wa2

4~2
√

1− (ε/W )2
·

· exp

(
−2

[
erf−1

(
ε
√

1− (ε/W )2 +W sin−1(ε/W )

πW/2

)]2)
,
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where W is the bandwidth. In the numerical evaluation of the integral (2.69),
the change of variable ε = −2 cos(θ) (where W = 2) is useful to avoid singu-
larities. With it, D(ε)dε becomes

D(ε)dε = dθ
a2

~2
exp

(
−2

[
erf−1

(−2
(

cos(θ) sin(θ)− θ)
π

− 1

)]2)
. (2.70)

With such equations, the optical properties of the system, like the optical
conductivity or the reflectivity, can be computed. While their application to
the single-site case is as-written, I will discuss how to use them in the set-up
with the two sites A and B in the following section.

2.3.2 Optical susceptibility with two sublattices

The previous section discussed the calculation of the optical susceptibility in
the case of a single-site problem. In the case of two sites {a,b}3 representing
two inequivalent sublattices, we can still calculate the polarization bubble and
the optical susceptibility. The Dyson equation is still

Gεk(t, t′) = (i∂t + µ− h(t)− Σ(t, t′))−1, (2.71)

where in this case Gεk , h and Σ are matrices. In the {a,b} basis they are

Gεk(t, t′) =

(
Ga,aεk Ga,bεk
Gb,aεk Gb,bεk

)
(t, t′), (2.72)

h(t) =

(
gX(t) εk(t)
εk(t) −gX(t)

)
, (2.73)

and

Σ(t, t′) =

(
Σa(t, t′) 0

0 Σb(t, t
′)

)
. (2.74)

The k-summation in the expression for the paramagnetic susceptibility χpm

(equation (2.67)) is∑
k

vk(t)vk(t′)
(
Gk,kGk,k +Gk+Q,k+QGk+Qk+Q

−Gk,k+QGk+Q,k −Gk+Q,kGk,k+Q

)R
(t, t′),

(2.75)

3In this section, the lowercase letters are preferred to A and B, to keep the notation more
orderly.
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Since

Ĝk =

(
Gaak Gabk
Gbak Gbbk

)
=

1

2

(
1 1
1 −1

)(
Gk,k Gk,k+Q

Gk+Q,k Gk+Q,k+Q

)(
1 1
1 −1

)
(2.76)

in the {a,b} basis the k-summation in equation (2.75) becomes∑
k

vk(t)vk(t′)
(
Ga,ak Gb,bk +Gb,bk Ga,ak +Ga,bk Gb,ak +Gb,ak Ga,bk

)R
(t, t′), (2.77)

As an example, using relations between G and G∗ listed in reference [8], the
first term in the above expression is(

Ga,ak Gb,bk
)R

(t, t′) =
(
Ga,ak Gb,bk

)>
(t, t′)−

(
Ga,ak Gb,bk

)<
(t, t′)

=
(
Ga,ak Gb,bk

)>
(t, t′) +

((
Gb,bk Ga,ak

)<
(t′, t)

)∗
.

(2.78)

These adjustments allow to compute the optical susceptibility as described in
the previous section also in the two-site problem.

2.3.3 Fluctuation-dissipation relations

The previous two sections deal with the optical susceptibility, i.e. the quantity
〈
[
j(t), j(t′)

]
〉, which is related to the retarded component of the polarization

bubble (GG)R(t, t′). Another combination of the correlator 〈j(t)j(t′)〉 and
〈j(t′)j(t)〉 is their anticommutator 〈

{
j(t), j(t′)

}
〉. In analogy to χ, in the

following I will call K the anticommutator

K(t, t′) = 〈
{
j(t), j(t′)

}
〉 = 〈j(t)j(t′) + j(t′)j(t)〉. (2.79)

As shown below, this quantity is related to the Keldysh component of the
polarization bubble (GG)K(t, t′). When the system under consideration is in
a thermal state, such pairs of quantities ( (GG)R(t, t′) and (GG)K(t, t′), or χ
and K ) are related by the fluctuation-dissipation relation. For χ and K, the
latter is

Imχpm(t, ω) = tanh

(
βω

2

)
ImK(t, ω), (2.80)

where the two functions f have been partially Fourier-transformed according
to

f(tp, ω) =
1

2π

∫
ds eiωsf(tp + s/2, tp − s/2). (2.81)
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Since this kind of relation holds only for thermal states, the comparison be-
tween χ and K will prove useful in the study of the thermalization dynamics
that I will discuss in section 3.2.

Analogously to the derivation of the optical susceptibility χ of section 2.3.1,
Kαβ(t, t′) is given by the sum of K+

αβ(t, t′) and K−αβ(t, t′), where

K+
αβ(t, t′) =

ie2

~cV
∑
k

vα(t)vβ(t′)G++
k (t, t′)G+−

k (t′, t)

=
ie2

~cV
∑
k

vα(t)vβ(t′)G>k (t, t′)G<k (t′, t)

=
ie2

~cV
∑
k

vα(t)vβ(t′)
(
Gk(t, t′)Gk(t′, t)

)>
(t, t′)

=
ie2

~cV
∑
k

vα(t)vβ(t′)
(
GkGk

)>
(t, t′)

(2.82)

and

K−αβ(t, t′) = − ie2

~cV
∑
k

vα(t)vβ(t′)G+−
k (t, t′)G−−k (t′, t)

= − ie2

~cV
∑
k

vα(t)vβ(t′)G<k (t, t′)G>k (t′, t)

= − ie2

~cV
∑
k

vα(t)vβ(t′)
(
GkGk

)<
(t, t′).

(2.83)

Kαβ(t, t′) is, therefore,

Kαβ(t, t′) = − ie2

~cV
∑
k

vα(t)vβ(t′)
(
GkGk

)K
(t, t′). (2.84)

For the evaluation of the above expresison, the k-summation can be substituted
with an energy integral as shown in section 2.3.1.

2.3.4 Fluctuations of the optical properties

Up to now, the discussion about the optical properties of the system has been
focussed on the commutator and anticommutator of the two-times current-
current correlator. The optical susceptibility χ(t, t′) can be obtained from
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spectroscopic measurements. The knowledge of K(t, t′) or of 〈j(t)j(t′)〉 would
then allow to perform the fluctuation-dissipation analysis discussed in the pre-
voius section and possibly to extract furter information. In this section I will
present our discuss on how the quantity 〈j(t)j(t′)〉 can be obtained in pump-
probe experiments measuring the fluctuations of the intensity of the probe
pulses reflected from the sample.

The intensity of light pulses is

I ∝
∫

pulse

dtE(t)2, (2.85)

and its variance can be written as

var[I] = 〈I2〉 − 〈I〉2. (2.86)

Here, we will postpone the explicit consideration of the intrinsic statistical
properties of the probe light. Since the reflected light is produced by the
currents in the sample, below we take the fluctuations of its intensity as solely
determined by the fluctuations of the current in the sample. With E(t) →
〈E(t)〉+ δE(t), the two terms in equation (2.86) are

〈I2〉 =

∫
dt1dt2 〈E(t1)〉2〈E(t2)〉2 +

+ 4

∫
dt1dt2 〈E(t1)〉〈E(t2)〉〈δE(t1)δE(t2)〉 +

+

∫
dt1dt2

(
〈E(t1)〉2〈δE(t2)2〉+ 〈E(t2)〉2〈δE(t1)2〉 + 〈δE(t1)2δE(t2)2〉

)
(2.87)

and

〈I〉2 =

∫
dt1dt2

(
〈E(t1)〉2〈E(t2)〉2 + 〈E(t1)〉2〈δE(t2)〉2+

+ 〈δE(t1)〉2〈E(t2)〉2 + 〈δE(t1)2〉〈δE(t2)2〉
)
. (2.88)

The variance of the intensities therefore is

var[I] =

∫
dt1dt2

(
4〈E(t1)〉〈E(t2)〉〈δE(t1)δE(t2)〉 +

+ 〈δE(t1)2δE(t2)2〉 − 〈δE(t1)2〉〈δE(t2)2〉
)
. (2.89)
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In some cases, each of the last two terms in equation (2.89) factorizes, e.g. if
the light is in a coherent state, and they cancel out. Even when this does not
happen, to second order in δE we have that

var[I] = 4

∫
dt1dt2〈E(t1)〉〈E(t2)〉〈δE(t1)δE(t2)〉. (2.90)

In the above expression, 〈δE(t1)δE(t2)〉 can be replaced by 〈δj(t1)δj(t2)〉. In
fact,

〈δE(t1)δE(t2)〉 ∼ 〈δA(t1)δA(t2)〉, (2.91)

and the expression for the vector potential radiated from a general current
density is [15]

A(~r, t) =
µ0

4π

∫
j(~r ′, t− r/c)

r
d~r ′. (2.92)

Hence, we can write

〈δA(t1)δA(t2)〉 ∼ 〈δj(t1)δj(t2)〉. (2.93)

The correlator 〈δj(t1)δj(t2)〉 will be affected by the field of the impinging light
pulses. In fact, from the Kubo formula we obtain that

〈δj(t1)δj(t2)〉 = 〈δj(t1)δj(t2)〉0 − i
t∫

t0

dt′
〈
[δj(t1)δj(t2), A(t′)j(t′)]

〉
. (2.94)

Since the current density is zero at equilibrium, j(t) = 〈j(t)〉0 + δj(t) = δj(t)
and the above expression becomes

〈δj(t1)δj(t2)〉 = 〈j(t1)j(t2)〉0 − i
t∫

t0

dt′
〈
[δj(t1)δj(t2), A(t′)j(t′)]

〉
. (2.95)

However, limiting the total expression of var[I] to the lowest order in the
electric field we can neglect the perturbation of 〈δj(t1)δj(t2)〉 by the probe
pulse and write

var[I] ∼
∫
dt1dt2〈E(t1)〉〈E(t2)〉〈j(t1)j(t2)〉0. (2.96)

With the same arguments as above, we can substitute also 〈E(t)〉 with the
current generating it, obtaining

var[I] ∼
∫
dt1dt2〈j(t1)〉〈j(t2)〉〈j(t1)j(t2)〉0. (2.97)
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The currents in the sample are generated by the incoming electric field, via
j(t) =

∫ t
−∞ ds σ(t− s)Ein(s):

var[I] ∼
∫
dt1dt2

(∫ t1

−∞
ds1 σ(t1 − s1)Ein,tp(s1)

)
·(∫ t2

−∞
ds2 σ(t2 − s2)Ein,tp(s2)

)
·

〈j(t1)j(t2)〉0. (2.98)

In the above equation, Ein,tp denotes the electric field of the probe pulse with
the envelope centred at pump-probe delay tp.

Besides the fluctuations of the current in the sample, an additional source
of fluctuation of the intensity of the reflected probe pulses is the statistics of
the incoming probes, due to their (quantum) state. Since in equation (2.95)
we consider only the first term, i.e. only the fluctuations of the current in the
sample when it is not perturbed by the probe pulses, here we can consider
the two sources of fluctuations of I as independent. In the standard case
of a coherent state of the incoming probe, var[I] will display (in addition to
equation (2.96)) a shot-noise-like term proportional to the intensity of the
probe pulse at the detector.

At equilibrium and at standard temperatures, the variance of I due to
the fluctuations of the current is negligible at probe photon energies in the
visible and infrared spectral range, since the fluctuations of the current are
very small at such frequencies. In such condition, only the intrinsic fluctuations
are relevant, as it is usually assumed in quantum optics for the reflection of
light by a mirror. When the sample which reflects the probe pulse is out
of equilibrium, instead, 〈j(t1)j(t2)〉 can significantly contribute to the total
fluctuation of the intensity.
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Chapter 3

Dynamical mean-field
theory - Results

I now discuss the results of the nonequilibrium dynamical mean-field theory
calculations. In the first section of this chapter I will discuss the similarities of
the results with the ones obtained in the time-dependent mean-field approach
and the features added by dynamical mean-field theory. Then, I will discuss
the thermalization dynamics of the system after the excitation and, finally,
what kind of information can be extracted from the fluctuations of the optical
properties, comparing our calculations with experimental results obtained on
bismuth single crystals.

To start, figure 3.1 shows the equilibrium gap g〈X〉eq of the system. As
parameters for the calculations we chose a coupling constant between the elec-
trons and the vibrational mode g = 0.34, and a bare frequency of the vibra-
tional mode ω0 = 0.2. The choice of a rather high ω0, which is at the limit
of the adiabatic regime, is dictated by the relatively short times that can be
reached in nonequilibrium dynamical mean-field theory because of memory
issues. As can be seen in figure 3.1, at low enough temperatures (high β) the
system is in its dimerized phase. As discussed in the context of the mean-
field calculation, the value of the atomic positions are the distance from the
undistorted situation. A value different from zero therefore means that the
system is in its symmetry-broken phase. Since the lattice is dimerized, the
atomic positions are alternatively displaced from the undistorted positions on
the one and on the other side. This allows to distinguish between two differ-
ent sublattices, A and B. As discussed in section 2.2.1, the atoms on the A
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sublattice will have a positive displacement XA = +X while the atoms on the
B sublattice will have an opposite displacement XB = −X. In the following I
will simply refer to the “atomic positions” X as the positions XA.

When the temperature is high, i.e. β is small, the system is in its trans-
lationally invariant phase, with 〈X〉eq = 0 and two equivalent A and B sub-
lattices. The transition temperature from the symmetry-broken phase to the
translationally invariant one in around βc ' 5. The plot lacks data points
close to βc because the calculation does not converge there.

0 5 10 15 20 25

β

0.0

0.1

0.2

0.3

0.4

0.5

0.6

g
〈 X〉 eq

Figure 3.1: Gap of the system in its ground state for different inverse temper-
atures β. The lack of points close to the transition is due to difficulties in the
convergence of the dynamical mean-field iterations.

3.1 Displacive excitation

Once the initial state is calculated, the out-of-equilibrium calculation has to
start from the excitation. In the time-dependend mean-field calculations dis-
cussed in chapter III.1, the system was excited by a light pulse. A more con-
venient excitation in the case of dynamical mean-field calculations is to have
an impulsive variation of the hopping h, i.e. have h(t) = h+δh(t) with δh(t) a
sharp Gaussian, while the coupling constant g between the electronic density
and the vibrational mode is kept constant. This destabilizes the symmetry-
broken state, because it makes the system istantaneously more metallic. Fig-
ure 3.2 shows a sample hopping as a function of time. At “pump-probe delay”
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zero, the hopping impulsively changes according to a sharp Gaussian, while it
returns to unity immediately after.

Given that such an excitation scheme is more easily implementable than
the one involving a light pulse, we have to check under which conditions it
produces compatible effects with the ones we expect from a light pulse. With
an impulsive increase of the hopping, the oscillation of the vibrational mode
starts with an expansion of the dimers, i.e. with the atoms going towards
their translationally invariant positions. If the perturbation were an impul-
sive decrease of the hopping instead, the ratio g

ω would impulsively increase.
Even though such excitation produces, in the end, an excitation of the system
towards a less dimerized phase, the oscillation of the atomic postions with
δh < 0 starts towards a more dimerized condition, which does not match what
happens when electrons are photoexcited out of the dimer by an ultrashort
light pulse.
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2.6

h
=

1
+
δh

Figure 3.2: Time-dependent hopping. The impulsive change shortly after
tp = 0 excites the system.

Atomic displacements As initial state for the out-of-equilibrium calcula-
tion we chose the one at β = 25, i.e. in the symmetry-broken phase with an
equilibrium distortion 〈X〉eq = 1.65 and a gap 2∆ = 1.1. As expected from
the results already obtained from the time-dependent mean-field calculations,
the excitation of the system on sufficiently short timescales produces coherent
oscillations of the atomic positions. Figure 3.3a shows the expectation value
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〈X(t)〉 of the atomic positions as a function of time for different excitation in-
tensities. After the excitation, the atoms start oscillating around a 〈X〉 smaller
than 〈X〉eq (〈·〉 denotes temporal average), which is however still different from
zero. This means that the dimers are loosened, but the system remains in the
symmetry-broken phase.

Figure 3.3b shows 〈X(t)〉 for the same initial parameters but for very in-
tense excitations. In these cases, the symmetry-broken phase is melted. After
the excitation the atoms oscillate, but the oscillation takes place around the
undistorted position, i.e. 〈X〉 = 0.

As a function of the excitation intensity δh, three aspects of the dynamics
can be discussed: the amplitude of the oscillation of 〈X(t)〉, its frequency, and
its damping.

First, the stronger the excitation the larger the amplitude of the oscillation,
as expected. In addition to this, it can be noted that there is a regime in which,
during the oscillation, the system experiences even stronger distortions than
at equilibrium (black horizontal line). This means that the excitation gives
sufficient momentum to the vibrational mode that it can recoil beyond its
starting position.

Second, the frequency ω∗ of the oscillation of X changes as a function
of the excitation intensity δh, as shown in figures 3.4a and b. Figure 3.4a
shows the Fourier transform of 〈X(t)〉 for selected δh, while figure 3.4b shows
the peak frequency as a function of δh. For very low excitation intensities,
the oscillation frequency is ω∗|δh=0 = 0.15. This value is different from the
bare frequency ω0 = 0.2 inserted as a parameter, because of the coupling of
the vibrational mode with the electrons. The frequency ω∗ decreases with
increasing δh until it reaches 0 at a critical value of δhc ' 1.7 (grey vertical
line). δhc is the threshold value for the melting of the symmetry-broken phase,
and with such an excitation the period of the oscillation tends to infinity. Just
as in the mean-field case (section 1.3), this is what is generally called critical
slowing down.

Above such threshold value of excitation intensity δh, as shown in fig-
ure 3.3b, the symmetry-broken phase melts, and the oscillation frequency
recovers from zero and grows again. In the mean-field case (section 1.3 of
chapter 1), above the critical excitation intensity the frequency tends to the
bare frequency of the vibrational mode, which is larger than the oscillation
frequency for very low excitation intensities. Here, instead, the limit value
of the frequency for large intensities is smaller than the low-intensity value,
and is not the bare frequency. In fact, the system is metallic once it has been
brought to the translationally invariant phase, and the screening of the vibra-
tional frequency through the self-energy is more effective than in the dimerized
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Figure 3.3: a (b) Atomic displacemens 〈X(t)〉 as a function of time tp for
different δh below (above) the critical value δhc. The horizontal black line in
panel a is the equilibrium value of 〈X〉. The horizontal black line in panel b
is the value (0) of 〈X〉 in the translationally invariant phase.

phase.

Third, the oscillation of 〈X(t)〉 is damped. This is the main feature added
by nonequilibrium dynamical mean-field theory to what we could obtain in a
time-dependent mean-field approach and is the reason why we shifted to the
DMFT framework. The damping of the dynamics and incoherent scattering
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Figure 3.4: a Modulus of the Fourier transform of 〈X(t)〉 for different exci-
tation intensities δh. Only the main peaks have to be considered, while the
side peaks are a product of spectral leakage. b Peak frequency of the Fourier
transforms of 〈X(t)〉 as a function of δh. Grey vertical line: threshold value
δh for the melting of the symmetry-broken phase.

are very important ingrediends in the temporal evolution of out-of-equilibrium
states of matter. They have to be included in the calculations, if the goal
is to study the state of the system beyond the expectation values of simple
observables.
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The damping timescale is not the same constant for every excitation inten-
sity, but becomes shorter as δh is increased, because more incoherent scattering
is possible when the system is more excited.

Besides the three main aspects discussed, one should also note that the
oscillation of 〈X(t)〉 is distorted from a perfect sinusoidal function when the
system is close to melting. This consideration brings me to the brief discussion
of the behaviour of the electronic occupations NA and NB of the sites on the
two sublattices A and B. Since the system is at half filling, their sum is 1 and
I will discuss therefore just one of the two occupations, namely NA.

One should note that the numerical results obtained in the excitation
regime leading to the melting of the symmetry broken phase (δh > δhc) have
to be taken with some care in the comparison with the experimental results
on Peierls’ systems. While the melting of the dimerized phase has been ob-
served [11], the oscillations are absent in such regime, presumably because the
anharmonicities overdamp the vibrational mode. For this reason, the most
important parts of the following discussion are limited to δh < δhc.

Occupation of the A and B sites Figures 3.5a and b show 〈N(t)〉 in the
same excitation regimes described for 〈X(t)〉 in figures 3.3a and b, i.e. below
and above the melting of the symmetry-broken state. The behaviour of the
occupation of the sites on sublattice A (and the subsequent occupation of the
B sites) is rather analogous to the one of the lattice distortion 〈X(t)〉. In fact,
〈X(t)〉 changes, via hloc(t), the potential on the A and B sublattices, thus
modulating the distribution of the charge density among them.

We can now analyze the time-dependent spectral function and the occu-
pied density of states on the two sublattices A and B. Figures 3.6a, b, c,
and d show the time-dependent spectral function A(tp, ω) = − 1

πG
R(tp, ω) =

− 1
π

1
2π

∫
ds eiωsGR(tp+ s/2, tp− s/2) for the A and B sites and for two excita-

tion intensities δh, respectively. The side panels show 〈X(tp)〉 as a reference for
the oscillation. Analogously, figures 3.7a, b, c, and d show the time-dependent
occupied density of states −iG<(tp, ω) = −i 1

2π

∫
ds eiωsG<(tp+s/2, tp−s/2).

There are four things to notice about these results. The first two can be seen
analyzing A(tp, ω) while the last two concern mostly −iG<(tp, ω).

First, after the excitation, the density of states at the Fermi energy is
not zero, as it is instead at equilibrium. Second, the energies of the bands
oscillate together with the atomic displacement. When 〈X(t)〉 is larger, the
gap between the upper and lower bands is larger. As expected, with a more
contracted dimer the “bonding” and “antibonding” levels are further apart
from each other.
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Figure 3.5: a (b) Electronic occupation of the A sites 〈NA(t)〉 as a function
of time tp for different δh below (above) the critical value δhc. The horizontal
black line in panel a is the equilibrium value of 〈NA〉. The horizontal black
line in panel b is the value (0.5) of 〈NA〉 in the translationally invariant phase.
Note that 〈NB(t)〉 = 1.0− 〈NA(t)〉

Third, as a function of the phase of the oscillation, charge is trasferred
from site A to site B and vice-versa, as already shown by the plots of 〈N(t)〉.
In the colour plot in figures 3.7, this can be seen as the alternation of more
intense yellow regions in the plots for the A and B sites.
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Fourth, there is a distinction between the populations in the upper bands
of the A and B sites. On the A sublattice only the lower band is occupied in a
relevant way, even after the excitation. On the B sublattice, instead, also the
upper band is partially occupied. This is because on the B sites the density of
states in the upper band is larger than on the A sites.
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Figure 3.6: Time-dependent spectral functions Ai(tp, ω) = − 1
πG

R
i (tp, ω) for

the i = A,B sites (left and right columns, respectively) for δh = 1.1 (top row)
and δh = 1.5 (bottom row). The side panels show the corresponding atomic
displacements 〈X(t)〉.

Figures 3.8a, b, and c show a more direct comparison between X and n
for three different δh. Figure 3.8a shows the comparison for a weak excitation.
Both 〈X(t)〉 and 〈N(t)〉 are mostly regular sinusoidals. A careful inspection

Page 167



Chapter III.3 Section 3.1

0

20

40

60

80

100

120

140

t p

A sites B sites δh= 1. 1

0.6 1.6

X

0

20

40

60

80

100

120

140

t p

4 3 2 1 0 1 2 3 4

ω

A sites

4 3 2 1 0 1 2 3 4

ω

B sites δh= 1. 5

Figure 3.7: Time-dependent occupied density of states −iG<i (tp, ω) for the
i = A,B sites (left and right columns, respectively) for δh = 1.1 (top row)
and δh = 1.5 (bottom row). The side panels show the corresponding atomic
displacements 〈X(t)〉.

allows to see that the minima in the oscillation of 〈X(t)〉 are slightly anticipated
compared to the ones of 〈N(t)〉.

Figure 3.8b shows instead the curves obtained with δh = 1.5, i.e. close to
the threshold excitation for the melting. While 〈X(t)〉 is evidently distorted
from a sinusoidal function, particularly around t = 50, 〈N(t)〉 does not follow
〈X(t)〉 exactly. Moreover, the temporal delay between the minima of X and
N is more pronounced with respect to the weak excitation regime.

Finally, figure 3.8c shows the comparison between 〈X(t)〉 and 〈N(t)〉 in the
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case of melting of the symmetry-broken state. Here, the match between the
two curves is rather good. This allows to conclude that, while the relationship
between 〈X(t)〉 and 〈N(t)〉 is an almost straightforward linear relation in the
weak and very strong excitation regimes, it becomes more complicated close
to the threshold for melting.

Phononic Green’s function The dynamics of the vibrational mode and
of the electrons are interrelated via the mean-field hloc(t), i.e. by the force
mutually exerted by the electronic density and atomic cores, and also via
the respective self-energies (see section 2.2). While this is a common feature
of models wih electron-phonon coupling, in this case, changes in D(t, t′) ∝
〈X(t)X(t′)〉 take place with a “synchronized” coherent oscillation of 〈X(t)〉.
A nontrivial form of D(t, t′) will therefore be able to affect the oscillation in a
nontrivial way, since different parts of D(t, t′) will be more relevant at different
phases of the oscillation.

I will discuss now very briefly some features of D(t, t′). Having the values
of D(t, t′) for each t, t′ in the computed range, we can qualitatively analyze D
along some “cuts”. Figures 3.9a, b, c, and d display 〈X2(t)〉 and 〈P 2(t)〉 for

different δh, where −2i 〈P (t)P (t′)〉 = ∂t∂t′D(t,t′)
ω2

0
− 2
ω0
δC(t, t′) [13]. Figures 3.9a

and c show the results below the critical δhc. The behaviour of 〈X2(t)〉 and
〈P 2(t)〉 is highly nontrivial, but a qualitative aspect can be readily identified.
For short times, a behaviour seems to exist common to all δh, while for later
times the results depart from the low-intensity behaviour. The departure takes
place for times which are shorter with increasing δh. The same kind of plots
are reported in figure 3.9b and d for δh > δhc.

This discussion about the statistical properties of the vibrational mode
brings us to the question about how quickly the system thermalizes. Since to
discuss this question also an analysis of the optical properties is needed, I will
postpone it to section 3.2, after the discusion of the optical properties.

Optical properties The study of the optical properties of systems out of
their equilibrium state provides a direct connection with the data collected in
pump-probe experiments. Figure 3.10 shows the optical susceptibility χpm

eq (ω)
as a function of the frequency ω, with the system in the symmetry-broken
phase at β = 25 (blue line) and in the translationally invariant phase at β = 1
(red line). As expected, the symmetry-broken phase displays a gapped sus-
ceptibility, while the translationally invariant one does not. Moreover, in the
symmetry-broken phase at low temperature, the optical band is characterized
by peaks due to the coupling between the electronic system and the vibrational
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mode.
When the system is out of equilibrium, the optical susceptibility changes

with time. Figures 3.11a and b show the evolution of χpm(tp, ω) for δh = 1.1.
Figure 3.11a shows that the optical band oscillates after the excitation, where
the peak frequency is highest when the atoms are maximally dimerized, and
therefore the gap is maximum, and lowest when the system is closest to the
translationally invariant phase, when the gap is minimum. Figure 3.11b shows
χpm(ω) at selected times tp. As can be seen, even at the times when the
gap is largest, there is a finite spectral weight for transitions at low energies.
While the transitions at high energies are interband transitions, the low-energy
ones are intraband transitions, which are possible because electrons have been
excited from the lower to the upper band.
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Figure 3.10: Paramagnetic part of the optical susceptibility χpm(ω) as a func-
tion of frequency ω of the system at equilibrium in its symmetry-broken (blue,
β = 25) and translationally invariant (red, β = 1) phase.

3.2 Thermalization of the system

I now discuss in more depth the core issue of this part of my thesis, i.e. the
study of the out-of-equilibrium state of a system subject to coherent oscilla-
tions. The most basic question that can be asked is how much the system
under consideration departs from a thermal state ρ = 1

Z e
−βH . This question

can be answered, for example, checking how well the flucutuation-dissipation
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Figure 3.11: a) Out-of-equilibrium paramagnetic part of the optical suscep-
tibility χpm(tp, ω) as a function of frequency ω and of time tp. b) Out-of-
equilibrium paramagnetic part of the optical susceptibility χpm(tp, ω) as a
function of frequency ω for selected tp.

relations hold out of equilibrium [12]. As discussed in section 2.3.3, at equi-
librium there is a fluctuation-dissipation relation between different current-
current correlators, linked to the optical properties, or equivalently between
different components of the polarization bubble P (t, t′).

The fluctuation-dissipation relation for the commutator and anticommuta-
tor of the current-current correlators 〈j(t)j(t′)〉 and 〈j(t′)j(t)〉 is

Imχpm(t, ω) = tanh

(
βω

2

)
ImK(t, ω), (3.1)
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where K(t, t′) = 〈{j(t)j(t′)}〉, as defined in section 2.3.3. This relation can be
fitted with β as free parameter, and two results can be obtained: the best-fit
βf (giving the effective temperature of the electronic degrees of freedom) and
the quadratic error in the fit. The latter gives information on how well the
fluctuation-dissipation relation holds at time tp. While an absolute quantita-
tive information is not straightforward to extract, the evolution in time of the
error gives an indication of how the system is thermalizing.

To benchmark this procedure, we reproduced the results by Murakami et
al. [13] on the Holstein Hamiltonian. They studied how the model responds
to an interaction quench from gi = 0 to gf , with the system in the transla-
tionally invariant phase. The relaxation was discussed in relation to the shape
of the distribution function n(εk, t) of the electrons close to the Fermi edge.
At the time of the interaction quench a jump ∆n develops in n at ε = 0,
which then gradually disappears. As they discuss, even though ∆n is not a
full indicator of how much thermal a state is, it is a good indicator of the
thermalization dynamics. They showed that the rate at which ∆n decreases
depends on the final coupling constant gf after the quench, as shown by the
reproduction of their data in figure 3.12 [13]. With small gf the system ther-
malizes slowly, while for large gf it thermalizes more quickly. This corresponds
to a crossover between an electron-dominated thermalization at small gf and
a phonon-mediated thermalization at large gf . [13]

We performed the fluctuation-dissipation analysis to study the thermal-
ization of the Holstein model with the same type of interaction quench. The
results are plotted in figures 3.13a and b. Figure 3.13a shows the fit error.
The smaller it is, the better the system is thermalized. As can be seen, this
kind of analysis produces results which are analogous to the ones obtained
by Murakami et al. [13], i.e. decreasing thermalization time with increasing
amplitude of the quench.

Figure 3.13b shows the best-fit inverse temperature βf , which has to be
read off from such a plot taking the fit error into account. When the error is
large, the value of β extracted from the fit cannot be considered as an actual
temperature. One can see that for long times, i.e. when the fit error is small
and the system is thermalized, βf decreases for increasing gf , as expected.

The same kind of analysis can be done for the vibrational mode, testing the
fluctuation-dissipation relation between different components of the phononic
Green’s function [8],

DR(tp, ω)−DA(tp, ω) = tanh

(
βω

2

)
DK(tp, ω), (3.2)

where DR,K,A(tp, ω) = 1
2π

∫
ds eiωsDR,K,A(tp + s/2, tp − s/2). Testing the
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Figure 3.12: Jump ∆n of the distribution function n(εk, t) at the Fermi energy
after an interaction quench from gi = 0 to various gf . Adapted from Murakami
et al. [13].

above relation allows to separately estimate if the phononic system is in a
thermal state and what its effective temperature is.

Figure 3.14 shows the results obtained, analogously to the results for the
electronic system. The temporal behaviour of the fit error in figure 3.14a
shows that the timescale for the thermalization of the vibrational mode does
not strongly depend on the magnitude of the quench, consistently with the
result by Murakami et al. [13]. Figure 3.14b show instead that the effective
temperature of the vibrational mode is the same as the one of the electrons.

Coherent oscillation We can now move back to the excitation of coherent
oscillations in the dimerized phase of the Holstein model. If we perform the
analysis of the fluctuation-dissipation relations discussed above in this situa-
tion, we obtain nontrivial results.

The red and green curves in figure 3.15a represent the inverse tempera-
tures of the vibrational mode and of the electrons, respectively. For the sake
of clarity, in the following we will discuss only the excitation with δh=1.5.
The results obtained with the other excitation intensities are analogous. Fig-
ure 3.15b displays the fit error for the electronic system, which is minimum
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Figure 3.13: a) Quadratic fit error of the fluctuation-dissipation relation be-
tween χ(tp, ω) and K(tp, ω) after an interaction quench from gi = 0 to various
gf . b) Best-fit inverse temperature βf obtained from the fit of the fluctuation-
dissipation relations (with the same legend as panel a).

at the minima of the oscillation of NA (dashed line in figure 3.15a), i.e. when
the system is the less dimerized. This is consistent with the fact that, at the
same times, the fits of the electronic and phononic temperatures give the same
result.
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tween different components of the phononic Green’s function D(t, t′) after an
interaction quench from gi = 0 to various gf . b) Best-fit phononic inverse
temperature βf obtained from the fit of the fluctuation-dissipation relations.

To gain more insight on the underlying dynamics, we have to study in
more detail what the energy scales are at which the flucutuation-dissipation
relation for the electronic system fails. Figure 3.16a shows two examples of
the quantities that should be equal when the fluctuation-dissipation relation
holds, i.e. χ(tp, ω) (solid lines) and tanh

(βfω
2

)
K(tp, ω) (dashed lines). The

blue curves are for tp = 40, i.e. at the minimum lattice distortion (as indi-
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Figure 3.15: a) Quadratic fit error (solid lines, left y-axis) of the fluctuation-
dissipation relation between χ(tp, ω) and K(tp, ω) after an impulsive excitation
of the system in the symmetry-broken state for various δh. 〈NA(t)〉 (dashed
line, right y-axis) for δh = 1.5. b) Best-fit inverse temperature βf obtained
from the fit of the fluctuation-dissipation relations (with the same legend as
panel a).

cated in the inset of panel b), while the red curves are for tp = 75, i.e. at
the maximum of the lattice distortion. Figure 3.16b shows the difference be-
tween the dashed and the solid lines of panel a. As expected, χpm(tp, ω) and

tanh
(βfω

2

)
K(tp, ω) perfectly match at high frequencies, since tanh

(βfω
2

)
tends

to unity for large ω and becomes insensitive to changes in temperature. The
fact that the fluctuation dissipation relation is not perfectly obeyed becomes
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evident on the low-energy side of the spectrum. Figure 3.16b shows that the
difference between χpm(tp, ω) and the best-fit tanh

(βfω
2

)
K(tp, ω) is relevant

up to the energy of the gap of the system, whose width oscillates as 〈X(t)〉
oscillates.
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2

)
Kpm (dashed) for

tp = 40 (blue) and tp = 75 (red). b) Difference between the corresponding
dashed and solid lines of panel a.

The occupied density of states plotted in figure 3.7b allows to draw the
following picture. The existence of an out-of-equilibrium population in the
upper band, created by the excitation, does not allow the system to be de-
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scribed as in a thermal state. Electrons cannot scatter efficiently enough via
the phonons, for a thermal distribution to be globally restored after the excita-
tion. Interband transitions with energies of the order of the gap will, therefore,
be markedly affected by the presence of a non-thermal population.

On the other hand, within each separate band, the electrons can thermal-
ize more easily via the phonons. Low-energy transitions, which are primarily
intraband transitions, will carry the signatures of a state which is more ther-
malized, with respect to the high-energy transitions.

This can be tested limiting the fit of the fluctuation-dissipation relation to
the low-energy part of the spectrum, i.e. from ω = 0 to ω = 0.2. The inverse
temperature obtained in this way is plotted as the blue curve in figure 3.15a.
As can be seen, the result changes less as a function of time with respect to
the inverse temperature obtained fitting the fluctuation-dissipation relation
over the whole energy range. This means that, on the low-energy scale, the
scattering via the phonons is indeed able to make the electrons thermalize
more easily at all times than on the high energy scale.

As seen in figures 3.15 and 3.16, however, at some times of the dynamics
the state of the system becomes approximately thermal at all energy scales.
This happens in correspondence to the minimum lattice distortion, and hence
of the minimum gap width. As the gap is reduced, in fact, the population of
the upper band is not as highly non-thermal as when the gap is large, because
it is concentrated closer to the Fermi energy.

3.3 Fluctuations of the optical properties

The fluctuation-dissipation analysis allows to study the thermalization dynam-
ics of an out-of-equilibrium system from the theoretical point of view. How
can this kind of information be accessed in a pump-probe experiment? Re-
cent experiments have measured, besides the average value of the intensity of
the probe pulses reflected from the sample, also its fluctuations, i.e. its vari-
ance [3,4]. In section 2.3.4 we have shown that this quantity is closely related
to the fluctuations of the currents in the sample. In fact, the variance of the
probe pulse intensity can be written as (equation (2.96))

var[I] ∼
∫
dt1dt2〈E(t1)〉〈E(t2)〉〈j(t1)j(t2)〉0.

While at equilibrium the fluctuation of the currents at optical frequencies
are negligible, when the system is out of equilibrium and its state is non-
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thermal, fluctuations can be relevant also at frequencies involved in pump-
probe experiments in the near-infrared and visible spectral range.

Fluctuations of the current Before discussing the fluctuations of the in-
tensities of probe pulses in pump-probe experiments, I will therefore describe
the evolution of the fluctuations 〈j(t)j(t′)〉 of the current. Figure 3.17 shows
the spectrum Im jj(tp, ω), where

jj(tp, ω) =
1

2π

∫
ds eiωs〈j(tp + s/2)j(tp − s/2)〉 (3.3)

is the Fourier transform of the fluctuations of the current as a function of ω
for various times tp and at equilibrium. At equilibrium (black bold line) the
fluctuations of the current are significant only at small frequencies. When the
system is out of equilibrium, instead, there are finite fluctuations of the current
up to frequencies of about 1.5. Moreover, the shape of Im jj(ω) changes with
time, as can be seen in figures 3.17 and 3.18, where Im jj(tp, ω) is plotted
together with the atomic displacement 〈X(t)〉 (in the side panels). In fact,
the presence of a population in the upper band will allow for the current to
fluctuate at frequencies corresponding to the gap energy. At times tp for which
the lattice distortion and the gap are maximum, in addition to a component
centred at ω = 0, the spectrum of the current displays a band centred at ω ' 1
with finite weight up to ω ' 1.5 (yellow curve in figure 3.17). When the lattice
distortion is minimum and the gap is reduced, instead, the fluctuations of the
current display just a feature centred at ω = 0 with increased weight with
respect to the case of maximum distortion.

Fluctuations of the intensity of the probe pulse The temporal evolu-
tion of jj(tp, ω) can be studied in a pump-probe experiment where the variance
of the intensity I of the probe pulses is measured after their interaction with
the sample. Equation (2.96) shows, in fact, that var[I] corresponds to the
spectral component of jj(tp, ω) at the frequency of the probe pulse.

Figure 3.19 shows var[I] as a function of time for different excitation in-
tensities δh, with a probe pulse of duration ∆t = 4 and frequency 1.3, i.e.
slightly higher than the maximum gap energy. As can be seen, var[I] is max-
imum for the maximum lattice distortion, when the population in the upper
band is the furthest from the Fermi energy. It should be underlined that the
temporal dependence of var[I] resembles the one of the error in the fit of the
flucutuation-dissipation for the current-current correlators (figure 3.15b). In
fact, the presence of fluctuations of the current at such high frequencies itself
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Figure 3.17: Spectrum of the current fluctuations for the system at equilibrium
(black line) and at various times with δh = 1.5.

stems from the non-thermal nature of the state of the system. Its measurement
can therefore give information on how much thermal the system is.

3.4 Comparison with experiments on bismuth
single crystals

Up to now, however, we have neglected a contribution to the total variance
of the intensity of the probe pulses. In fact, equation (2.96) is derived in the
assumption that the noise in the light pulses is due just to the noise in the
currents which is present without the probe’s perturbation. Another, shot-
noise-like contribution to the noise is instead present, due to the statistics of
the incomig probe pulses. To compare our results with experimental results
we can re-add this term to var[I], as a term proportional to the probe pulse
intensity.

Figures 3.20a and b show experimental results obtained in pump-probe
experiments on bismuth single crystals, with 1.5 eV pump and probe pulses,
lasting 80 fs each [4]. Figure 3.20a shows the results for a fluence low enough for
the oscillation to be only slightly damped, while the results in figure 3.20b are
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Figure 3.19: Variance of the intensity of the probe pulses as a function of the
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for a high fluence, which produces a markedly damped oscillating dynamics 1.
Bismuth is the prototypical Peierls’ system and, in pump-probe experiments
with such pulses, a coherent vibration of its A1g vibrational mode is excited,
which can be detected in ∆R

R (tp). The measurements have been performed
with a single-pulse acquisition scheme [3, 4], which allows to measure, apart
from the average of the intensity of the probe pulses, also its variance. The
red and blue curves are the relative variation of the reflectivity of the sample
after the excitation, while the green and magenta lines display the variance of
the intensity of the probe pulses.

As can be seen, the measured variance of the intensity of the probe pulses
oscillates too at the frequency of the vibrational mode. However, in its evo-
lution it displays characteristic difference from ∆R

R (tp). At low fluence, the
variance displays nonlinearities in its oscillation. In particular, for some cy-
cles, the maxima and minima are alternatively shifted from the ones in ∆R

R (tp).
At high fluence, the major feature in the first oscillation cycle is a shoulder
close to the first minimum of the oscillation of the variance.

To try to simulate these results with our calculation, we have to consider
the fact that, in bismuth, an expansion of the dimers, i.e. a decrease of
〈X(t)〉 as defined here, corresponds to an increase of the reflectivity. Therefore

1The plots reported here focus just on a few cycles.
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Figure 3.20: Relative variation of the reflectivity ∆R
R (tp) and variance of the

probe pulses obtained in pump-probe experiments on bismuth single crystals,
for a low (a) and a high (b) fluence.
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∆R
R (t) can be written as proportional to ∝ −(〈X(t)〉 − 〈X〉eq). The evolution

with pump-probe delay of a shot-noise-like contribution to the noise, which
is proportional to the intensity of the probe pulses, will be proportional to
−(〈X(t)〉 − 〈X〉eq). The calculated total noise vartot[I], i.e. including var[I]
and the shot noise contribution, is shown, together with the calculated ∆R

R ,
in figures 3.21a and b for δh = 0.5 and 1.4, respectively. As can be seen, the
calculation reproduces variances displaying both the nonlinearity of the oscil-
lation at “low fluence” and the shoulder close to the first minimum at “high
fluence”. 2

3.5 Conclusions

The goal of the work described in this part of my thesis has been to theo-
retically explore the possibilities given by measuring the fluctuations of the
optical properties in out-of-equilibrium pump-probe experiments. To do this,
we performed nonequilibrium dynamical mean-field theory calculations on the
Holstein model describing the Peierls’ systems. We showed that nonequilib-
rium DMFT is able to capture the main features of the dynamics of photoex-
cited Peierls’ systems, i.e. the displacive excitation of coherent vibrations in
solids, the softening of the oscillation frequency, the damping of the dynamics
and the melting of the symmetry-broken phase.

Via the test of the fluctuation-dissipation relations out of the equilibrium
state, we were able to study the thermalization dynamics of the system, which
is nontrivial when coherent oscillations are present in the system. This re-
sult shows that the assumption that systems in pump-probe experiments can
be considered in effectively thermal states must be handled with some care,
especially when the dynamics is nontrivial, as it is in the case discussed here.

The measurement of the fluctuations of the probe pulse intensity in pump-
probe experiments allows to measure the fluctuations of the currents in the
sample, which give informations about how much the system can be considered
thermal. Remarkably, our results reproduce experimental measurements of the
fluctuations of the probe intensity in experiment on a bismuth single crystal,
a prototypical Peierls’ system.

2In considering such results, one should keep in mind that the probe frequency, with
respect to the electronic band, used in the calculation does not necessarily match exactly
the one in the experiment, and the coefficient with which the shot-noise-like term is summed
to the calculated var[I] is arbitrary. Nevertheless, it is remarkable that the characteristic
features of the experimental results can be reproduced.
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Figure 3.21: Relative variation of the reflectivity ∆R
R (tp) and total variance

(with the addition of a shot-noise-like contribution) of the intensity of the
probe pulses obtained in the simulation of the pump-probe experiment on a
bismuth single crystal. for a low (a) and a high (b) excitation intensity.
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Chapter 1

Time-resolved
photoemission beyond the
energy-time uncertainty

1.1 Introduction

The study of the electronic response function at low energies is one of the stan-
dard ways to uncover the mechanisms producing the exotic macroscopic prop-
erties of complex materials. 1 Superconductivity, charge density waves, giant
magnetoresistance and other phenomena, arising from both electron-electron
interactions and interactions between electrons and other degrees of freedom,
often become manifest in low-energy features in the electronic single-particle
response function [1,2]. In the systems which display such properties, the dy-
namics of excited populations and of the electronic structure often cannot be
separated, in that the population of the excited state dynamically renormal-
ized the electronic structure. This aspect makes time-resolved photoemission
spectroscopy particularly appealing among nonequilibium techniques, since it
allows to simultaneously measure the time-dependent band structure and the
nonequilibrium distribution of electrons. In this context, time- and angle-
resolved photoemission experiments have revealed, for example, the collapse
of charge density waves and of Mott gaps [4–6], or the reconstruction of the

1The content of this part of the thesis has been submitted as an article to Physical Review
B. Here, it has been partly restructured.
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gap after photo-induced phase transitions [7, 8].
Time-resolved pump-probe photoemission spectroscopy is affected by the

limitation derived from the energy-time uncertainty relation. In fact, even
though the current technology allows to produce pulses with durations of the
order of 100 as [9], the shorter the pulses are, the larger is their energy band-
width. In standard time-resolved photoemission, the energy spread of the
probe pulse, which photoemits the electrons, is reflected in a corresponding
spread in the kinetic energy of the outcoming electrons. This results, with
respect to the equilibrium case, in a worsened energy resolution of the photo-
electron spectrum, in which the relevant low-energy features may therefore be
averaged out.

For this reason, time-resolved photoemission studies have, up to now, been
limited to study the dynamics of spectral features occuring on timescales lower
than the inverse of their energy width. In general, one could say that the time-
evolution takes place beyond the spectral uncertainty limit if relevant degrees of
freedom evolve faster than the inverse width of their spectroscopic fingerprint.

A paradigmatic example of the latter situation concerns the Kondo effect,
i.e. the screening of the magnetic moment on an impurity, which becomes man-
ifest only in a narrow spectral feature close to the Fermi energy. Since a pulse
of duration ∆t has a minimum bandwidth ∆ω = 1/∆t, it is generally believed
that the dynamics of the Kondo screening can be measured only on timescales
slower than the inverse of the spectral width of the Kondo peak, while it is
known that the Kondo screening itself can evolve on a shorter timescale [10].
A similar situation arises in the case of a BCS superconductor, the dynamics
of whose condensate is believed to be observable only on timescales larger than
the inverse of the gap energy ~/∆SC . On the other hand, it is expected that
oscillations of the gap amplitude at the gap frequency should follow a sudden
quench of the superconducting gap [11,12].

The energy-time uncertainty relation is, however, not a Heisenberg-type
uncertainty relation [13], and its consequences on time-resolved photoemission
are not of fundamental nature. In this chapter it is shown that the usual
tradeoff, believed to be necessary, between the temporal resolution and the
resolution on the photoelectron energy is due to the usage of probe pulses
with Gaussian envelopes in standard time-resolved photoemission, and that it
can be avoided using properly shaped light pulses. In this work, we extended
the well established concepts of multidimensional optical spectroscopy [14,15]
to time-resolved photoemission. This theoretical proposal is based on the fact
that the full information about the single-particle dynamics in the system,
contained in the Green’s function G(t, t′), can be accurately characterized
entirely in the time domain, and that the limitations of the usual mixed time-
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frequency approach can be bypassed. In particular, the real-time measurement
of the Green’s function ca be experimentally implemented in a pump-probe
scheme with two probe pulses of arbitrarily short duration, obtained via the
splitting, delay and recombination of an original pulse.

This double-pulse photoemission scheme is illustrated with simulations of
its application to the study of the buildup of the Kondo peak, and it is high-
lighted how this scheme could have a general relevance in the measurement of
the true timescales of the destruction of electronic orders in, e.g., superconduc-
tors [11,12,17] and Mott insulators such as the 1T−TaS2 dichalcogenide [16].

In addition to the experiments exploiting the modulation of the classical
intensity, we envision experiments taking advantage of light pulses with statis-
tical or quantum correlations. Exploiting quantum correlations of light both
in controlling and measuring the properties of matter has a wide application in
other fields [18–22]. Our proposal, described in chapter IV.2, represent the first
attempt to exploit non-coherent states of light to address specific spectroscopic
features in time-resolved photoemission experiments.

1.2 Generalized time-resolved photoemission

1.2.1 Theoretical formulation

In a time-resolved angle-integrated photoemission experiment, one measures
the probability I(E, tp) that an electron is emitted under the action of a short
probe pulse, as a function of the photoelectron energy E and the temporal
delay tp between the probe pulse and a given excitation (e.g. the pump pulse).
The signal I(E, tp) can be obtained using time-dependent perturbation theory
in the light-matter coupling [23]. If s(t)eiΩt + s∗(t)e−iΩt denotes the temporal
profile of the probe vector potential with envelope s(t) and centre frequency
Ω, one obtains (see reference [23] and section 2.2)

I(E, tp) ∝−i
∫
dt dt′ eiE(t−t′)G<(tp+t, tp+t′) S(t, t′). (1.1)

Here, the kinetic energy E is defined with respect to the energy ~Ω−W given
by the frequency Ω and the work function W , and S(t, t′) = s(t)s(t′)∗ is an
autocorrelation function of the probe pulse, which acts as a filter determining
how eiE(t−t′)G<(t, t′) is sampled over the (t, t′)-plane in the above integration.
Furthermore, G<(t, t′) = i〈f†(t′)f(t)〉 is the Green’s function of the sample
alone, where f (f†) is the annihilation (creation) operator for an electron in a
given orbital of the system, 〈· · · 〉 denotes the expectation value in the initial
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state (at t→ −∞), and the time evolution includes all nonequilibrium pertur-
bations besides the probe, such as external pump laser fields. Equation (1.1)
can easily be extended by adding a sum over orbitals and matrix elements,
but the latter are static and do not alter the following general discussion of
the relation between the time-dependent electronic properties and the pho-
toemission signal. Similarly, by inserting suitable matrix elements, the results
discussed in this work can be reformulated for angle-resolved photoemission 2.

If the probe pulse is modelled by a Gaussian s(t) = exp(−t2/2∆t2) with
duration ∆t, equation (1.1) can be transformed into a mixed time-frequency
representation,

I(E, tp) ∝
∫
dω dt N(E + ω, tp + t) e−

t2

∆t2 e−ω
2∆t2 , (1.2)

where N(ω, t) =
∫

ds
2πi e

iωsG<(t + s/2, t − s/2) is the Wigner transform of
the Green’s function, which could be referred to as a time-dependent occupied
density of states. (At equilibrium, N(ω) = A(ω)f(ω) is the product of the
spectral function A(ω) and the Fermi distribution function.) Equation (1.2)
emphasizes the origin of the uncertainty limit in time-resolved photoemission:
The signal I is related to the underlying spectral information N(ω, t) by a
filter which is subject to the uncertainty ∆ω = 1/∆t in (t, ω) plane. This is
illustrated in figure 1.1, for the simple example of an occupied level which is
suddenly shifted in binding energy from εi to εf . For simplicity, we choose
the zero of enegy such that εi = +1 (< εvacuum) and εf = −1. Figure 1.1a
and b show the Wigner transform N(ω, t) and the result of time-resolved pho-
toemission with a Gaussian pulse, respectively. While N(ω, t) contains the
full information about single-particle properties in the time-evolving quantum
state, this information can no longer be easily reconstructed from the pho-
toemission intensity. However, one may now ask, whether probe pulses can
be appropriately devised to shape S(t, t′), in order to access the underlying
information in G<(t, t′) or N(ω, t) in a more flexible way. There is clearly
no physical pulse which could yield N(ω, t) in a single intensity measurement,
since N(ω, t) can take negative values, while I(E, t) is a non-negative proba-
bility 3 [25–27]. Nevertheless, in the following sections we will show that there

2Note that this formulation adopts a one-step model of photoemission in which the in-
teraction of the outgoing electrons and the electrons within the solid is neglected (sudden
approximation), a common approximation beyond which photoemission cannot be expressed
in terms of the properties of the solid alone.

3There is an analogy of Eq.(1.2) to the case of a Wigner quasi-probability distribution
in phase space, which becomes strictly non-negative only when averaged over phase space
regions of size ∆x∆p� ~.
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are filters which may be more useful than the Gaussian one in equation (1.2)
in analyzing ultrafast dynamics, since they allow to extract different kind of
information, or can be used to “tomographically” reconstruct G<(t, t′) and,
equivalently, N(ω, t) with a series of measurements.

1.2.2 Double-probe photoemission:
Tomography of G<(t, t′)

In this section we propose a probing scheme that allows to determine G<(t, t′)
in real time, based on a set of measurements with two probe pulses, which
are separated in time, but have a fixed phase relation. The procedure is real-
istically implementable from the experimental point of view with the current
technology, using splitted, delayed and recombined pulses, as shown schemati-
cally in figure 1.2. It resembles what is usually done in the established field of
multidimensional optical spectroscopy, albeit the fact that what is measured
is the number of emitted electrons. If s0(t) denotes the envelope of the single
pulse, the total envelope s(t) in equation (1.1) is given by

s(t) ∝ s0(t− t0) + eiϕs0(t+ t0) ≡ s+(t) + eiϕs−(t) (1.3)

where ϕ is a relative difference of carrier envelope phase, and 2t0 is the tem-
poral separation. Using equation (1.1), the photoemission intensity obtained
with this double pulse is given by the sum of the photoemission I±(E, tp) ob-
tained with the individual pulses s±(t) as if they were used separately, and an
interference signal

Iintf(E, tp) ∝ Im
[
eiE2t0−iϕ

∫
dtdt′s0(t)s0(t′)∗×

eiE(t−t′)G<
(
(tp + t0) + t, (tp − t0) + t′

)]
. (1.4)

This is determined by the particular shape of the filter S(t, t′) (inset of fig-
ure 1.2): The first contribution samples G<(t, t′) on the t = t′ diagonal in
(t, t′)-space, while the interference contribution samples it out of the diago-
nal 4.

This result is understood most easily in the limit of extremely short pulses
s0(t) = δ(t). A single ultrashort pulse retrieves only the time-dependent den-

4It can be noticed that the coherence time of the observed feature should be long enough
to allow such measurement. However, the cases in which the double-probe scheme is useful
are exactly the ones in which the spectral features are sharp and, therefore, long-lived.
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Figure 1.1: Illustration of the effect of the filter S(t, t′) (i.e. the probe pulses)
in a photoemission experiment: The system of interest is a single level with
H(t) = sign(t)ε0c

†c, which is initially occupied and then suddenly shifted in
energy (ε0 = 1). Panel a) shows the Wigner transform N(ω, t) of the Green’s
function of the system. b) Time-resolved angle-integrated photoemission spec-
tra obtained with a classical Gaussian probe pulse (S(t, t′) is shown in the in-
set), as a function of photoelectron energy and time. The observed switching
is resolution limited.
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Figure 1.2: Schematic sketch of a Ti:Sapphire laser based experimental set-up
that uses the double probe pulses to perform the tomography of the Green’s
function, by varying tp and t0.
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sity nf = 〈f†f〉 [c.f. equation (1.1)], so that I±(tp, E) ∝ nf (tp ± t0), while

Iintf(E, tp) ∝ 2 Im
[
G<(tp + t0, tp − t0)ei2Et0−iϕ

]
. (1.5)

The interference contribution can be extracted in two ways. On the one hand,
it can be identified by its oscillating dependence on the photoelectron final-
state energy. On the other hand, the diagonal terms I± can be obtained
from an independent measurement with a single-probe-pulse experiment. Even
without any knowledge of the relative phase ϕ, one can thus obtain the absolute
value |G<(tp + t0, tp − t0)| by varying tp and t0.

In section 1.3.1 we will demonstrate, for the example of the buildup of the
Kondo peak, that this information is valuable to extract key features of the
ongoing dynamics of the system, that are otherwise hidden by the uncertainty
limit of standard probe pulses. The double-probe measurement scheme may
therefore open the path for the application of extremely short pulses to study
the dynamics of emergent low-energy degrees of freedom.

In the past, pioneering works [28] explored the possibilities of time-resolved
two-photon photoemission, which uses two delayed pulses with energies (∼3
eV) below the work function of the sample to populate empty states and then
photoemit electrons from there. The study of interferometric effects allowed
to measure elastic and inelastic scattering rates of excited states at the surface
of metals. It is important to underline the differences between this technique
and the tomographic measurement proposed here. Because time-resolved two-
photon photoemission allows only to study states with energies within 3 eV
from the vacuum level, i.e states that are not occupied at equilibrium, it probes
a joint density of occupied and unoccupied states rather than the single-particle
spectrum, and is therefore unsuited to study how the states below the Fermi
energy change after a general kind of excitation, e.g. in an out-of-equilibrium
phase transition or in the modification of the low-energy properties of the
system. In contrast, in the tomography described in this work the interference
comes from different pathways leading to the same one-photon photoemission
event, which would allow to probe any bound state.
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1.3 Illustration and proposals for the double
probe experiment

1.3.1 Buildup of the Kondo resonance: standard time-
resolved photoemission

In the following we illustrate the real-time measurement of the Green’s function
with the two-dimensional double-pulse technique (figure 1.2) for the buildup
of a Kondo resonance, which is a classical problem of nonequilibrium many-
body physics and also a paradigmatic example of dynamics occurring beyond
the spectral uncertainty limit. We start by discussing the results in standard
photoemission.

The Kondo effect can arise when a localized orbital, such as a quantum
dot or an impurity atom on a metallic surface, hybridizes with a continuum
of conduction electrons [32]. Depending on the orbital occupancy, a magnetic
moment is formed on the impurity when charge fluctuations are suppressed
because of the Coulomb repulsion. This moment becomes screened by the con-
duction electrons below the Kondo temperature TK , an emergent low-energy
scale of the system. The buildup of Kondo screening in real time, e.g., after
the impurity is suddenly coupled to the conduction band, has recently been a
subject of intensive numerical research [10,33–35]. The spectroscopic signature
of the Kondo effect is a narrow resonance of width TK at the Fermi energy
(the so-called Kondo peak), which can be resolved only after times ~/TK [33],
while the Kondo screening cloud is formed, to a large extent, on the much
shorter timescale set by the hybridization between impurity and conduction
band [10]. Thus, the buildup of the Kondo screening turns out to be a process
which happens on timescales beyond the spectral uncertainty limit, i.e. too
fast to be spectrally resolved.

We now discuss the Kondo effect at equilibrium and the results of time-
resolved photoemission during the buildup of the Kondo resonance within the
Anderson model,

HK =
∑
σ

εff
†
σfσ + Uf†↑f↑f

†
↓f↓ +

∑
kσ

Vkc
†
kσfσ + h.c.+

∑
kσ

εkc
†
kσckσ. (1.6)

Here fσ and ckσ are annihilation operators for electrons with spin σ on the
impurity and bath levels, respectively, εf is the position of the impurity level
relatively to the Fermi level, U the on-site Coulomb energy, and Vk the tun-
neling matrix element between the impurity and the bath. We take the limit
U →∞, so that a double occupancy of the level is suppressed, and assume a hy-
bridization density of states Γ(ε) ≡ 2π

∑
k |Vk|2δ(ω− εk) = Γdot/(e

10(ε/D−1) +
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Figure 1.3: a) Spectral function of the Kondo model (Γdot = 0.6) for various
inverse temperatures β at εf = −0.6 (TK ≈ 1/200) and εf = −2 (TK ≈
10−9). The dotted and dashed lines respectively show the power spectrum
∝ exp(−ω2∆t2) of Gaussian pulses with ∆t = 50 and ∆t = 2 for comparison.
b) Time-resolved photoemission spectrum I(E, tp) with a Gaussian probe of
∆t = 50. At t = 0, εf is switched from 2 to −0.6, the temperature is T = 1/80.
The probe time is varied in steps of ∆tp = 7. The bold line corresponds to
tp = 0. c) Photo-emission intensity at E = 0, obtained with different probe
duration ∆t. Lines are fits with an error function profile, a erf[(t− b)/∆t] + c.
Inset: S(t, t′) for ∆t = 50.
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1)(e−10(ε/D+1) +1) which is constant (Γdot) below a smooth high-energy cutoff
D. (In the following, D/4 and 4~/D set the unit of energy and time, respec-
tively.) The Kondo temperature of the model depends exponentially on the
position of the level TK = De−π|εf |/Γdot . The Green’s functions Gf (t, t′) =
−i〈TCf(t)f†(t′)〉 at the impurity site is obtained within the time-dependent
non-crossing approximation [33], using the implementation described in refer-
ence [36].

Figure 1.3a shows the spectral function Af (ω) = − 1
π ImGretf (ω + i0) of

the impurity atom at equilibrium. The Lorentz peak of width 1/Γdot around
ω ≈ εf represents the broadened impurity level. For εf = −0.6 (TK ≈ 1/200),
a Kondo resonance develops at the Fermi energy, whose width decreases pro-
portionally to T for T & TK . Following reference [33], we now compute the
buildup of the Kondo effect after the system is suddenly brought into the
Kondo regime, by a shift of εf from a value ε0 = 2, for which the dot is
basically empty, to the final value ε1 = −0.6 5. This may be thought of as
a simplified representation of an experiment in which the orbital energy is
suddenly shifted due to a core hole excitation. Figure 1.3b shows the pho-
toemission intensity from the impurity level [equation (1.1)], obtained with a
Gaussian probe s(t) = exp(−t2/2∆t2) with duration ∆t = 50, which is just
long enough to resolve the final Kondo peak in frequency space (the bandwidth
of the pulse is represented by the dotted line in figure 1.3a). The buildup of
spectral weight at ω = 0 can almost perfectly be fitted by an error function erf
with rise time ∆t (c.f. figure 1.3c). This means that the buildup of the peak
is resolution limited, consistently with reference [33]. With very short pulses
∆t < 1/Γdot the signal would no longer be temporally resolution limited (be-
cause 1/Γdot ≈ 3.6 sets the relaxation time of the impurity occupation, which
is proportional to the total spectral weight), but such broadband pulses would
completely wash out the Kondo peak.

1.3.2 Buildup of the Kondo resonance: double probe
photoemission

In spite of the uncertainty limited buildup of the Kondo peak, as measured via
a standard photoemission experiment, an analysis of the Green’s function in
real time can reveal the underlying fast timescale. Figure 1.4 shows |G<f (t, t+

s)| = |〈f†(t+s)f(t)〉| for fixed t as a function of difference time s, corresponding
to the hypothetical direct measurement of the decay of a hole on the impurity

5The precise ramp profile is εf (t) = (ε1− ε0)[1− cos(2πt/tc)]/2 + ε0 within a short ramp
time 0 < t < tc = 1.
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∫
dEeiEτI(E, tp) at

τ = 2t0 (black line) and τ = 0 (red line), with normalized intensity.

Page 205



Chapter IV.1 Section 1.3

after it is created at time t. The fast initial drop at s . 10 corresponds to the
Fourier transform of the bare energy level, while the slow exponential decay
at large s is related to the Kondo resonance. After the quench of the impurity
level, we find that the equilibrium Kondo response is almost completely formed
on a timescale 1/Γdot, as soon as the population nf (t) = |G<f (t, t)| on the
impurity is equilibrated. The same information is seen quantitatively from the
inset in figure 1.4, which shows the relative difference between |G<f (t, t′)| and

the equilibrated value reached for large times, |G<eq(t− t′)|.
The particular structure of the inset in figure 1.4 can be seen as the real-

time fingerprint that the relevant dynamics in the system occurs on timescales
below the spectral uncertainty limit: If G<(t, t′) at given s = t−t′ equilibrates
on a timescale τs � s, this process cannot be resolved with a Gaussian probe
pulse, because for sufficient time-resolution ∆t < τs only the Green’s function
close to the t = t′ diagonal (|t − t′| . ∆t) contributes to the photoemission
signal (see the inset of figure 1.1b). In contrast, the double-pulse technique
(section 1.2.2 and inset of figure 1.2) is well suited to measure |G<(t, t′)| at
t− t′ � ∆t, i.e. well off from the diagonal.

In order to illustrate the main steps to be performed, we plot in figure 1.5a
the result of a photoemission experiment with a double pulse [equation (1.3)]
with time resolution ∆t = 2, and t0 = 20, i.e. with pulses separated by
2t0 = 40. As in the ideal case [equation (1.5)] of ultrashort pulses, the signal
is a superposition of an oscillating component ∝ sin(2Et0 + ϕ) due to the in-
terference signal produced by the two pulses, and a smooth background from
the photoemission due to the individual pulses. For finite ∆t the contribu-
tions have a finite width 1/∆t in energy space 6, but they can nevertheless be
separated by means of a Fourier transform of the signal with respect to E (fig-
ure 1.5b), provided that ∆t < t0, i.e. that the two probe pulses are separated
in time. (Alternatively, the background may also be determined independently
by averaging over the phase ϕ, which can be shifted by changing the relative
carrier envelope phase of the two probes.) This choice of t0 allows to track the
slow exponential decay of |G<(t, t + s)| (see dash-dotted lines in figure 1.4),
which is related to the Kondo peak. To study its dynamics in this simple case,
it is therefore not necessary to perform the full tomographic measurement, but
it is sufficient just to vary tp at fixed t0. In this way, the interference signal
measures |G(tp + t0, tp − t0)|. The rapid increase of the amplitude of the os-
cillating signal around tp = t0 (figure 1.5c) is an evidence of the characteristic
fast relaxation dynamics in the Kondo problem (rise time of the black curve in

6Note that the two components are centred around the location εf of the bare energy
level and the Kondo peak, respectively.
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figure 1.5). This demonstrates how the double-probe scheme allows to analyze
the relevant dynamics (the buildup of Kondo screening) with arbitrary tem-
poral resolution (figure 1.5c), not limited by the inverse width of the Kondo
peak.

In this specific case, since the Green’s function to be reconstructed is char-
acterizable in a simple way, t0 can be kept fixed and, for each tp, one single
off-diagonal value of G(t, t′) has to be extracted (figures 1.5b,c). If, besides
scanning tp, the full tomography has to be performed, i.e. also further scans
along t0 are needed, the values of the Green’s function for each tp and t0
(G(tp + t0, tp − t0)) would have to be extracted in the same way as above, the
difference being that G(t, t′) would be sampled over the whole (t, t′) plane and
not just along the line corresponding to t0 = 20.

1.3.3 Melting of Mott gaps and amplitude mode in a
superconductor

The tomographic double-probe scheme (figure 1.2) could also be used to ad-
dress other questions. How fast can a Mott gap be melted? What is the
dynamics of the condensate of a superconductor when the Higgs mode is ex-
cited? The true timescales of the destruction of electronic order in systems
with charge density waves have not been clearly resolved as, for example,
in the Mott-Peierls charge density wave 1T -TaS2 dichalcogenide. Recent ex-
periments [6, 16] have determined that, while the lattice charge ordering is
destroyed on the timescale of the relevant lattice mode, the electronic order
is destroyed quasi-istantaneously on a resolution-limited timescale. Improving
the temporal resolution in standard time-resolved photoemission experiments
would unavoidably bring a worse sectral resolution, which is however important
to resolve the dynamics of splitted bands. The double-probe scheme would,
instead, allow to access the true timescale of the process without giving up the
spectral resolution.

Attention has also been dedicated to the excitation of the Higgs mode in
BCS superconductors, such as Nb1−xTixN thin films. [11, 12, 17] After the
excitation with monocycle-like THz pulses, the transmittivity of the sample
in the terahertz range oscillates at the frequency 2∆BCS, as predicted for
the excitation of the Higgs amplitude mode. Oscillations of the gap of a
superconductor at its own frequency fall under the dynamics occurring at the
spectral uncertainty limit. The dynamics of the condensate in such a situation
could be easily tracked via photoemission with the tomographic double-probe
scheme, overcoming the energy-time uncertainty.
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1.4 Conclusions

In conclusion, we have analyzed possibilities to use time-resolved photoemis-
sion spectroscopy as a tool to probe the evolution of the electronic structure
fully in the time domain. Whenever relevant degrees of freedom evolve on
timescales comparable to or faster than the inverse width of their spectral sig-
natures, such a pure real-time characterization can provide more insight than
a measurement in the usual mixed time-frequency domain, which requires a
tradeoff between temporal and spectral resolution. In particular, we proposed
a double-probe-pulse technique, which can be used to probe the dynamics of
low-energy degrees of freedom with arbitrarily short pulses, possibly in the
attosecond range, with a bandwidth that would not be able to resolve the
respective linewidths in frequency space if the pulses were taken alone.

The case of dynamics occurring beyond the spectral uncertainty limit is
actually a quite common feature of correlated systems. As examples, we dis-
cussed the buildup of the Kondo resonance, the melting of a Mott gap, and
the dynamics of a superconductor when the amplitde mode is excited. Fur-
ther examples include the melting of other types of electronic order such as
spin-density wave gaps [37], and the buildup of screening and plasmon reso-
nances [38].
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Chapter 2

Time-resolved
photoemission: the
non-separable case

2.1 Photoemission with non-coherent states of
light

In the previous chapter, I described the theoretical results we obtained about
time-resolved photoemission with two probe pulses. Such double pulse is a
particular case of a shaped pulse, whose state is a classical wave, and does
not encompass all the possible kinds of quantum or statistical states of light.
The closest quantum descriptions of classical waves are the coherent states
|α〉, which are therefore also called “quasiclassical”. In this chapter, I will
present our generalization of the photoemission process, extending it to pulses
not in a coherent state |α〉. While the double probe experiment described in
chapter IV.1 allows to reconstruct G(t, t′) over the full (t, t′) plane through a
tomographic process, the manipulation of the state of the probe pulses beyond
the coherent-state case can allow to retrieve specific correlations in a single
measurement.

Also in this case, the discussion starts from S(t, t′). The probe pulse de-
fines a filter S(t, t′) in the time domain [equation (1.1) of chapter IV.1] or,
correspondingly, in the mixed time-frequency domain [equation (1.2) of chap-
ter IV.1]. Such filter relates the dynamical information contained in G<(t, t′)
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to the signal I(E, tp) measured in time-resolved photoemission. In the analy-
sis discussed in chapter IV.1 (and in the literature in the context of standard
single-probe photoemission), the pulse autocorrelation function has been gen-
erally limited to a form S(t, t′) = s(t)s(t′)∗, which can be factorized in the
(t, t′) time domain. On the other hand, an arbitrary function S(t, t′) could
be designed to probe specific statistical features and correlations of the dy-
namics occurring in the system. To see how such a measurement might be
implemented, we first note that an arbitrary function of Hermitian symmetry
S(t, t′) = S(t′, t)∗ can be expressed, through diagonalization, as the sum of
factorizable functions:

S(t, t′) =
∑
j

ηj s̃j(t)s̃j(t
′)∗, (2.1)

where j is the label for the eigenvectors. If more than one ηj is different from
zero, then S(t, t′) is non-factorizable in the (t, t′) space. The above expression
shows that the result of the hypothetical photoemission experiment with a
non-factorizable filter S(t, t′) would be a weighted average I =

∑
j ηjIj of

signals obtained with different pulses s̃j(t). This means that the measurement
could be emulated by an equivalent “tomographic” set of experiments with
factorizable filters.

The general usage of a factorizable S(t, t′) comes from the fact that, in the
standard case, coherent states are considered for photoemission. This brings
to the question whether the hypothetical tomographic experiment described in
the previous chapter can be replaced by a single measurement performed with
non-coherent states of light. In order to see what kind of filters S(t, t′) can
be obtained using general probe pulses, i.e. of quantum or statistical nature,
below we show what differences arise if a general state is considered for the
light in the photoemission process.

The derivation of the photoemission intensity for a general state of the
incoming probe pulse, described by the density matrix ρ, is rather analogous
to the semiclassical case discussed in reference [23]. All its details are therefore
presented separately in section 2.2, while here only the most important steps
are discussed. In the Coulomb gauge (∇ ·A = 0), the general vector potential
A is given by an operator A(r, t) = A+(r, t) +A−(r, t) [30],

A+(r, t) = A−(r, t)† =
∑
q

Aqâqeiqr−iωqt, (2.2)

where Aq =
√
~/2V ε0ωq, and âq is the photon annihilation operator. To

simplify the notation, we take into account only one propagation direction
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n̂ (q = qn̂) and transverse linear polarization. Choosing the location of the
sample to be at r = 0, the only change in the expression for the photoemission
intensity [equation (1.1) of chapter IV.1]

I(E, tp) ∝−i
∫
dt dt′ eiE(t−t′)G<(tp+t, tp+t′) S(t, t′)

is that the autocorrelation function S(t, t′) takes its quantum-mechanical form

S(t, t′) = eiΩ(t′−t) Tr
(
ρA−(t)A+(t′)

)
. (2.3)

As mentioned above, probe pulses which are classical waves can be described as
a coherent state |Ψ〉 = |α〉 =

∏
q |αq〉. Using a state |α〉, the standard result

is immediately recovered, with Sα(t, t′) = sα(t)sα(t′)∗ and probe envelope
sα(t) =

∑
q e

i(ωq−Ω)tα∗qAq. On the other hand, if the state of the probe pulses
is different from a product |α〉 of coherent states, i.e. it is not a quasiclassical
coherent wave, S(t, t′) is not constrained to have the usual factorizable form.
In fact, since the probe pulse only enters through the two-time correlation
function, it can be shown that every function of the form (2.1) can be obtained
from equation (2.3) with a multimode state whose Wigner function is Gaussian,
provided that the function is positive definite, i.e. ηj ≥ 0 (for more details
see section 2.3). In this way, a tomographic set of measurements aimed at
reconstructing the effect of a Hermitian and positive-definite filter S(t, t′) can,
indeed, be replaced by a single experiment with probe pulses not in a coherent
state. Vice versa, every measurement with non-coherent states can be replaced
by a tomographic set of measurements with classical pulses, because any state
of light ρ can be expressed as an integral over coherent states via the Glauber-
Sudarshan P representation [29,31] ρ =

∫
dβ Pρ(β)|β〉〈β |.

The potential use of different filters S(t, t′) to obtain specific informations,
such as the Wigner transform, is illustrated in figure 2.1c for the level quench
already discussed in section 1.2.1, where we plot the result of equation (1.1)
with a particular choice of an exotic but physical, i.e. hermitian and positive
definite, cross-shaped S(t, t′). As can be seen, the result shown in figure 2.1c
bares some of the characteristic features of the Wigner transform, plotted in
panel a. In fact, an infinitely extending cross-shaped filter of the type used
in figure 2.1c would yield the sum of a constant background (the contribution
from the t = t′ diagonal) and the Wigner transform (coming from the t = −t′+
tp antidiagonal), from which the full Green’s function can be reconstructed.

From the experimental point of view, even though the generation and ma-
nipulation of quantum light pulses in the relevant spectral range for photoemis-
sion are not yet established, it should be noted that corrections, with respect
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to the standard coherent-state case, to the results of time-resolved photoemis-
sion, can arise also if, instead of light with enhanced correlations, incoherent
pulses are considered. This situation is also accounted for by the generalized
expression with the quantum-mechanical S(t, t′). In particular, as compared
to coherent light, an incoherent light pulse has a reduced correlation between
the various temporal positions in the pulse. In the (t, t′) plane, S(t, t′) must
therefore quickly go to zero moving away from the t = t′ diagonal, as shown
in the inset of figure 2.1d. This produces a reduced frequency resolution [fig-
ure 2.1d], compared to the result obtained with a coherent pulse with the same
intensity profile in time.

2.2 Theory of time-resolved photoemission spec-
troscopy with non-classical light pulses

In the previous section, we postponed the detailed derivation of the expres-
sion for the photoemission intensity with a general probe pulse, both for the
sake of clarity and because it is rather analogous to the semiclassical deriva-
tion discussed in reference [23]. In the following, the complete derivation is
presented.

To describe the photoemission process, we start from a general Hamiltonian

H = Hmatter +Hem +Hint, (2.4)

where Hmatter describes both the solid and the outgoing electron states, Hem

is the free Hamiltonian for the electromagnetic field, and Hint the interaction
between matter and the radiation field. The interaction Hamiltonian for light
and electrons with charge −e is given by [30]

Hint = H
(1)
int +H

(2)
int (2.5)

H
(1)
int =

e~
mc

∫
d3x ψ̂(r)†

[
Â(r) · 1

i
∇
]
ψ̂(r) (2.6)

H
(2)
int =

e2

2mc2

∫
d3x ψ̂(r)†Â(r)2 ψ̂(r), (2.7)

where Â(r) is the operator for the vector potential, and ψ̂(r) is the fermion
field operator. Here and in the following we suppress the spin index. We
expand the light-field in modes with wave vector q and polarization λ,

Hem =
∑
q,λ

~ωq â†q,λâq,λ, (2.8)
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Figure 2.1: Illustration of the use of different filters S(t, t′) (pulses) in a
photoemission experiment: The system of interest is a single level with
H(t) = sign(t)ε0c

†c, which is initially occupied and then suddenly shifted
in energy (ε0 = 1). Panel a) shows the Wigner transform N(ω, t) of the
Green’s function of the system. The remaining panels show time-resolved
angle-integrated photoemission spectra obtained with different pulses (S(t, t′)
is shown in the inset), as a function of photoelectron energy and time. b) Clas-
sical Gaussian probe pulse. The observed switching is resolution limited. c)
Non-separable positive-definite filter S(t,t’), which, thanks to its off diagonal
structure, produces some of the features of the N(ω, t) in the photoemission
spectrum. d) Incoherent pulse with the same intensity profile in time as the
coherent pulse in b), which yields a lower energy resolution.
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so that the vector potential in Coulomb gauge (∇ ·A = 0) is given by

Â(r) = Â+(r) + Â−(r), (2.9)

Â+(r) = Â−(r)† =
∑
q,λ

Aq ε̂q,λâq,λeiqr−iωqt, (2.10)

where ε̂q,λ are unit vectors with q · ε̂q,λ = 0, and

Aq =

√
~

2V ε0ωq
. (2.11)

Furthermore, we expand the matter field in a suitable basis

ψ̂(r) =
∑
k

φk(r)f̂k +
∑
α

χα(r)ĉα, (2.12)

where the index α refers to bound states (e.g., localized atomic wave functions
or delocalized states in the solid), and k labels unbound states (outgoing waves)
with asymptotic behavior φk(r) ∼ eikr/

√
V and energy Ek = ~2k2/2m + W

(energies are considered with respect to the Fermi energy, and W is the
work function). The photoemission experiment measures the number of elec-
trons that, under the effect of the light-matter interaction, are emitted into
an initially unoccupied outgoing mode k, i.e. the occupation probability
〈n̂k〉 = 〈f̂†kf̂k〉,

Ik = 〈nk(t)〉t→∞ =
〈
U(t, t0)† nk U(t, t0)

〉
0
. (2.13)

Here U(t, t′) = Tt exp[−i
∫ t
t′
dt̄H(t̄)] is the time-evolution operator, and 〈· · · 〉0 =

Tr[ρ0 · · · ] denotes the expectation value in the initial state ρ0 for t0 → −∞,
in which light and matter are uncorrelated and 〈n̂k〉0 = 0 for all k.

The probability (2.13) is computed in standard second-order time-dependent
perturbation theory. We include all the non-perturbative processes that drive
the system out-of-equilibrium (i.e. the pump pulse) in the time dependence
of Hmatter(t), and switch to the interaction representation with respect to
Hmatter(t), so that the time dependence of the operators is understood with

respect to the uncoupled evolution U0(t, t0) = Tt exp[−i
∫ t
t0
dt̄Hmatter(t̄)]. The

full time-evolution operator is expanded as

U(t, t0) = U0(t, t0)

(
1− i

∫ t

t0

dt1Hint(t1)

−
∫ t

t0

dt1

∫ t1

t0

dt2Hint(t1)Hint(t2) + · · ·
)
.

(2.14)
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Because fk gives zero when acting on ρ0 = 0, the only non-vanishing contri-
butions to equation (2.13) up to second order in the probe field are

Ik = lim
t→∞

∫ t

t0

dt1dt2
〈
H

(1)
int (t1) n̂k(t)H

(1)
int (t2)

〉
0
. (2.15)

To further simplify this expression, we rewrite H
(1)
int using the expansion (2.12),

H
(1)
int =

e~i
mc

∑
k,α,j

f†kcα

∫
d3rAj(r)φk(r)∗∇jrχα(r) + h.c., (2.16)

where the sum over cartesian components j is made explicit. In this expres-
sion, we have kept only terms containing mixed products f†kcα and c†αfk, which
induce transitions between bound states and outgoing states. Terms propor-
tional to c†α′cα or f†k′fk give no contribution in the expectation value (2.15),
as in this case an annihilation operator fk would act on the initial state, which
does not have any outgoing electron. To simplify the notation, we will assume
linearly polarized light in the following, so that A(r, t) and ∇ are understood
as the components in the direction of the polarization. It is straightforward to
reinsert the sums over cartesian components below. Inserting equation (2.16)
in equation (2.15), we thus have

Ik =

∫
d1d2

(
e~
mc

)2

χ(1)∗∇1φ(1)χ(2)∇2φ(2)∗×

× 〈Â(1) ĉ(1)† f̂(1) n̂k(t) f̂(2)† ĉ(2) Â(2) 〉0, (2.17)

with a combined notation for indices 1 ≡ (t1, r1, α1,k1),∫
d1 =

∫ t
t0
dt1
∫
d3r1

∑
k1,α1

, χ(1) = χα1
(r1), φ(1) = φk1

(r1), Â(1) = Â(r1, t1),

f̂(1) = f̂k1(t1), ĉ(1) = ĉα1(t1), ∇1 = ∇r1 (acting on r1).
The expectation value in the above integral can be factorized in a two-time

correlation function of the field and a three-time correlation function of the
electrons. To reduce the expression to the single-particle properties of the solid
alone, one commonly neglects the interaction of the outgoing electrons with the
electrons within the solid. This so-called sudden approximation implies that
the electronic correlation function factorizes in outgoing and bound state, so
that the expectation value in (2.17) is given by the product of

〈f̂(1)n̂k(t)f̂(2)†〉0 = ei(t2−t1)Ekδk2,kδk1,k , (2.18)

the lesser Green’s function

〈ĉ(1)†ĉ(2)〉0 = −iG<(2, 1) = −iG<α2α1
(t2, t1), (2.19)
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and the light field correlation function

Ψ(1, 2) = 〈:Â(1)Â(2) :〉0. (2.20)

Here : B̂ : is the normal ordering, whose effect is to bring all annihilation
operators to the right. The difference 〈Â(1)Â(2)〉0 − 〈:Â(1)Â(2) :〉0 is the vac-
uum expectation value of 〈Â(1)Â(2)〉0 (a pure number). Since we do not ex-
pect spontaneous photoemission from vacuum fluctuations, we can omit these
terms.

As a further simplification, we assume that the propagation time δt = L/c
of light through the probed volume is small compared to the pulse duration
∆t. Technically, the mode frequencies in the pulse are distributed around some
large carrier frequency Ω and wave vector q0, with widths ∆ω and ∆q = ∆ω/c,
respectively. We can then factor out this main carrier wave vector and set

Â±(r) ≈ e±iq0rÂ±(r = 0), (2.21)

(with the probe volume centered at r = 0), provided that L∆q � 1, which
is indeed equivalent to δt � ∆t because ∆t ≈ 1/∆ω. The approximation
can be systematically improved, but, like any precise treatment of matrix
elements, it would not alter the general discussion of the properties of time-
resolved photoemission. Furthermore, the approximation is exact for a point-
like object, like an atom on a surface, or a thin layer. With these considerations
and equation (2.9), we can write the light correlation function as

Ψ(1, 2) ≈
∑

σ1,σ2=±
eiσ1q0r1eiσ2q0r2Ψσ1,σ2

(t1, t2), (2.22)

with Ψσ1,σ2
(t1, t2) = 〈 : Âσ1(t1, 0)Âσ2(t2, 0) : 〉0. Furthermore, it is useful to

factor out the carrier frequency Ω

Ψσ1,σ2
(t1, t2) ≡ e−iΩ(σ1t1+σ2t2)Sσ1,σ2

(t1, t2). (2.23)

The time-dependent part of the integral (2.17) is then written by

∑
σ1,σ2=±

(−i)
∫ t

t0

dt1dt2G
<
α2α1

(t2, t1)Sσ1σ2
(t1, t2)×

× ei(t2−t1)EkeiΩ(σ1t2+σ2t1).

For large carrier frequency, only the term (σ1, σ2) = (−,+) with exponential
factor ei(Ω−Ek)(t1−t2) will survive the integration. For all the other combi-
nations of σ1 and σ2, the exponent contains counter-rotating terms which
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oscillate quickly compared to the time-dependence of G and S, thus vanishing
upon integration. The final result is

Ik =
∑
αα′

p∗q0,k,αpq0,k,α′ ×

×
∫
dtdt′ei(t−t

′)(Ek−Ω)(−i)G<αα′(t, t′)S(t, t′), (2.24)

where pq0,k,α are matrix elements between the bound and outgoing states

pq0,k,α =

∫
d3r eiq0rχα(r)∇φk(r)∗, (2.25)

and

S(t, t′) = eiΩ(t′−t) ∑
q1,q2

Aq1Aq2eiωq1 t−iωq2 t
′〈a†q1aq2〉0

= eiΩ(t′−t) Tr
(
ρA−(t)A+(t′)

)
(2.26)

as in equation (2.3) of section 2.1.
For a coherent state the expectation value factorizes, so that S(t, t′) =

e−iΩt〈Ψ|A−(t)|Ψ〉〈Ψ|A+(t′)|Ψ〉eiΩt′ ≡ s(t)s(t′)∗ and A(t) = 〈Ψ|A−(t)|Ψ〉 +
〈Ψ|A+(t)|Ψ〉 = s(t)eiΩt + s(t)∗e−iΩt.

2.3 Pulse correlation for a multimode squeezed
state

As an illustration of S(t, t′) for more general states with Gaussian Wigner
function, we now evaluate equation (2.26) for a multimode squeezed vacuum
|Ψ〉 = Q†|0〉, with the squeezing operator

Q = exp
[1

2

∑
ωω′

Rω,ω′a
†
ωa
†
ω′ − h.c.

]
. (2.27)

The squeezing matrix R is symmetric in frequency space, but not necessarily
Hermitian. (We switched between frequency and momentum labels ω = cq
because light is propagating on one axis only.). We evaluate equation (2.26)
in the frequency domain, i.e., we compute

Sω,ω′ =

∫
dtdt′e−iωtS(t, t′)eiω

′t′ . (2.28)
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For simplicity, we set the energy shift Ω = 0 in the following. Inserting equa-
tion (2.26) in (2.28) we obtain

1

(L/c)2
A−1
ω Sω,ω′A−1

ω′ = 〈Ψ|a†ωaω′ |Ψ〉. (2.29)

The prefactor is the normalization volume, with
∫
dtei(ω−ω

′)t = (L/c)δω,ω′ . To
evaluate the expectation value 〈Ψ|a†ωaω′ |Ψ〉, we use the commutator relation
eABe−A = B + [A,B] + 1

2! [A, [A,B]] + ... to obtain the general identity [30],

QaωQ
† =

∑
ω′

Cω,ω′aω′ −
∑
ω′

Sω,ω′a†ω′ , (2.30)

with the functions

C =

∞∑
n=0

(RR†)n

(2n)!
, S =

∞∑
n=0

R(R†R)n

(2n+ 1)!
. (2.31)

(For a single mode and R = |r|eiθ ∈ C, the two functions correspond to the
the hyperbolic functions C = cosh |r| and S = eiθ sinh |r|.) In the expectation
value 〈0|Qa†ωaω′Q†|0〉 we thus get, dropping the terms a|0〉,

〈0|Qa†ωaω′Q†|0〉 = 〈0|Qa†ωQ†Qaω′Q†|0〉 (2.32)

=
∑
ω1,ω2

S∗ω,ω2
Sω′ω1

〈0|aω2
a†ω1
|0〉 (2.33)

= (SS†)ω′,ω, (2.34)

which, together with equation (2.29), concludes the determination of Sω,ω′ .
More interestingly, we can use equations (2.29) and (2.34) to prove the

statement, given in section 2.1, that any desired correlation function Sω,ω′ (or
S(t, t′)) can be, in principle, obtained from a single light pulse, provided that
the matrix Sω,ω′ is (i), Hermitian, and (ii), positve definite. Conditions (i) and
(ii) imply that the matrix Mω,ω′ ≡ 1

(L/c)2A−1
ω Sω,ω′A−1

ω′ in equation (2.29) can

be diagonalized, M = V dV †, where d is diagonal with dαα ≥ 0. The latter
implies that the choice

R = V asinh(
√
d)V ∗, (2.35)

with (V ∗)ω,ω′ = V ∗ω,ω′ , is a well-defined symmetric matrix. Using equa-
tions (2.31) and (2.34) one can then directly verify that equation (2.29) is
satisfied, i.e, the squeezed vacuum equation (2.27) with the squeezing matrix
(2.35) gives the desired cross-correlation Sω,ω′ .

Page 218



Chapter IV.2 Section 2.4

2.4 Conclusions

The use of quantum or statistical correlations in the light pulse would enhance
the possibilities to characterize the dynamics with a time-resolved photoemis-
sion experiment. While this may seem technologically challenging at present,
it contributes to the questions whether correlations of light can be exploited to
enhance, in a similar way, the capabilities of time-dependent measurements in
other spectroscopic techniques, such as two-photon photoemission or optical
spectroscopy.
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Conclusions

Strongly correlated materials display a variety of macroscopic properties both
of fundamental and technological interest, the mechanisms at whose origin are
not fully understood. Studying them out of their equilibrium state allows to
separately observe the different degrees of freedom which, together, give rise to
such properties. In this thesis I have presented four different works that deal
with issues related to out-of-equilibrium strongly correlated materials. While
the first two parts report experimental results, the third and the fourth parts
present two theoretical works.

From the point of view of their technological applications, part of the in-
terest lies in the fact that, in strongly correlated materials, phase transitions
can be triggered on timescales of the femto- and picosecond, thus providing,
e.g., electronics for ultrafast switching. In part I, I have presented our results
on the out-of-equilibrium insulator-to-metal Verwey phase transition in mag-
netite, studied via pump-probe spectroscopy. Besides the technological aspect,
this case study provides insights on the general dynamics of the nonequilib-
rium analogs of first-order phase transitions. To provide a solid basis for the
analysis of the out-of-equilibrium results, we also performed equilibrium ellip-
sometry to measure how the optical properties of magnetite change across the
phase transition.

The out-of-equilibrium phase transition can be triggered, in a sample at
a temperature below the critical temperature, by light pulses with a suffi-
ciently high fluence [1]. Our data reveal that, close to the threshold for the
triggering of the transition, there is a regime which is closely related to the
delivery of latent heat at equilibrium. In this regime, the phase transition
occurs through the nucleation of local excitations into volumes of the sample
in the high-temperature phase. Out-of-equilibrium phase separation therefore
occurs in the sample. For pump fluences well above the threshold, the sample
is instead immediately and homogeneously brought in the high-temperature
phase. One of the most interesting results I reported is that, in the close-to-
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threshold regime, i.e. when out-of-equilibrium phase separation occurs, the
relative variation of the reflectivity ∆R

R of the sample displays a specific math-
ematical property: it is non-separable in the space of spectra and temporal
evolutions. This is a formal way to state that ∆R

R cannot be written as the
product of a single spectral feature with a single temporal evolution for all
the probe photon energies, but has to be written as the sum of two or more
such terms, or components. Well below and well above threshold, instead, ∆R

R
is separable, i.e. it can be expressed as a single spectro-temporal component.
Since this is a model-free, purely mathematical property of the data, one could
conjecture that it is a general signature of out-of-equilibrium phase separation
beyond the specific case of magnetite. Analysing data present in the literature
about similar experiments [2], I have shown that this is indeed the case at least
for another material, vanadium dioxide (VO2).

The experiments on magnetite have been performed with pump pulses at
1.5 eV photon energy. This choice has been determined by the fact that com-
mercial pulsed lasers mostly produce light pulses with such photon energy.
In general, this practical constraint forces to adopt the assumption that the
excitations these pulses create in the system are “right”, in that they are ei-
ther tuned to the relevant transitions or that the excitations they produce are
sufficiently general in character. In the case of the Verwey phase transition,
a photon energy of 1.5 eV is indeed tuned to transitions that tend to destroy
the charge order of the low-temperature phase, and it is, therefore, a “good”
photon energy to study the out-of-equilibrium Verwey phase transition. How-
ever, this is not the case for every compound and every process one may want
to study.

The degrees of freedom involved in the formation of the superconducting
state in the cuprate high-temperature superconductors have typical energies
of the order of 10 or 100 meV. To excite them in a controlled way, light
pulses in the mid-infrared range are needed. In chapter II.1 of this thesis, I
have described the set-up I have built for the production of mid-infrared light
pulses with photon energies between 80 and 200 meV.

In chapter II.2 I have then presented pump-probe experiments on the op-
timally yttrium-doped cuprate Bi2212 (Bi2Sr2Ca0.92Y0.08Cu2O8), with pump
pulses in the mid-infrared spectral range. Our data reveal that the dynamics
produced by the excitation is strongly k-dependent. At room temperature, we
report evidence for the coupling of electrons to fluctuating charge order and
to spin excitations. In particular, totally symmetric excitations and excita-
tions along the direction which in the superconducting phase is the antinodal
direction are coupled to pairs of spin excitations. Along the direction which
at low temperatures becomes the nodal direction, excitations are coupled to a
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vibrational mode which is associated to a superstructural modulation of the
lattice, which coherently oscillates after the excitation by the pump pulse. As
the temperature is lowered, and the sample enters the pseudogap phase, such
coherent lattice vibrations disappear. This means either that the coupling of
electrons to the superstructural modulation changes, or that the latter disap-
pears as the temperature is lowered. In the superconducting phase, we have
been able to separately observe the dynamics of pseudogap excitations and
another kind of dynamics via k-selective measurements.

Optical pump-probe experiments are performed measuring the intensity
of the probe pulses at different delays between the pump and the probe. To
remove the noise, for each pump-probe delay the measurement of the probe
intensity is averaged over hundreds or thousands of pulses. How the intensity
fluctuates is almost always neglected. Moreover, in many cases, the discussion
of the data makes use of the assumption that the state of the system after
the excitation can be considered as an effectively thermal state. The work
I have presented in part III deals with these two issues. What additional
information can be learnt via the measurement of the fluctuations of the out-
of-equilibrium optical properties of a system? How does the system thermalize
when the ongoing dynamics is nontrivial?

We have shown that, in general, the fluctuations of the optical properties
are related to the fluctuations of the current in the system. To contextual-
ize this, we performed nonequilibrium dynamical mean-field theory calcula-
tions [3, 4] on the Holstein model, in which an impulsive excitation produces
coherent lattice vibrations. We have shown that nonequilibrium DMFT is able
to capture the main features of coherent vibrations in Peierls’ systems, i.e. the
displacive excitation, the softening of the frequency of the vibration, the damp-
ing of the oscillation, and the eventual melting of the symmetry-broken phase.
This provides a basic nontrivial dynamics to theoretically explore what infor-
mation can be accessed via the fluctuations of the optical properties. Testing
fluctuation-dissipation relations, we have shown that, after the excitation, the
system oscillates between thermal and non-thermal states as the gap is modu-
lated. This produces characteristic features in the spectrum of the fluctuations
of the current, which can be probed via the measurement of the fluctuations
of the probe pulse intensity. With our simulations, we have been able to
reproduce experimental results obtained on bismuth single crystals, showing
that this kind of measurements can, indeed, give access to new information in
out-of-equilibrium all-optical spectroscopies.

Besides all-optical pump-probe experiments, time-resolved photoelectron
spectroscopy is one of the prime tools to study out-of-equilibrium condensed
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matter, as it allows to simultaneously measure the time-dependent distribu-
tion of electrons and the time-dependent band structure. In its standard set-
ting, the energetic and temporal resolutions in time-resolved photoemission
are affected by the energy-time uncertainty relation. Such limitation becomes
extremely relevant in the study of the nonequilibrium dynamics of the emer-
gent properties of strongly correlated materials. While these become manifest
in very sharp spectral features, it is known that some of them can evolve on
timescales shorter than the inverse width of their spectroscopic fingerprint [5].
This kind of dynamics beyond the spectral uncertainty limit cannot be resolved
in standard time-resolved photoemission. Such limitation is usually taken to
be inevitable. The energy-time uncertainty is, however, not of fundamental
nature, i.e. it is not a Heisenberg-type relation [6].

In chapter IV.1 I have described our theoretical proposal to bypass the
energy-time uncertainty in time-resolved photoemission. This can be achieved
using two probe pulses to photoemit the electrons from the system. Such
double probe pulse can be obtained by splitting, delaying, and recombining
a single pulse of arbitrarily short duration. As a function of the delay be-
tween the two pulses, the total probability for an electron to be photoemitted
changes. From such dependence, it is possible to tomographically reconstruct
the Green’s function G(t, t′), which contains the full single-particle response of
the system. We have illustrated this theoretical proposal with calculations of
the buildup of the Kondo resonance, a prototypical dynamics of an emergent
phenomenon occurring beyond the spectral uncertainty limit. Moreover, we
discussed its relevance and possible applications in other cases, as for example
the melting of Mott gaps or the dynamics of superconductors.

Finally, in chapter IV.2 I presented our discussion of the use of quantum
or statistical light in photoemission. Specifically shaped quantum or statisti-
cal probe pulses would allow to measure specific correlations in the ongoing
dynamics in the sample with a single measurement, i.e. without the need to
perform the tomographic sequences of measurements discussed in chapter IV.1.
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