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Chapter 1

Introduction

The kynematics of coherent phenomena in condensed matter is usually de-
scribed classically. Coherent vibrations of atomic lattices are an example.
While the interactions of the vibrational modes with the other degrees of free-
dom are described as quantum-mechanical processes, the state of the modes,
modelled with harmonic oscillators, is usually described with classical param-
eters, such as amplitude and phase. Little attention has been given to the
state’s statistical properties, which emerge intrinsically when the system itself
is described as a quantum-mechanical object. However, this sort of properties
may set stronger constraints on the underlying dynamics and a deeper insight
on the quantum state of a system throughout its evolution can be a key step in
revealing the Hamiltonians that describe its interactions with the surrondings.

In this thesis, we will study out of equilibrium vibrational states in atomic
lattices, which will serve as a benchmark for other kinds of systems. In par-
ticular, the background phenomenon that lies at the core of this work is the
well known coherent vibrational response observed in pump-probe measure-
ments on Bismuth. In a pump-probe experiment the sample is excited with
an intense ultrashort laser pulse (the pump) and its transient optical response
is measured using a second ultrashort pulse (the probe). The reflectivity re-
sponce of Bismuth to the excitation is modulated at the frequency of one of its
optical vibrational modes. This means that the pump pulse has excited that
mode into a “coherent” state. However, a coherent oscillation of the coordi-
nate of a harmonic oscillator is characteristic of many different quantum states.

To deal with this variety of states, the well established framework of quan-
tum optics can be a very powerful tool, since the modes of the quantized
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2 CHAPTER 1. INTRODUCTION

electromagnetic field are described as harmonic oscillators too. In the past
twenty years, a technique has been developed and refined that allows the es-
timation of the quantum state of the modes of radiation. The process, which
allows to reconstruct the density matrix of the state under study, is called
quantum tomography. The standard tomographic technique is balanced ho-
modyne detection and it is routinely used in quantum optics laboratories to
characterize the final state of a mode of radiation after its interactions with
the devices placed on its optical path.

Given these tools, the most natural question is whether information about
the state of systems within matter can be mapped into the state of the probe
pulses during their interaction (i.e. the reflection). This information could be
then retrieved via the tomography of the optical state of the probe pulses. In
this thesis we present an experimental set-up we have built in this direction,
which is a combination of the standard pump-probe set-up and of a balanced
homodyne detector.

The key feature of a balanced homodyne detector is that it allows to ob-
serve the distribution of the measurements of the electric field as a function
of the phase of the electromagnetic wave. As already mentioned, in some
condition pump-probe measurements are phase-resolved for lattice vibrations.
When lattice vibrations are mapped in the reflectivity of the sample, the
temporal resolution of pump-probe measurements allows to observe the oscil-
lation as it happens. Statistical information about the phononic state can,
therefore, be extracted studying the statistics (i.e. the noise) of the measure-
ment of the transient reflectivity of the sample in pump-probe experiments.
However, the full reconstruction of the vibrational state is not possible with
such a technique, since it cannot be fully tomographic. This is due to the
fact that the system evolves while its properties oscillate and there is no sta-
tionary state to be studied. Moreover, other factors, such as the interactions
with the electrons, which are the ones that mediate the measurement of the
atomic displacements, must be considered. Nonetheless, a detailed analysis of
noise pump-probe experiments still gives access to partial information about
the underlying vibrational state. We present the experimental set-up built to
this purpose and report the measured data, which could be a signature of the
presence of non-classical states of the harmonic oscillator.

In order to clarify some aspects of the role of the electrons in the me-
diation of the measurement process we have also performed more conven-
tional pump-probe measurements with broadband white-probes, which give
us a clearer picture of the underlying electronic dynamics. Furthermore, the
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balanced homodyne detector can be used for another spectroscopic technique.
As we will describe, the detector is based on an interferometer. The latter
can be employed, in combination with pump-probe measurements, to detect
the transient phase-shifts in the out of equilibrium field-reflectivity. Here only
preliminary results obtained with this set-up will be presented.





Chapter 2

Descriptions of the quantum
state of a system

This introductory chapter is mainly inspired by a review paper by Ugo Fano
(see [1]) and serves the purpose to introduce conceptual tools, such as the den-
sity matrix and the Wigner function, which are used to describe the quantum
state of a system. Some sentences, being so clearly expressed by Fano, are
reported verbatim.

2.1 Pure states

There are states, in quantum mechanics, which are characterized by the fact
that the information about the system under consideration is known in the
most deterministic way permitted by quantum mechanics itself [1]. Such states
are called pure states and the information about them is encoded in a nor-
malized vector |Ψ〉. The latter belongs to a Hilbert space H, which contains
all the possible states of that system. These vectors can be conveniently
represented in one of the bases for H and can therefore be expressed as a
wavefunction Ψ(t, r̄) or as a full set of quantum numbers such, for example,
(n, l, j,m) for a non-relativistic electron in a hydrogenic potential. For pure
states an experiment exists, at least in principle, whose outcome is unique
and predictable with certainty when performed on a system prepared in that
state and a measurement of this kind is called “complete”, for it provides the
maximum amount possible of information about that variable of the system.
In the formalism of vector states, the expectation value of an observable, iden-
tified by an Hermitian operator Ô acting on the Hilbert space H of the state,

5
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is given by
〈Ô〉Ψ = 〈Ψ|Ô|Ψ〉.

An alternative writing for this expression, which will be useful in the discussion
of mixed states, is

〈Ψ|Ô|Ψ〉 = Tr[Ô|Ψ〉〈Ψ|]

and it suggests that a state can also be identified by the projector |Ψ〉〈Ψ|. It
is important to note that it can happen that a pure state is most conveniently
described as a linear superposition of eigenstates of a particular observable Ô1.
Nonetheless, it is possible, at least in principle, to design an experiment which
probes another observable Ô2 of the system, whose outcome is predictable
with certainty.

2.2 General quantum states - mixed states

However, systems also occur for which no complete experiment gives a unique
outcome predictable with certainty. The state of the system is nevertheless
fully identified by any data adequate to predict the (statistical) result of all
conceivable observations of the system. Whether or not the predicted disper-
sion of these statistical results attains its theoretical minimum is irrelevant to
the concept of state. Indeed ”state” means whatever information is required
about a specific system, in addition to physical laws, in order to predict its
behavior in future experiments. This information can be encoded in the den-
sity matrix ρ̂, an operator on the Hilbert space H. As mentioned before, pure
states can be identified by the projectors |Ψ〉〈Ψ|. The density matrix is a
generalization of this point of view and it can be written as the weighted sum
of projectors

ρ̂ =
∑
i

λi|Ψi〉〈Ψi|. (2.1)

In this expression, apart from the vectors |Ψi〉 having to be normalized, the
coefficients λi must satisfy the following two conditions:∑

i

λi = 1, λi ≥ 0.

In the case in which just one of the coefficients λi is different from 0, the
density matrix ρ̂ identifies a pure state, while when there are at least two of
them different from 0, the state is a general one and it is said to be a mixed
state. Note that, being 2.1 just one of the possible representations of ρ̂, the
choice of the set of |Ψi〉 is not unique.
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The expectation value of an observable Ô on the state identified by ρ̂ is given
by

〈Ô〉ρ̂ = Tr(Ôρ̂). (2.2)

This last equation offers a more general definition of the density matrix, by
making no reference to any particular set of pure states, as equation 2.1 instead
does.
The task of experimentally determining the state of a quantum system consists
in gathering all the information needed to perform the predictions about the
future behaviour of the system (like 2.2) and the process is called quantum
tomography of the state, which will be discussed in more detail in Chapter 5.

The Wigner function A useful object, which allows a direct visualization
of the state of a system, is a particular transform (the Wigner transform or
Weyl anti-transform) of the density matrix: the Wigner function, defined as
follows

W (q, p) =

∫ +∞

−∞
dy〈q + y|ρ̂|q − y〉e−2iyp/~ (2.3)

or symmetrically in p. W (q, p) is a function in the phase-space, i.e. a space
spanned by two conjugate variables, usually denoted with q and p. It behaves
like a quasi-probability distribution for the quantum state. This means, first
of all, that its marginal distributions are the probability densities of the state
in the two conjugate variables:∫ +∞

−∞
dpW (q, p) = |Ψ(q)|2,∫ +∞

−∞
dqW (q, p) = |χ(p)|2.

(2.4)

Moreover, expectation values of observables are simple phase-space averages
of their Wigner transforms, i.e., by taking the function

o(q, p) =

∫ +∞

−∞
dy〈q + y|Ô|q − y〉e−2iyp/~

the expectation value of Ô will be

〈Ô〉 =

∫ +∞

−∞
dqdpW (q, p)o(q, p). (2.5)

This last expression resembles 〈Ô〉 = Tr(Ôρ̂).
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For the systems which we will study in this thesis and which are mod-
eled with quantum harmonic oscillators, q and p will be either actual spatial
displacement and momentum or the real and imaginary part of the complex
electric field (which play the role of position and momentum in the quantiza-
tion of the modes of the electromagnetic field).
The Wigner phase space approach is very useful in these cases, since the most
common states are represented by simple (namely, gaussian) Wigner func-
tions. Moreover some of the interactions of the sytem with external objects
can be viewed as simple transformations (translations and deformations) of
these gaussian functions in phase-space.



Chapter 3

The quantum harmonic
oscillator

Both the kinds of systems which we deal with in this thesis, i.e. the modes
of the electromagnetic field and the vibrational modes in condensed matter
lattices, can be described as quantum harmonic oscillators. For the modes of
the electromagnetic field, the oscillator coordinate q̂ and momentum p̂ are the
real and imaginary part of the complex electric field and the mode excitations
are called photons. In the second case q̂ and p̂ are actual spatial normal mode
displacement and momentum and the mode excitations are called phonons.
Although both photons and phonons are bosons and their abstract descrip-
tion could seem fairly similar, some relevant differences have to be pointed
out [2]. As a first point, the dispersion for photons in vacuum (i.e. the energy
of a photon as a function of the momentum of the mode which it is created
in) is linear. On the other side, phonons can have many different non-linear
dispersion relations, usually with several acoustic and optical branches. These
complications make it more difficult, in the phonon case, to match both the
conservation of momentum and energy in multimode processes. More im-
portantly to our discussion here, phonons and photons display very different
interactions. Photons do not interact one with another unless they are within
non-linear optical media and in high number (i.e. high intensities). In such a
situation, their interaction is mediated by matter. Instead, phonons do always
interact one with another because of the anharmonicity of the potentials which
atoms lie in. Furthermore, the condensed matter environment offers phonons
many other excitations in their energy-range to couple with. The dynamics of
these particles is therefore extremely dissipative if compared to the propaga-
tion of photons in transparent media. This leads, for example, to very short

9
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lifetimes for coherent vibrational excitations (of the order of the picoseconds),
especially for modes in the optical branches. It has also to be considered that,
being the energies of phonons very small (tens of millielectronvolts), the vi-
brational modes are thermally populated even at room temperature. For the
electromagnetic modes one usually works with, instead, the photon energies
are much higher than the room temperature kBT = 25 meV, and thus, the
thermal photon population of the mode is often negligible.

3.1 Brief review of basic formalism of the
harmonic oscillator

The first step in the description of a system through a quantum harmonic
oscillator is to identify two variables that behave like the conjugate position
and momentum of a harmonic oscillator. In the case of the vibrational modes
they are the normal mode displacement and linear momentum. For the modes
of the electromagnetic field, instead, they are the real and imaginary parts of
the complex time-evolving electric field, also known as quadratures. We will
spend more words on the quadratures observables and on their generalization
in chapter 5, where their major role in the reconstruction of optical states will
be made clear.
Once these quantities have been identified, the procedure is a straightforward
application of the standard quantization of the harmonic oscillator. We will
use, throughout this thesis, the units in which ~ = 1 and we will put the
masses and the frequencies of the harmonic oscillators under consideration to
1 (unless otherwise specified). We will do this, not just as a convenience in the
formalism, but also as a safe experimental simplification. In this framework,
the measurements of the observables of the harmonic oscillator that have to
be quantitative are always associated with reference measurements used to
define the units. With this convention, the Hamiltonian for the free oscillator
is

Ĥ0 =

(
â†â+

1

2

)
(3.1)

where â† and â are the creation and annihilation operators, respectively. The
position and momentum observables can be written as

q̂ =
1√
2

(â+ â†) (3.2)

and

p̂ =
1

i
√

2
(â− â†). (3.3)
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The operators q̂ and p̂ are conjugated observables, i.e. their commutator

[q̂, p̂] = i

and must therefore satisfy the Heisenberg uncertainty relation

σ2(q̂)σ2(p̂) ≥ 1

4
. (3.4)

σ2(Ô) is the variance in the distribution of the outcomes of measurements on
the observable Ô, and is defined as 〈Ô2〉 − 〈Ô〉2.

The most natural states to work with in this formalism are the number
states |n〉, eigenstates of the Hamiltonian H0 and therefore also of the number
operator n̂ = â†â:

n̂|n〉 = â†â|n〉 = n|n〉.

They can be written as

|n〉 =
(â†)n√
n!
|0〉

and describe states in which the oscillator is populated with exactly n excita-
tions. The ground state of H0, |0〉 is known as vacuum state and is the one
which obeys the following condition

â|0〉 = 0.

It has a probability density in the position observable which is a gaussian
centred on the appropriate equivalent of the equilibrium position. With in-
creasing n, the probability densities of number states tend to the time-averaged
position-distribution of a classical oscillator. This means that the most proba-
ble positions to find the oscillator in become the furthest from the equilibrium
one, where a classical oscillator, having the lowest velocity there, spends most
of its time. However, the expectation value of the position 〈q̂〉|n〉 is time-
independent and equals 0 whatever excited number state the oscillator is in.
To get a time-dependent expectation value of q̂, a superposition of states
must be taken. Out of these non-number states of the harmonic oscillator the
commonest are coherent states, which are the closest analogue to classical co-
herent oscillations. Many other states, with different statistical properties, can
be both theoretically and experimentally prepared, like, for example, squeezed
ones. As already mentioned, for phononic modes the thermal population can
be significant and thermal states, which are mixed ones, have therefore to
be considered too. Gaussian states (namely, coherent, squeezed and thermal
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ones, which are states described by gaussian Wigner functions) are the most
common states experimentally produced. The generation of gaussian states
and, more generally, the interaction with external degrees of freedom can often
be described in a simple framework involving transformations within the class
of gaussian states, as will be discussed in chapter 4.

3.2 The vacuum and coherent states

The vacuum

The number-vacuum state |0〉 turns out to be formally a coherent state, from
the definition 3.6 given in the next paragraphs. It is a benchmark to introduce
the concept of noise in the measurements of the observables of the quantum
harmonic oscillator. The probability distribution |Ψ|0〉(q)|2 is a gaussian func-
tion (centred on the ”equilibrium position” of the harmonic oscillator, which
we take to be 0):

|Ψ|0〉(q)|2 =
1

2
√
π
e−q

2
.

Therefore, if one had an ensemble of identical oscillators in their ground state
1, the outcomes of the measurements of all their positions would not all be
0 but would, instead, be distributed around 0 according to |Ψ|0〉(q)|2. There
would be, in other words, noise in the measurement which is intrinsic to the
state. The reason to underline this here will be clear in the next sections, e.g.
the one about squeezed states, which are states that display intrinsic noise in
a less trivial way.
It can be shown that the probability distribution in the observable p̂ associated
to the vacuum state is also a gaussian function and that its variance is 1

2 , as
in the case of the position-distribution. The product of the two variances is
therefore

σ2(q̂)σ2(p̂) =
1

4
. (3.5)

States which satisfy this equality (instead of inequality 3.4) are said to satu-
rate the uncertainty relation.

This statistical information about the state is encoded, among others, in
its Wigner function. The vacuum state belongs to the mentioned class of

1An ensemble of oscillators is needed because, once observed in a given position the
system will start evolving from a position eigenstate and will not behave as |0〉 any longer,
making repeated measurements on the system in the original state impossible. This will be
stressed again in chapter 5.
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gaussian states, i.e. the states that have a gaussian Wigner function. In
particular, the Wigner function for the vacuum is centred on the origin of the
phase space and its marginal distributions (as defined in equation 2.4) give
the probability densities discussed in this paragraph.

Figure 3.1: Wigner function for the vacuum state |0〉.

Coherent states

As already anticipated in the introduction to this chapter, coherent states are
the closest quantum analogue to classical coherent oscillations (which display
harmonically oscillating values for q and p). They can be defined as the
eigenstates of the annihilation operator â:

â|α〉 = α|α〉. (3.6)

Note that, being â non-hermitian, α ∈ C, while the expectation value of n̂ on
such states is simply

〈n̂〉|α〉 = 〈α|â†â|α〉 = α∗α = |α|2.

Since |0〉 satisfies â|0〉 = 0|0〉, also the vacuum falls within the category of
coherent states. Out of the states that have oscillating expectation values for
q̂ and p̂ and saturate the uncertainty relation, coherent states are the ones
that have equal intrinsic fluctuations for q̂ and p̂, which are

σ2(q̂) = σ2(p̂) =
1

2
.
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The variance of the number operator n̂ for a coherent state is

var(n̂) = 〈n̂〉.

This is what is generally called, in the case of optical states, shot noise. The
current output of a photodiode measuring the intensity of an electromagnetic
wave is the observable

Î = cn̂.

The variance of Î is, therefore,

var(Î) = c2 var(n̂) = c2〈n̂〉 = c〈Î〉.

From the above expression the key feature of shot noise becomes evident: it
scales linearly with the intensity of the beam impinging on the photodiode.

Coherent states can be expressed, apart from the definition given above,
in various ways. For example, they can be written in the basis of number state
vectors in the following way:

|α〉 = e−
|α|2

2

∞∑
n=0

αn√
n!
|n〉.

Another expression for a coherent state |α〉 is

|α〉 = D̂(α)|0〉,

where the operator D̂(α) is called displacement operator and can be written,
among other forms, as

D̂(α) = eαâ
†−α∗â.

The term displacement describes the action of this operator on the Wigner
function of the vacuum state. In fact, non-vacuum coherent states are de-
scribed by gaussian W (q, p) with first-moment vector R̄ = (q0, p0) 6= 0. R̄
is the vector expressing the average of the quasi-probability distribution and,
hence, coherent states have gaussian Wigner functions centred on points dif-
ferent from the origin of the phase space. Since vacuum and coherent states
have the same distribution width (or, in more formal terms, the same covari-
ance matrix, as described in section 3.3), W (q, p) for coherent states can be
described as a vacuum Wigner function displaced to another R̄.
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Time evolution in the phase space The time dependence of the expec-
tation values of q̂ and p̂ can be calculated starting from the coherent state’s
definition (equation 3.6) and the expression of q̂ and p̂ as a function of â
and â† (see appendix A). However, the Wigner phase space-approach provides
a more intuitive way to visualize the evolution of a state. In fact, the time
evolution operator of H0 rotates the Wigner function around the origin of
the plane, analogously to the classical case, in which a harmonic oscillator is
described by a rotating vector in phase space. Therefore, by letting the evo-
lution operator act, the marginal distributions of the Wigner function |Ψ(q)|2
and |χ(p)|2 will change, with their first moments oscillating between the min-
imum and maximum value permitted by the amplitude α, as depicted in the
following figures.

Figure 3.2: Time evolution of a coherent state.

Lattice observables and q̂ and p̂ It has to be remarked that, in the
process of identifying the variables to be taken as position and momentum of
the abstract harmonic oscillator (as described at the beginning of section 3.1)
a set of normal modes, with different spatial oscillations, is usually available,
each having to be quantized separately. The normal modes are generally
“rotated” in order to get, for example, (classical) solutions for the position in
the form

q(r̄, t) ∝ ei(k̄·r̄).

Such an expression, however, cannot be used to describe the atomic displace-
ments in a lattice. Atomic displacements (and electric fields too) are described
by real functions of k̄ · r̄ (sinusoidal ones) [3]. To recover them from the formal-
ism of the variables q and p, their real (or alternatively, the imaginary) part
has to be taken. For example, the atomic displacement Q̂k can be written as

Q̂k = âk + â†−k.
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This will be relevant in chapter 4, where some interaction Hamiltonians of
vibrational modes in condensed matter with external degrees of freedom will
be written using these operators.

3.3 Squeezed states

The vacuum and the coherent states satisfy the saturated uncertainty rela-
tion 3.5 in the most simple way possible, and namely with equal σ2(q̂) and
σ2(p̂). However, the Heisenberg relation does not make any request to the
distribution of observables taken singularly but only to the product of the
variances of two conjugated observables. The fluctuations in one of the two
can be therefore reduced (or squeezed) to the ”damage” of its conjugate, whose
fluctuations must be increased in width. States that display such noise prop-
erties are called squeezed states. However, the term squeezed generally refers
just to the unbalance in the noise between the two observables, which can exist
also for states that do not saturate the uncertainty relation, such as thermal
ones. If not specified in more detail, in this thesis the term squeezed state will
refer to states that saturate the Heisenberg relation.
The squeezing of the distribution of an observable and the corresponding anti-
squeezing of its conjugate’s one are described by the squeezing operator Ŝ(ξ),
defined as follows,

Ŝ(ξ) = e
1
2

(ξ(â†)2−ξ∗(â)2), (3.7)

being ξ = reiψ ∈ C the squeezing parameter. A general state of this class can
be written as

|α, ξ〉 = D̂(α)Ŝ(ξ)|0〉.

In this expression the vacuum state is first squeezed by ξ and then displaced
by an amplitude α. This sequence leads to the phase space approach, which
a squeezed state is represented in, again, as a gaussian function. However,
while coherent and vacuum states have “isotropic” variances in the two axes
of the phase space, squeezed states have not. This represents the fact that one
of the marginal distributions has been squeezed and the other one adequately
anti-squeezed. Figure 3.3 shows an example of such a situation.
In the case represented in figure 3.3, the distribution for q̂ is broader than
the one for p̂. This means that, in this state, q̂ is less determined than p̂ is.
In order to compactly describe the shape of a gaussian, a part from the first
moment vector R̄ = (q0, p0), we can introduce the covariance matrix, defined
as

σ =

(
σ2(q̂) cov(q̂, p̂)

cov(p̂, q̂) σ2(p̂)

)
.
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Figure 3.3: Wigner function of a squeezed state.

The state described in the above figure has an associated squeezing parameter
with phase ψ = 0 and its covariance matrix is diagonal. However, squeezed
states can also occur for which the squeezing parameter’s phase in non-zero.
This would be the case described in figure 3.4. In this case, the covariance

Figure 3.4: Wigner function of a squeezed state with the squeezing parameter’s
phase ψ = 5

3π.

matrix of the Wigner function is non-diagonal, since it has to account for the
correlation between the observables q̂ and p̂.
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Figure 3.5: The distribution of the electric field of a squeezed optical state.
(Image by Gerd Breitenbach, released under CC - attribution, share alike)

To get in more depth into the consequences of such a shape of the Wigner
function we will analyse briefly optical squeezed states. The non-trivial sta-
tistical properties of optical squeezed states are reflected in the outcomes of
phase-resolved measurements of the electric field, e.g. the ones performed
with an interferometer. Recalling the time-evolution of the Wigner function
described in the previous section, its marginal distribution will have, apart
from an oscillating mean value, also an oscillating width, which becomes larger
and smaller than the value permitted in a coherent state. In particular, the
variance oscillates at two times the frequency of the mode. The phase of its
oscillation relative to the one of the mean value is determined by the phase ψ
of the squeezing parameter ξ. Figure 3.5 shows how repeated phase-resolved
measurements of the electric field of a squeezed state look like.

Number and phase squeezed states Depending on the phases where the
noise is reduced and the ones where it is increased because of the squeezing,
different situations can arise. For example, the noise can be reduced at the
nodes of the oscillations. Since the measurement of the phase of an electro-
magnetic wave is linked to the knowledge of the position of its nodes (or zeros),
such state are sometimes called phase-squeezed. They are used, for example,
in the gravitational waves-interferometers to have a noise on the measurement
of the phase lower than what could be achieved with a coherent optical state.
Instead, if the noise is reduced at the extrema of the oscillation, the state is
said to be number-squeezed, because the number of photons in the mode is
better determined than in the case of a coherent state.
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3.4 Thermal states

Thermal states are the states of the harmonic oscillator which present a ther-
mal boson population. This means that the mean number of photons or
phonons is given by

〈n̂〉 =
1

eβω − 1
. (3.8)

These states describe a harmonic oscillator at equilibrium at a temperature
T = 1

βkB
. The density matrix of a thermal state can be written as

ρ̂T =
1

Zβ
e−βωâ

†a.

Its Wigner function is a gaussian centred on the origin of the phase space, as
the one of the vacuum state. However, a thermal Wigner function is broader
than a vacuum one. This can be intuitively justified observing that the ex-
pectation value for the number operator is

〈n̂〉 =

∫
dqdp

q2 + p2 − 1

2
W (q, p).

If the Wigner function were too sharp, the term containing the parabola q2+p2

could not give a contribution to the integral larger than 1. In the case of the
vacuum state, its contribution is exactly 1, yielding a number of bosons in the
harmonic oscillator which is zero. In the case of a thermal state, instead, it
is given by equation 3.8. A broad quasiprobability distribution means also a
larger variance, and hence, noise, in the measurement of q̂ and p̂. The higher
the temperature, the larger the noise. An example of Wigner function for a
thermal state is given in figure 3.6. As anticipated in the introduction to this
chapter, vibrational modes in condensed matter have energies such that the
thermal population of the mode is usually relevant even at room temperature.
Therefore, phononic modes at equilibrium must generally be described with
thermal states.

Displaced and squeezed thermal states

Acting on a thermal state with a displacement operator produces a displaced
thermal state. Despite the term “thermal”, such a state does not describe a
system at equilibrium with its surroundings at a given temperature. As for
a coherent state, the operators q̂ and p̂ have oscillating expectation values
in a displaced thermal state. Their variance, instead, is larger than the one
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Figure 3.6: Wigner function for a thermal state

for a coherent state and is determined by the original temperature of the
“undisplaced” state. In the same way, squeezed thermal states can also occur,
which have the phase-dependent variance characteristic of squeezed states.

Figure 3.7: Wigner function for a displaced thermal state



Chapter 4

Lowest order light-matter
interactions

As already anticipated, some of the interactions of a harmonic oscillator in
a gaussian state with external degrees of freedom can be described as simple
transformations within the class of gaussian states. The interactions that fall
into this category are said to preserve the gaussianity of the state. For what
concerns optical modes, they have been extensively studied and experimentally
implemented with devices such as lasers, beam-splitters and non-linear optical
techniques. They are linear or, at most, bilinear Hamiltonians in the mode
operators â†k and âk and describe, therefore, not only the interactions of a mode
with an undefined external source but also mutual interactions of two different
modes. In the following, we will first briefly review the situations, which are
generally studied in the case of optical states, where the time dependence of
the Hamiltonian is very simple, and namely, flat. The interaction in such
cases is a constant which is sharply turned on and off as the electromagnetic
wave enters and exits the device. Afterwards we will report some less simple
cases, relevant to condensed matter. Under some assumptions either on the
time-dependence of the Hamiltonian or on the strength of the interaction,
its action can still be described in terms of the transformation that preserve
the gaussianity of the state. In particular, we will concentrate on impulsive
interactions, which are the ones that take place in pump-probe experiments.

4.1 Modes of the electromagnetic field

The most general form for the linear and bilinear Hamiltonians that have
a step-like “on and off” time-dependence is [4] (note that the θ time step
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functions have been absorbed in the coefficients):

H =
∑
k

λ â†k +
∑
k,l

βâ†k âl +
∑
k,l

ζâ†k â
†
l + h.c. . (4.1)

The three building blocks that constitute the above expression give rise to evo-
lution operators that describe simple transformations of a state. In particular,
the first term, which is linear in â†k and âk, corresponds to a displacement op-
erator. This can be, for example, the interaction of an electromagnetic mode
with the active medium in a laser.
The second block of 4.1 contains terms of the form βâ†k âl+h.c. and describes,
instead, interactions that involve linear mixing of two modes. Such processes
take place, for example, in a beam-splitter and we will discuss them in some
more detail in chapter 5, in the context of the experimental technique called
balanced homodyne detection.
Finally, the third block contains the terms (â†k)

2 + h.c. and â†kâ
†
l + h.c., which

result in the squeezing of the state. These are the processes that occur, for
example, in second-harmonic generation or in an optical parametric ampli-
fier [4].1 However, only the degenerate form (â†k)

2 + h.c. gives rise to the
single-mode squeezing operator introduced in section 3.3. In the case of the
non-degenerate one, the squeezing involves two different modes and the cor-
responding operator can be expressed as

Ŝ2(ξ) = e
1
2

(ξâ†kâ
†
l−ξ
∗âkâl). (4.2)

A two mode-squeezed state is a state where there is correlation between ob-
servables related to the two modes. As an example, two optical beams in the
state

Ŝ2(ξ)|0〉 (4.3)

are called twin-beams [4]. In this state there is perfect correlation between
the photon numbers in the two modes, i.e. the difference between the number
of photons in the two modes is a constant of motion.2

1Note that only two modes appear in these two expressions. In the case of the mentioned
non-linear optical processes, they are the output photon modes. The input photon operators
have been absorbed in the coefficients.

2Note that, here, |0〉 denotes the state |0〉k ⊗ |0〉l, where k and l are the two modes
involved in the squeezing.
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4.2 Light-matter interaction and the generation of
quantum phonon states

The main goal of this project goes beyond the description of the evolution of
optical states by themselves. It focuses on the description of processes occur-
ring in condensed matter and their interaction with optical states, i.e. light.
In this section we will concentrate on two possible mechanisms involved in
the excitation of the vibrational states which have usually been dubbed as
“coherent phonons”. This term, though, was originally meant with the classi-
cal meaning of coherence as phase-coherence in an oscillation and not in the
quantum one which has been described in chapter 3.
In the following, we will analyse two possible excitation mechanisms which gen-
erate coherent and two mode-squeezed vibrational states. It has furthermore
to be considered that, as already mentioned at the beginning of this chapter,
phonons do not evolve freely but strongly interact with the surrounding envi-
ronment. The state of a vibrational mode is thus not determined just by its
excitation but also by its subsequent evolution.
In order to avoid confusion in the discussion of photonic and phononic states
together, in this chapter we will adopt the general convention, in which the
operators â† and â refer to the modes of the electromagnetic field, while b̂†

and b̂ refer to the vibrational ones.

Generation of coherent phonons - linear coupling

A vibrational mode can be excited in a coherent state when it is coupled to ex-
ternal degrees of freedom through a Hamiltonian which is linear in the mode
operators b̂† and b̂ [2]. In fact, this is the case of the first block of Hamil-
tonian 4.1. When the time-dependence of the Hamiltonian is simple (either
“flat”, as in the previous section, or impulsive, as we will discuss later) its evo-
lution transformation is directly a displacement operator. It can be shown,
however, that this is true for a general time-dependence of the Hamiltonian if
the initial state is a vacuum state or a coherent one.

Let us consider the following Hamiltonian:

Ĥ(t) = Ωb̂ † b̂+ λ(t)b̂ †+λ∗(t)b. (4.4)
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In the Heisenberg picture, the operator b̂ evolves according to

˙̂
b = i[Ĥ(t), b̂]

= i
{

Ω[b̂ † b̂, b̂] + λ(t)[b̂ †, b] + λ∗(t)[b̂ †, b̂]
}

= i
{

Ωb̂ †[b̂, b̂] + Ω[b̂ †, b̂]b̂− λ(t)
}

= −iΩb̂− iλ(t).

(4.5)

This equation can be integrated to give

b̂(t) = e−iΩtb̂+

∫ t

−∞
dse−iΩ(t−s)λ(s)

= e−iΩtb̂+ e−iΩt
∫ t

−∞
dseiΩsλ(s)

= e−iΩt
(
b̂+ Λ(t)

)
,

(4.6)

where

Λ(t) =

∫ t

−∞
dseiΩsλ(s). (4.7)

An initial coherent state |β〉 is3, before the interaction, an eigenstate of
the operator b̂ with an eigenvalue β:

b̂|β〉 = β|β〉. (4.8)

When the interaction takes place, b̂ starts evolving. However, an initially
coherent state remains an eigenstate of b̂(t), with the new eigenvalue e−iΩt

(
β+

Λ(t)
)
.

b̂(t)|β〉0 = e−iΩt
(
b̂+ Λ(t)

)
|β〉0

= e−iΩt
(
β + Λ(t)

)
|β〉0

(4.9)

Therefore, such an interaction can excite a coherent vibrational state (in the
quantum sense) if the initial state of the mode is, for example, the vacuum:

|β〉0 → |e−iΩt
(
β + Λ(t)

)
〉. (4.10)

Note that Λ(t) is related to the Fourier-component of λ(t) at the frequency of
the phonon mode.

3For the vacuum state, β = 0.
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If the interaction is impulsive, we can write a more general result [2], which
applies to any initial state the mode is in.4 In this case, the time-dependence
λ(t) can be written as

λ(t) = lδ(t− t0). (4.11)

The interaction picture-evolution operator is

ÛI(t) = 1− i
∫ t

−∞
ds
(
lδ(s− t0)b̂†I + l∗δ(s− t0)b̂I

)
+ (−i)2

∫ t

−∞
ds1

∫ s1

−∞
ds2

{(
lδ(s1 − t0)b̂†I + l∗δ(s1 − t0)b̂I

)
·

·
(
lδ(s2 − t0)b̂†I + l∗δ(s2 − t0)b̂I

)}
+ ...

= 1− i
∫ t

−∞
ds
(
lδ(s− t0)êiΩsb† + l∗δ(s− t0)ê−iΩsb

)
+ (−i)2

∫ t

−∞
ds1

∫ s1

−∞
ds2

{(
lδ(s1 − t0)êiΩs1b† + l∗δ(s1 − t0)e−iΩs1 b̂

)
·

·
(
lδ(s2 − t0)êiΩs2b† + l∗δ(s2 − t0)e−iΩs2 b̂

)}
+ ...

= e−i
(
leiΩt0 b̂†+l∗e−iΩt0 b̂

)
.

(4.12)

Û(t) becomes, in the Schroedinger picture,

Û(t) = e−iΩtb̂
†b̂e−i

(
leiΩt0 b̂ †+l∗e−iΩt0 b̂

)
. (4.13)

The second factor in the above expression is exactly the displacement operator
D̂(Λ) with

Λ =
l

i
eiΩt0 .

Therefore, given a general initial state ρ̂i, the final state ρ̂f after a linear
impulsive interaction is

ρ̂f = D̂†(Λ)ρ̂iD̂(Λ), (4.14)

4It is worth stressing that the couplings which are described by these Hamiltonians are
not necessarily direct interactions of the vibrational modes and the electromagnetic field.
In fact, the symmetry of the phonon mode considered in this thesis (chapter 7) does not
allow an electric-dipole interaction with an electromagnetic field, which would be the linear
interaction with light. Such a coupling should therefore be mediated. In particular, in the
case of Bismuth, it is mediated by electrons.
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which then freely evolves.

The most natural initial state for a vibrational mode at thermal equilib-
rium is a thermal one. With such an initial state, this kind of interaction
produces a displaced thermal state

ρ̂f = D̂†(Λ)ρ̂T D̂(Λ), (4.15)

as depicted in figure 4.1.

Figure 4.1: Displacement of a thermal state via a linear interaction with an
external source.

Generation of squeezed phonons - bilinear/quadratic coupling

As already shown in the case of optical states, squeezing occurs when bilin-
ear interactions of the modes are present in the form b̂†k b̂

†
l + h. c.. These are

interactions in which two different vibrational modes are coupled or which
are quadratic in the operators of a single mode. They are always relevant for
vibrational modes in a solid, since, even not considering the interaction with
light, many vibrational modes are present and they interact one with another.
Considering instead the case of the interaction of condensed matter with light,
a Hamiltonian which is bilinear in the phononic modes operators describes, for
example, what is called second-order Raman scattering [2]. In particular, the
stimulated Raman scattering is a process which is linked to the third-order
susceptibility of the solid, when it is expanded in powers of the electric field.
Here, second-order refers to the term in the expansion of the susceptibility in
the atomic displacements. This interaction involves the simultaneous creation
(or annihilation) of two phonons in two vibrational modes with opposite crys-
tal momentum k. However, second-order Raman scattering is only one out of
the interactions that produce squeezed states in condensed matter. In fact,
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the necessary factors of the interaction Hamiltonian are only the ones in the
form b̂†k b̂

†
l + h. c..

Let us consider first of all the case in which the interaction Hamiltonian
contains only bilinear terms in the mode operators. In this situation, the
evolution operator is a two-mode squeezing one. It has been shown [5] that if
both linear and bilinear terms involving a mode appear in the Hamiltonian,
the evolution operator can still be factorized in a displacement and a squeezing
one, with the introduction of an additional global phase factor.
Considering only the bilinear part, the total Hamiltonian can be written in
the form

Ĥk1,k2 =Ωk1 b̂
†
k1
b̂k1 + Ωk2 b̂

†
k2
b̂2+

+ ζ(t)b̂†k1
b̂†k2

+ ζ∗(t)b̂k1 b̂k2 ,
(4.16)

where k1 and k2 are the momenta of the two modes we are considering, ζ(t)
is a general function of time and Ωk1 and Ωk2 are the frequencies of the two
modes. Ĥ consists of a free part,

Ĥ0 = Ωk1 b̂
†
k1
b̂k1 + Ωk2 b̂

†
k2
b̂2, (4.17)

and an interaction one,

Ĥ1 = ζ(t)b̂†k1
b̂†k2

+ ζ∗(t)b̂k1 b̂k2 . (4.18)

In order to retrieve a simple phase-space transformation from the evolution
operator of this Hamiltonian with a general time-dependence, ζ(t) must be
small. In the impulsive case, instead, using the same procedure as in the
previous section, the result is exact.
In the small ζ(t) case, the Dyson series can be truncated to the first order in
ζ(t), as shown below in the interaction picture.

Û(t) = 1− i
∫ t

−∞
dsĤ1(s) + ...

' 1− i
∫ t

−∞
dsĤ1(s)

(4.19)

This last expression can be approximated as

Û(t) ' e−i
∫ t
−∞ dsĤ1(s). (4.20)
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Using the explicit expression for H1(t) we retrieve a two-mode squeezing op-
erator with a time dependent squeezing parameter:

Ûk1,k2(t) ' e−i
∫ t
−∞ ds

(
ζ(t)b̂†k1

b̂†k2
e
i(Ωk1

+Ωk2
)t

+ζ∗(t)b̂k1
b̂k2

e
i(Ωk1

+Ωk2
)t
)

= e
−i
(
ξ(t)b̂†k1

b̂†k2
+ξ∗(t)b̂k1

b̂k2

)
= Ŝ2(ξ(t)),

(4.21)

where

ξ(t) =

∫ t

−∞
dsζ(t)ei(Ωk1

+Ωk2
)t. (4.22)

As already mentioned, for what concerns the vibrational modes, (stimu-
lated) second-order Raman scattering is an interaction of this kind. Generally,
the Hamiltonian for the coupling of a dipole (which in our case is the solid’s
polarization) is in the following form:

ĤE = −P̄ · Ē
= −PµEµ

(4.23)

while the n-th order polarization in the electric field is

P (n)
µ = ε0X

(n)
µν Eν , (4.24)

where X
(n)
µν is the n-th order susceptibility. Stimulated Raman scattering is a

non-linear effect due to X(3), which is given by

X(3)
µν = χ

(3)
µν,αβEαEβ. (4.25)

The interaction Hamiltonian is therefore

Ĥ
(R)
E = χ

(3)
µν,αβEαEβEνEµ. (4.26)

We can now expand the solid’s susceptibility χ
(3)
µν,αβ in powers of the atomic

displacements. If we consider only the modes +k and −k to interact, we can
consider just the terms which couple the atomic displacements for these two
modes. Taking the second-order terms we obtain

Ĥ
(R)
E ∝ QkαQ−kβEαEβEνEµ (4.27)

Considering the atomic displacements on the same axis, Ĥ
(R)
E can be written

as
Ĥ

(R)
E = Z(t)QkQ−k, (4.28)
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where Z(t) contains the electric fields and other proportionality terms. Con-
sidering now the vibrational modes as quantized, the atomic displacements
can be written using the creation and annihilation operators of the modes as
follows

Qk = b̂k + b̂†−k. (4.29)

Therefore, the bilinear interaction Hamiltonian of the modes +k and −k be-
comes

Ĥ
(R)
E = Z(t)

(
b̂k + b̂†−k

)(
b̂−k + b̂†k

)
= Z(t)

(
b̂†k b̂k + b̂†−k b̂−k + 1

)
+ Z(t)

(
b̂k b̂−k + b̂†k b̂

†
−k
)︸ ︷︷ ︸ . (4.30)

The underlined term is the one needed to produce the squeezing.

Going, again, to the impulsive case, i.e. the situation in which

Z(t) = zδ(t), (4.31)

Û(t) is

Û(t) = e−iĤt/~ eiz(b̂
†
k b̂k+b̂†−k b̂−k) eξb̂

†
k b̂
†
−k−ξ

∗b̂k b̂−k︸ ︷︷ ︸
Ŝ2(ξ)

(4.32)

Therefore, impulsive second-order Raman scattering produces a two-mode
squeezed state with a squeezing parameter

ξ = ize−iz.





Chapter 5

Quantum state reconstruction
- Tomography

Having discussed some of the interactions of a harmonic oscillator, the point
is now how to discover, given such a system, its state when it is unknown.
More in general, what does it mean to “measure the quantum state of a sys-
tem”? The task of experimentally determining the state of a system is called
quantum tomography. It consists in gathering all the information needed, to-
gether with physical laws, to be able to predict the behaviour of the system
in future experiments. This means to predict the statistical distributions of
the outcomes of all possible measurements it can be performed upon. The
fundamental object which this information is encoded in is the density matrix
ρ̂. Quantum tomography is therefore the experimental process in which the
density matrix is reconstructed. It is worth stressing that, while the state of
a classical system can be determined by performing repeated measurements
on it, the knowledge of the state of a system which must be described with
quantum mechanics is not accessible, in general, when a single copy of the sys-
tem itself is available. In fact, the very act of measuring an observable of the
system changes its state, making repeated measurements on it meaningless to-
wards the determination of its initial state. Therefore, quantum tomography
is only possible when an ensemble of identically prepared systems is available.
With such an ensemble, repeated measurements are possible, each of them
independently performed on a different copy. Furthermore, as recognized for
the first time by Fano [1], in order to have enough information to fully recon-
struct the density matrix, it proves necessary to measure a set, called quorum,
of at least two non-commuting observables Ôi. This allows to estimate all the
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matrix elements ρij of the density matrix (represented in a basis
{
|φi〉
}

),

ρij = 〈φi|ρ̂|φj〉.

A more detailed example of this in the case of a two-level system is discussed
in appendix B.

While the tomography of optical states is routinely performed in quantum
optics laboratories, it is not used in the context of condensed matter. The
goal of this project is to develop the theoretical and experimental tools for
the characterization of states in condensed matter, e.g. the ones of a vibra-
tional mode. Being optical tomography a well established technique, the most
natural question and goal of this project is whether we can study quantum
states in a solid, and in particular coherent ones, by characterizing the state
of light pulses after their interaction with the material. However, it is possible
to study states in condensed matter even in other ways. In chapter 6 we will
present experimental set-ups we have built to measure the properties of the
quantum state of the excitations induced in a solid in pump-probe experi-
ments.

Instead, in this chapter we will describe the standard technique used in
quantum optics to perform the tomography of optical states, balanced homo-
dyne detection. The origins of its use in this context date back to 1993 [6]
and it has been extensively developed since then. Balanced homodyne detec-
tion is an experimental scheme that gives access to the measurement of the
quadratures of an electromagnetic field mode. From the expressions for the
two basic ones,

q̂ =
1√
2

(â+ â†)

p̂ =
1

i
√

2
(â− â†),

a generalization can be drawn, in the form

x̂Φ =
1√
2

(âe−iΦ + â†eiΦ).

These quantities are of interest because the set of all the quadratures with Φ
spanning the interval [0, 2π] constitutes a quorum for the state of a harmonic
oscillator and, hence, also for optical states. By performing repeated mea-
surements of the quadrature at a given phase Φ, the probability distributions
pΦ(x) of obtaining the value x in the measurement of the observable x̂Φ can be



5.1. BALANCED HOMODYNE DETECTION 33

estimated. This is possible since the histograms of the data collected approach
the actual form of pΦ(x) as the number of data increases. Since

pΦ(x) = Tr(|xΦ〉〈xΦ|ρ̂), (5.1)

the question now is whether this equation can be inverted in order to estimate
ρ̂ from the collected data (x,Φ) and their histograms. The Wigner function
equivalents of equation 5.1 for x̂0 = q̂ and x̂π

2
= p̂ are its marginal distribu-

tions |Ψ(q)|2 and |χ(p)|2 introduced in chapter 2. They could be rewritten
as pΦ=0(x) and pπ

2
(x) respectively. In order to get the distribution for a gen-

eral quadrature x̂Φ, the marginal distribution of the Wigner function must
be taken integrating on an axis rotated by Φ − π

2 with respect to q. Upon a
change of variables the integral becomes [7]:

pΦ(x) =

∫ +∞

−∞
dyW (x cos Φ− y sin Φ, x sin Φ + y cos Φ). (5.2)

This expression is what is known as Radon transform of the function W (x, y),
which in this case is the Wigner function.1 The latter can be therefore re-
covered by taking the Radon anti-transform of the measured pΦ(x). However,
the full reconstruction of the Wigner function or of the density matrix is not
a necessary step. Functions can be derived, called kernel or pattern func-
tions [8, 9, 10], which allow to directly calculate the expectation values of
observables bypassing the explicit reconstruction of W (q, p). They are writ-
ten in order for the expectation value 〈Ô〉 to be a simple average of its pattern
function R[Ô](x,Φ) weighted with the estimated probability densities p(x,Φ):

〈Ô〉 =

∫ 2π

0

dΦ

π

∫ +∞

−∞
dx p(x,Φ)R[Ô](x,Φ).

5.1 Balanced homodyne detection

The experimental set-up that allows to measure the quadratures of optical
states is called, as already mentioned, balanced homodyne detector. Its core
is depicted in figure 5.1.
The scheme depicted in figure 5.1 is the upper part of a Mach-Zehender inter-
ferometer, in which an incoming beam is split in two and then recombined on
a 50-50 beam-splitter as shown above. In such an interferometer, according to

1As a historical remark, the term tomography originates from the similarity of this
technique and the one used in medical context, where the Radon transform found one of its
earliest applications.
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Figure 5.1: Basic scheme of a balanced homodyne detector

the phase-difference between the two beams a and b, the reflectivity and the
transmittance of the beam-splitter can be tuned, up to forcing all the light to
go either way or the other. This happens because, depending on their phase
difference, the two beams constructively and destructively interfere, respec-
tively, on the two sides of the beam-splitter.

Balanced homodyne detection involves two different beams of light. The first
one, which is usually termed signal (and which we take to be a in figure 5.1),
is the beam constituted by the mode in the state ρ̂s. Its state has been pre-
pared in an unknown way and is the one that has to be studied. The second
one, called local oscillator (b in figure 5.1), is in a coherent state |z〉〈z| and is
used as a reference. Its role is to tune the phase Φ of the quadrature to be
measured. The two beams are mixed, as shown in figure 5.1 on a 50-50 beam-
splitter. Their interaction can be described, as briefly discussed in chapter 4,
by a Hamiltonian of the form

HBS = βâ†b̂+ h. c. .

Here â is the annihilation operator of the signal mode and b̂ is the one of the
local oscillator2. This kind of Hamiltonian leads to the evolution operator

ÛBS(η) = eηâ
†b̂−η∗âb̂† ,

where η = |η|eiδ is proportional to the interaction time (i.e. to the length of
the path of the beams within the beam-splitter) and to the linear susceptibility
of the medium the beam-splitter is made of [4]. Denoting with ĉ and d̂ the
operators describing the modes after the beam-splitter (or, as said in quantum

2In this chapter â, b̂, ĉ and d̂ all refer to optical states.
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optics, in its output ports), the evolution of the operators â and b̂ under this
interaction is (

ĉ

d̂

)
= Û †BS(η)

(
â

b̂

)
ÛBS(η),

which can be rewritten as

B̂(η)

(
â

b̂

)
=

(
cos(|η|) eiδ sin(|η|)
−eiδ sin(|η|) cos(|η|)

)(
â

b̂

)
.

In the case of a 50-50 beam-splitter, η ∈ R and equals π
4 and the transformation

reads simply (
ĉ

d̂

)
=

(
1√
2
(b̂+ â)

1√
2
(b̂− â)

)
. (5.3)

The phase between the signal and the local oscillator on the beam-splitter can
be varied by changing the optical path of the local oscillator, generally done
by moving a mirror mounted on a piezo-translator. This phase-shift can be
described by the following transformation of the mode operators of the local
oscillator: (

b̂

b̂†

)
=

(
eiΦb̂

e−iΦb̂†

)
. (5.4)

The intensity of the beams in the output ports of the beam-splitter is then
detected by two photodiodes C and D. The difference I between the currents
Ic and Id produced in the two photodiodes is amplified and acquired. The
photo-current observables Îc and Îd are proportional to the photon numbers
in the two beams, n̂c = ĉ†ĉ and n̂d = d̂†d̂. As we will discuss later, there
is a particular measurement that can be used to define the units of the ob-
servables involved in this kind of experiment and we can therefore put the
proportionality factor between Î and n̂ to 1. Hence, the difference Î between
the photocurrents is

Î = n̂c − n̂d = ĉ†ĉ− d̂†d̂.

It turns out that, under two conditions on the intensities of the signal and
local oscillator beams, the difference current observable ÎΦ at a given local
oscillator phase Φ is proportional to the quadrature observable x̂Φ.
In fact, taking into account the transformation due to the beam-splitter (5.3)
and the one due to the phase-shifting of the local oscillator (5.4), the difference
current can be rewritten as

ÎΦ = â†b̂eiΦ + b̂†e−iΦâ.
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Its expectation value is proportional to the expectation value of x̂Φ, as demon-
strated in the following lines:

〈ÎΦ〉 = Tr
(
ÎΦ ρ̂s ⊗ |z〉〈z|

)
= Tr

(
(â†b̂eiΦ + b̂†e−iΦâ) ρ̂s ⊗ |z〉〈z|

)
= Tr

(
â†b̂eiΦ ρ̂s ⊗ |z〉〈z|

)
+ h. c. = Tr

(
â† ρ̂s

)
Tr
(
b̂eiΦ |z〈〉z|

)
+ h. c.

= Tr
(
â† ρ̂s

)
〈z|b̂eiΦ|z〉+ h. c. = Tr

(
â† ρ̂s

)
|z|eiΦ + h. c.

= |z|Tr
(
(â†eiΦ + âe−iΦ)ρ̂s

)
=
√

2|z|Tr
(
x̂Φρ̂s

)
=
√

2|z|〈x̂Φ〉.
(5.5)

The above calculation must, however, be accompanied by a condition which
ensures that the difference current’s spectrum, which is discrete (being the dif-
ference of two number operators) well approximates the continuous spectrum
of the quadratures x̂Φ. This condition is that

|z| � 1.

It means that the local oscillator must be very intense. Nevertheless, in order
to have access to the probability densities pΦ(x), the observables ÎΦ and x̂Φ

must also have, a part from equal expectation values, also equal distributions.
In other words, all their statistical moments must coincide. As an example,
the second-order moment of the difference current (which has been divided by
the factor

√
2|z| derived in equation 5.5) is

ÎΦ√
2|z|

=
1√
2|z|

Tr
(
(â†b̂eiΦ + âb̂†e−iΦ) ρ̂s ⊗ |z〉〈z|

)
= 〈x̂2

Φ〉+
〈 â†â

2|z|2
〉
.

(5.6)

The condition for the second moments of the observables to coincide, a part
from the proportionality factor, is therefore that

|z|2 � 〈â†â〉ρ̂s = 〈n̂〉ρ̂s . (5.7)

Hence, not only the local oscillator has to be intense, but it has to be much
more intense than the signal beam. This can be referred to as a quantum
regime of the Mach-Zehender interferometer, opposed to a classical one in
which the signal field is in a large-amplitude coherent state. We will discuss
the latter case in more detail in section 6.4, in the context of an experimental
technique we have developed.
It can furthermore be proven that condition 5.7 ensures that even all the
higher order moments of ÎΦ and x̂Φ are equivalent.
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Vacuum measurement - Defining the units As mentioned, there is a
particular measurement that allows to calibrate the detector defining a unit
in the values of the difference current. This is the measurement of the distri-
butions pΦ(x) for the vacuum state. In fact, the variance of the distribution
of the quadratures for a vacuum state is 1

2 for all the values of Φ and provides
a rescaling factor to be applied to the data. The measurement can be per-
formed blocking the signal beam before it enters the beam-splitter, therefore
preparing the signal beam in the vacuum state.

Figure 5.2: Vacuum measurement

Technical notes on the detection system The measurements of the
photo-current, which corresponds to the number of photons, will display some
amount of noise, generated by different sources. A contribution to the total
noise comes directly from the state, as described in chapter 3, and is called
shot noise. The shot-noise power of a coherent state linearly increases with
the intensity of the beam hitting a photo-diode and it is not a property of
the detector, while the rest of the noise, called electronic noise, is. Shot noise
is the one that we are interested in for the measurement of the distributions
pΦ(x). Therefore, in order for the latter to be meaningful, the shot noise
must be the dominant one in the measurement process. A useful parameter,
to compare shot and electronic noise with, is the so-called shot-to-electronic
noise ratio, i.e. the signal-to-noise ratio in the case of a vacuum measurement.
The higher this ratio is, the better the measurement of pΦ(x).
The relation between the distributions Î and x̂Φ not only is bound to the
condition of low electronic noise but to a high efficiency η of the photo-diode
too. In fact, while for η = 1 the correspondence between the two is perfect, it
progressively becomes less reliable when η decreases. (see [11])
Another fundamental property of the detection system to know, is the light-
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intensity interval in which it is in its linear regime. It is the regime in which
the photo-current linearly increases with the intensity of the light impinging
on the photo-diode. Out of this interval (which extends from 0 up to a certain
intensity) the photo-current cannot be considered proportional to the photon-
number any more, since the relation between the two is not linear.
Moreover, the detector must be highly efficient in the subtraction of the sig-
nals from the two photo-diodes.
The characterization of the parameters of our set-up for balanced homodyne
detection will be discussed in chapter 6.

Pulsed regime The above discussion takes into account two beams which
are continuous waves. However, the use of beams produced by pulsed lasers
is of much more general interest. It opens up the possibility to exploit the
non-linear optical properties of materials and allows to perform time-resolved
pump-probe measurements.
In order to describe a pulsed beam, more than a single mode of the electro-
magnetic field has to be considered. Nevertheless, it can be shown [12] that
balanced homodyne detection in the pulsed regime still measures the quadra-
tures of the generalized mode describing the signal beam, upon the following
redefinition of its mode operators:

Â†(ᾱ) =
∑
l

αlâ
†
l .

A part from the above mentioned formal adjustments, some technical issues
arise in this context. With a pulsed beam the values of the difference current
are acquired and numerically integrated separately over the time interval cor-
responding to a single pulse. These integrals are the numbers associated to the
measurements of the quadratures. Therefore, the detector electronics must be
fast enough to avoid the overlap of successive pulses in order to measure single
pulse properties. Moreover, the requirements of a high shot-to-electronic noise
ratio and of a high subtraction efficiency have to be met on all the frequency
range that goes from DC up to the repetition rate of the pulses in the beam.



Chapter 6

The experimental set-up

The goal of the project this thesis is set in is to extend to condensed mat-
ter the concepts underlying the quantum tomography of optical states. The
phenomena which we are interested in are transient states produced in pump-
probe experiments, e.g. the coherent phononic vibrations in Bismuth, and the
techniques which we are about to describe naturally involve extended pump-
probe set-ups.
In a pump-probe experiment the sample under study is excited with an intense
ultra-short laser pulse, dubbed pump. The variation of the optical properties
of the sample, e.g. its reflectivity, are studied with a second ultra-short light
pulse, which is called probe. By changing the time-delay between the excita-
tion with the pump pulse and the probing with the probe pulse it is possible
to study the temporal evolution of the optical properties of the solid after
the excitation. Pump-probe experiments are most commonly performed using
quasi-monochromatic light pulses centred at a wavelength of 800 nm.1 How-
ever, different approaches are becoming more and more common.
The task of studying quantum states in condensed matter can be approached
from various angles. Being optical tomography a well established technique,
the main direction of the project is to study how the state of a light pulse is
affected by the interaction with a material and, in particular, with a sample
out of equilibrium. The information about the sample dynamics which is en-
coded in the probe’s state can be retrieved via optical tomography. The first
section of this chapter describes the balanced homodyne detector which we
have combined with pump-probe experiments.
Another step towards the goal of studying quantum states in condensed matter

1The reason for this is that the most common pulsed laser source produce light at this
specific wavelength.
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is the measurement of the fluctuations in the transient reflectivity in pump-
probe experiments. In general, the average of the intensities of many pulses
reflected by the sample is taken. However, also the variance of the reflected
intensity seems to contain information about the excitation produced in the
sample by the pump pulse. For example, the position of the A1g vibrational
mode of Bismuth is mapped in its reflectivity. The variance of the reflectivity
contains, therefore, statistical information related also to the q̂ observable of
the underlying mode. In order to measure statistical properties of the reflec-
tivity, we have built a set-up (described in section 6.2) which allows us to
measure the intensity of each probe pulse separately. Standard pump-probe
set-ups, instead, use devices that average over a set of successive pulses.
In the final section instead, we discuss a secondary possibility introduced by
the balanced homodyne detector. As described in chapter 5, such an instru-
ment is based on a Mach-Zehender interferometer. Pump-probe experiments
measure the variations in the intensity-reflectiviy of the sample, i.e. the vari-
ations in the amount of energy reflected by its surface. This is proportional to
the square modulus of the electric field of the wave. The interferometer allows
us to study also the phase of the electric field of the probe pulses reflected by
the sample and therefore detect the excitation-induced phase-shift.

Laser source The laser system which produces the pulses used in our ex-
periments is depicted in figure 6.1. A Nd:YVO4 Verdi V18 (Coherent) laser
pumps a Mira (Coherent) oscillator, in which the active medium is Titanium
doped Al2O3 (Ti:Sapphire). The oscillator produces pulses at a 80 MHz repe-
tition rate, with a spectrum which is centred on a wavelength of approximately
800 nm and is 30 nm broad. The average output power is approximately 600
mW.
These pulses are then amplified with the chirped pulse amplification scheme.
They are first of all stretched and then amplified in a regenerative amplifier
RegA (Coherent). The output pulses of RegA are compressed and finally sent
to the experimental set-up. The final pulsed beam has a 250 kHz repetition
rate and an average power of 1.2 W.
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Figure 6.1: Scheme of the laser system

6.1 Balanced homodyne detector for pump-probe
measurements

As anticipated, the aim of our balanced homodyne detection set-up is to study
the state of the probe pulses after their interaction with the sample. In such a
situation, the state preparation of the signal occurs in the reflection scattering
process of the probe pulses from the sample, which is a Bismuth single crystal
in the specific case. As already described, the sample is excited using a second
pulsed beam, the pump.
The scheme of our set-up is depicted in figure 6.2. An incoming coherent
pulsed beam (produced by the laser source) is split into two by a beam-splitter
(BS1). The reflected beam is used as local oscillator, while the transmitted
one as the probe pulse. A different beam coming from the same laser enters
the set-up separately from the previous one and is used as the pump. To
change the delay between the arrival on the sample of a pump pulse and
of the successive probe pulse, the optical path of the pump beam is varied
using a mechanical translator (which is placed outside the scheme we are
discussing and is not present in figure 6.2). Both the pump and the probe
beams are focussed on the sample by the lenses Lp and L1 respectively and
the probe is then collected, re-collimated and sent into the balanced homodyne
detector. Before entering the interferometer, however, the beam is filtered by
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Figure 6.2: Scheme of the balanced homodyne detector adapted to pump-
probe experiments

the polarizer Pp. This reduces the scattering from the pump pulses, which are
orthogonally polarized with respect to the probe ones, that enters the actual
homodyne detector.
On the local oscillator branch, a piezoelectric translator (PI PZ166E) is used
to change the phase of the local oscillator. The translator stage has a 250 µm
total travel range and a 1 nm nominal resolution.
In the upper part of the interferometer, i.e. after the central beam-splitter
(BS2), two couples of half-wave plate and polarizer are used to correct for the
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unbalances in the BS2 itself. Finally, two lenses (Lc and Ld) focus the beams
from the two output ports of the central beam-splitter onto the photodiodes.

The acquisition system

The acquisition system used is constituted by a balanced amplified differ-
ential photodetector (Thorlabs PDB440A) and a fast digitalizer (Spectrum
M3i.2132-exp). The differential photodetector consists of two “well matched”
Silicon PIN photodiodes and a low-noise amplifier. The latter outputs a volt-
age proportional to the difference between the photo-currents produced. As
described in chapter 5, the photo-currents are in turn proportional to the
number of photons impinging on the photodiodes.
The output voltage of the amplifier, i.e. the difference signal, is measured using
a fast 8-bit ADC, which has a maximum sampling rate of 1 GSample/s. This
means that we can acquire up to one difference current value every nanosec-
ond. The acquisition board in which the ADC is mounted has an on-board
500 MByte memory, which can be used also as a FIFO-buffer. The board has
been bought with a specific option, called Multiple recording, which allows to
trig the acquisition and to acquire only for a limited time-span each trigger.
In fact, the repetition rate of the pulses is 250 kHz, which means that there
is a 4 µs interval between two successive pulses. Since the response of the
photodiodes to one pulse lasts for about 40 ns, a continuous acquisition of
the output of the amplifier would contain mostly irrelevant data. Instead, by
using the Multiple recording option and triggering the acquisition with copies
of the pulses themselves, the acquisition is limited to the actual “duration” of
the pulses, discarding the voids in between, as depicted in figure 6.3.

Figure 6.3: Multiple Recording acquisition mode



44 CHAPTER 6. THE EXPERIMENTAL SET-UP

Characterization of the differential detector

In chapter 5 we have pointed out some of the characteristics of the photo-
detection system which are of fundamental importance to balanced homodyne
detection. Among them, the shot-to-electronic noise ratio and the linearity of
the photodiodes depend on the choice of the experimental working conditions.
In fact, there will be an optimal mean power of the beams impinging on the
photodiodes. Because of condition 5.7, these intensities are determined by the
intensity of the local oscillator, since the signal field must be much weaker.
The linear relation between incident intensity and detector’s response ensures
that what is measured is actually linearly proportional to the photon number.
Instead, a high shot-to-electronic noise ratio is needed for the distribution of
the difference currents to match the one of the quadratures.

In order to separately characterize the two photodiodes, one of them can
be physically covered to stop the beam. In this way, the modulus of the dif-
ference signal is the signal produced in the uncovered photodiode. When the
intensities of the two beams are equal, the difference trace and the single-diode
traces acquired by the digitalizer for each pulse are like the following:2,3

Figure 6.4:

The acquired traces are then integrated and the average is taken from a set
of thousands of them. In graphs 6.5 the average integrated current over a set

2Note that the pulse duration is well below the time-resolution of any photodiode. The
shape of the trace is then given by the detector’s response.

3The difference trace is not exactly zero for all times, as it should because of the equal
intensities of the beams. This is due to imperfect subraction efficiency of the detector.
The polarizers and half-wave plates in the upper part of the interferometer can be used to
minimise it balancing the two beams. However, since this residual zero-response is constant,
it can be ignored for all purposes and subtracted in the data analysis procedures.
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of 32 000 pulses produced in the two single photodiodes is plotted against the
intensity of the beam.

Figure 6.5: Linearity test for the single diodes: integrated current vs beam
mean power.

In figure 6.6, we plot of the variance of the difference current as a function
of the mean power of the beam.

Figure 6.6: Shot noise test: variance of the integrated difference current vs
beam mean power.

As one can see from graphs 6.5 and 6.6, 15 µW is the highest local oscillator
mean power allowed for balanced homodyne detection. In fact, above 15 µW
the intensity-current relation is not linear and the noise ceases to increase
linearly with the intensity, i.e. it ceases to be shot-noise limited. The linear-
regime interval for the detector is therefore [0, 15] µW.
Another relevant fact is that the noise does not go to 0 as the intensity of the
impinging beam decreases. This means that there is, a part from shot noise,
a constant electronic noise background. The optimal power is the one which
maximizes the shot-to-electronic noise ratio and is, hence, 15 µW. For this
value of the power, the ratio is 1.86.
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High electronic noise condition

Despite the fact that, at 15 µW of working mean power, the shot noise is a large
contribution to the total noise in the measurement, the shot-to-electronic noise
ratio reported for this set-up is too small for the standard Wigner function-
reconstruction algorithms. In fact, electronic noise can be described as an
equivalent inefficiency of the detector [13] and such a value of the ratio leads
to a total equivalent efficiency which is lower than 0.5. The latter is a critical
limit for standard reconstruction algorithms. However, this problem can be
compensated using specifically adapted algorithms, which require the acqui-
sition of a large amount of data [14].
As an alternative, it is possible to extract partial information on the state
measuring electronic noise-free quantities. An example is the correlation be-
tween the currents produced in the two photodiodes at a given phase, in the
hypothesis of a time-independent electronic noise [15].

6.2 Noise pump-probe measurements

The transient reflectivity changes induced by the excitation in pump-probe
measurements are very small. Generally the relative variation of the reflectiv-
ity (and hence of the intensity of the reflected probe) is below 10−2. Thus a
method to overcome the noise and the flucutations in the laser source and to
resolve such tiny variations is needed.
In the standard pump-probe set-ups this task is addressed by modulating the
relevant signal at a specific frequency and filtering the output of the pho-
todiode with a lock-in amplifier. The modulation of the signal is achieved
chopping the pump beam, e.g. with a mechanical chopper.
The set-up we have built does not need such a modulation and allows us to
acquire large amount of data with a significant statistics in very short times. It
is a balanced set-up for pump-probe measurements built with the same differ-
ential photo-detector used for the balanced homodyne detector. The scheme
of the set-up is depicted in figure 6.7. In figure 6.8, located at end of this
section, we show that it is compatible with the balanced homodyne detector,
i.e. we can switch between one set-up and the other by simply raising two
flip-mirrors.
An incoming pulsed beam is split in two by a beam splitter. The reflected
beam, used as a reference, is directly focussed on one of the photodiodes of
the detector, while the transmitted one is used as probe. After the interaction
with the sample, the latter is collected and focussed on the second photodiode.
The reference beam is attenuated in order for its intensity to be equal to the
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Figure 6.7: Scheme of our balanced set-up for pump-probe measurements

intensity reflected by the sample at equilibrium. This is done by blocking
the pump beam (i.e. leaving the sample at equilibrium) and minimizing the
output of the differential detector with the help of the half wave plate and
the polarizer placed on the path of the reference beam. When the sample is
instead excited and its reflectivity is different from the equilibrium one, the
intensity of the reflected probe and the one of the reference beam are different.
Therefore, the output of the differential detector is proportional to the inten-
sity difference ∆I and hence to the reflectivity variation ∆R of the sample.

The first advantage of a balanced measurement in this context is the intrinsic
cancellation of the fluctuations of the laser source without the need of any
lock-in amplifier or similar objects. In fact, if the total intensity fluctuates of
δ, the differential output is

(I + ∆I)(1 + δ)− I(1 + δ) = ∆I(1 + δ).

Thus, the variations of the reflected intensity due to the sample are not hidden
by the total fluctuations, as they would be in the measurement of

(I + ∆I)(1 + δ).

As a second point, since a lock-in amplifier is unnecessary, each pulse can be
separately acquired using the fast digitalizer. This allows us to collect large
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amount of “statistically significant” data in very short times. In fact, at the
repetition rate used, 250 000 pulses are available each second and each of them
can be acquired, integrated as described in section 6.1 and its integral stored
as a value of ∆R. Generally, we acquire some tens of thousands of pulses for
each pump-probe delay. This is done in a fraction of a second. With such a
set of data we can calculate the average of the intensity for each pump-probe
delay and obtain ∆R

R (t).4 Moreover, we can calculate also the variance of
the distribution of ∆R(t). Previous works [16] already reported noise mea-
surements of the transient reflectivity in pump-probe experiments. These had
been performed using a lock-in amplifier and over long times. However, it
has been shown [17] that the integration time set on the lock-in amplifier has
a major role in determining the noise. Moreover, the long acquisition-times
expose the measurement to low-frequency noise normally present in an exper-
imental set-up. Successive measurements performed with such a device are
therefore statistically unreliable for what concerns moments of the distribu-
tion of order higher than one. With our set-up, instead, we can calculate the
pulse-to-pulse noise, avoiding artifacts due to devices like a lock-in amplifier
and low-frequency noise. 5

6.3 White light pump-probe measurements

We have also performed broadband pump-probe experiments on Bismuth, i.e.
pump-probe measurements in which the probe is a broadband white light
pulse instead of a quasi-monochromatic one. In this way, the variations in
the reflectivity of the sample can be studied on a wide range of wavelengths,
namely from approximately 500 nm up to 800 nm. Compared to what can be
known with “monochromatic” pump-probe experiments, a clearer picture of
the induced dynamics can be extracted. The set-up we have used for this kind
of experiments is not based on a balanced detection system as the one for the
pulse to pulse noise measurements. In order to separate the information about
the different wavelengths contained in the white light, the white probe pulses
are dispersed on a photodiode array by a prism, as sketched in figure 6.9.
The measurements performed are reported in chapter 8.

4The value of R used to normalize ∆R, is obtained, a part from common proportionality
factors, as the average intensity of the reference pulses. The photodiode hit by the probe is
covered and some thousands of reference pulses are acquired. The average of the integral of
the acquired traces is the value of R.

5We have verified that the responses of the detector to successive pulses are uncorrelated.
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Figure 6.8: The integration of the balanced set-up for pump-probe measure-
ments in our homodyne detecor. In this configuration, the piezo-translator is
not used. The fact that half of the intensity of the probe pulses is lost on the
central beam-splitter is compensated attenuating the reference beam.

Figure 6.9: A prism is used to disperse the white-light broadband probe onto
an array of photodiodes.

6.4 Transient phase-shift measurements

As anticipated in the introduction to this chapter, the interferometer which the
homodyne detector is build upon can be used to study the phase of the probe
pulses’ electric field. To do this, it is not necessary to satisfy condition 5.7 on
the intensity of the signal field. We can, hence, work in the classical regime
of the interferometer. Considering the signal field in a coherent state |α〉,
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equation 5.5 becomes

IΦ =
√

2|z||α|cos(Φ),

where Φ is the phase difference between the signal and the local oscillator.
In fact, scanning the values of Φ with the help of the piezo-translator, the
set-up can be used to measure the classical linear autocorrelation pattern of
the pulse.
When the reflectivity of the sample changes because of the excitation, both
the real and imaginary part of the dielectric function change. There will,
therefore, be a phase-shift of the reflected electric field with respect to the
equilibrium situation. The measurement of the modulus and phase of the
reflected field is equivalent to the polarization ellipsometry techniques. To
our knowledge, however, such phase sensitive measurements are not usually
performed.
In order to measure a phase shift we need to acquire, for each pump-probe
delay, the difference current IΦ for at least a significant portion of a cycle
of the interferometric pattern. Fitting the sinusoidal curve obtained we can
extract a value for the phase, which, however, is still arbitrary. We still need
a reference to make a comparison with the phase of the electric field reflected
by the sample at equilibrium. The scheme we have adopted is the following:
We chop the pump beam using a mechanical chopper, as shown in figure 6.10.
In this way, we have time intervals in which the probe is alternatively reflected
from the sample at and out of equilibrium. Exploiting the fact that the piezo-
translator can be moved in a continuous way, we can make fast scans, that
last for about 150 ms, over a portion of the interferometric pattern. Con-
tinuously acquiring the values of the difference current during these scans, a
pattern is retrieved which is split in various intervals, alternatively referring
to the sample at and out of equilibrium. The problem is now to be able to
automatically split the interferometric trace in the two sub-traces made of
the pumped and unpumped segments. This is possible using the BXIO (ba-
sic express input/output) option of the M3i.2132-exp acquisition board. The
BXIO option allows to acquire up to 8 digital channels sinchronously to the
main analog channels of the ADC. Using a beam-splitter to reflect part of
the chopped pump beam on a photodiode and connecting the latter to one of
the BXIO digital channels6, we can associate the status of ”pumped” or ”at
equilibrium” to each difference current value acquired.

6The photodiode must be saturated by the pump beam. In this way its output is a
square wave which can be used as a digital signal.



6.4. TRANSIENT PHASE-SHIFT MEASUREMENTS 51

Figure 6.10: Our set-up for the measurement of transient phase-shifts in pump-
probe experiments

In appendix D we discuss an alternative way of measuring the transient
phase-shift.





Chapter 7

Bismuth

Most of the elemental metallic crystals are either cubic (body- or face-centred)
or hexagonal close-packed. Exceptions to this are Arsenic, Antimony and Bis-
muth, whose structure is called α-Arsenic (or A7) [18]. In particular, this
structure can be described as a distorted simple cubic one, in which the atoms
have dimerized along the [111] direction. This means that the inter-atomic
distances have alternating values on the mentioned axis. The one-atom ele-
mentary cell of the ideal simple cubic crystal therefore becomes a two-atoms
cell in a face-centred cubic lattice.
The departure from the simple cubic structure arises from the fact that the
distortion and the related symmetry reduction are favoured by a gain in elec-
tronic energy, as described in the following section. Therefore, there is a strong
coupling of electronic degrees of freedom and lattice vibrations along the [111]
direction. This coupling, in turn, lies at the core of the “coherent” vibrational
response which is observed in pump-probe experiments on these systems. This
will be described in more detail in section 7.3. This phenomenon is the reason
that triggered us to take Bismuth as model system for this project. In fact, the
most intuitive condensed matter equivalents to photonic states are phononic
ones, which had been extensively studied in this system from a classical point
of view.

7.1 Jones - Peierls distortion

In trying to understand the structure of crystals, it is natural to think of forces
between the constituent atoms [19]. Considering that these depend on the dis-
tances between atoms and that bonds can be directional, one can account for
the structure of the majority of crystals. However, the structure of elemental
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Bismuth and of the other A7 elemental crystals cannot be explained with such
arguments. As already anticipated, it is a slightly distorted simple cubic lat-
tice in which one atom every two has moved along the diagonal of the cube1.
Therefore, the symmetry of the actual structure is lower than that of the ideal
one. The distorted structure displays unit cells which contain two atoms and
which form a face-centred cubic lattice. Its first Brillouin zone is inscribed
in the cube of edge 2π

a , corresponding to the undistorted case, as depicted in
figure 7.1.

Figure 7.1: First Brillouin zones of a face-centred cubic and of a simple cubic
lattice.

The number of states (spin and orbital) for an electronic band within the
new zone is twice the number of unit cells (i.e. one for each atom) and Bismuth
atoms have an odd number of electrons (83). Thus, most of the states inside
the new zone are filled, while most of the ones outside are empty. The surfaces
of the new zone which lie within the volume of the ideal one act to open a
gap, lowering the energy of the states within the Brillouin zone, which are
mostly filled, and raising the energy of the ones outside, which in turn are
mostly empty [20]. Thus, breaking the symmetry brings to a net lowering
of the total electron energy. This is called Jones-Peierls distortion. On the
other hand, the interaction between the atomic cores tends to favour the
symmetric configuration. The stable low-symmetry configuration is justified
by a dominating electronic energy gain.2 Figure 7.2 shows the opening of
the Peierls gap in the one-dimensional case, while figure 7.1 shows the three-
dimensional case with a simplified Fermi surface.
However, despite the opening of the gap, Bismuth is a conducting material,
albeit a poor one (a semi-metal). In fact, as already mentioned, neither the

1There is also a slight misalignment between the ideal cube diagonal and the dimer axis
in the distorted lattice. However, this further detail does not affect the argument presented.

2The one-dimensional equivalent of this process is known as Peierls distortion [19].
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states inside the Brillouin zone are all filled nor the ones outside are all empty,
and therefore both electrons and holes conduction still takes place.

Figure 7.2: One-dimensional case of the Peierls distortion.
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Real space ideal simple cubic lattice. First Brillouin zone of the ideal sim-
ple cubic lattice and a simplified Fermi
surface.

Real space distorted face-centred
cubic lattice. First Brillouin zone of the distorted

structure and a simplified Fermi sur-
face.

As we will discuss later in more detail, the Jones-Peierls distortion straight-
forwardly couples the atomic positions along the [111] axis to the electronic
degrees of freedom. This is of fundamental relevance to the kind of pump-
probe experiments we will discuss in this thesis.
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7.2 Unit cell and active phonons

In this section we will analyse which symmetries are allowed for the lattice
vibrations in such a crystal. The A7 α-Arsenic structure has the symmetry of
the R3̄m space group and its unit cells interact with the surrounding environ-
ment in a D3d-symmetry. The D3d point group contains the identity E, two
C3 rotations of 2

3π around the z-axis (which in this case is the dimer axis),
three C2 rotations of π around axes orthogonal to the dimer-axis, the inversion
i, two roto-reflections S6 around the z-axis and the mirror reflections σd about
three planes containing the two atoms of the unit cell. The full character ta-
ble of the irreducible representations for the D3d group with their linear and
quadratic bases is reported in appendix C.

The characters of the representation Γ of the atomic coordinates are the fol-
lowing,

E 2C3 3C2 i 2S6 3σd
Γ 6 0 0 0 0 2

.

These characters are the traces of the matrices representing the operators of
the group in the base of the cell’s atom coordinates. The decomposition of
Γ in the irreducible representations of the group is reported in table 7.1.
Therefore, Γ can be written as

A1g ⊕ Eg ⊕A2u ⊕ Eu.

From the character table in appendix C, the A2u and Eu representations cor-
respond to objects that behave like polar vectors and therefore to the acoustic
vibrational modes of the lattice. They are the frustrated translations of the
unit cell blocked within the crystal. The remaining two representations, A1g

and Eg, correspond to optical modes. The Eg mode is the frustrated rotation
of the cell around an axis orthogonal to the dimer-axis. The A1g one is, in-
stead, the fully symmetric one and is the axial vibration of the two atoms in
the unit cell.
Neither of the two optical modes can be excited via an electric-dipole transi-
tion with an initial fully symmetric state. In fact, depending on the radiation-
crystal geometry, the irreducible representations for the dipole operator is the
Eu or the A2u and none of the optical modes has one of these symmetries.
They are instead both Raman-active.
In order to preserve the symmetry of the unit cell, the atomic displacements
in the A1g optical mode must be along the z-axis. The latter corresponds to
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1E 2C3 3C2 1i 2S6 3σd
Γ 6 0 0 0 0 2
A1g 1 1 1 1 1 1

(1 · 6) · 1 (1 · 0) · 2 (1 · 0) · 3 (1 · 0) · 1 (1 · 0) · 2 (1 · 2) · 3 = 1 · 12

A2g 1 1 -1 1 1 -1

6 0 0 0 0 -6 = 0

Eg 2 -1 0 2 -1 0

12 0 0 0 0 0 = 1 · 12

A1u 1 1 1 -1 -1 -1

6 0 0 0 0 -6 = 0

A2u 1 1 -1 -1 -1 1

6 0 0 0 0 6 = 1 · 12

Eu 2 -1 0 -2 1 0

12 0 0 0 0 0 = 1 · 12

Table 7.1: Decomposition of the representation Γ of the coordinates in irre-
ducible representations.

the Jones-Peierls distortion direction of the crystal. The A1g mode is therefore
coupled to the electronic degrees of freedom via the distortion mechanism de-
scribed in the previous section. In fact, a non-zero amplitude in the A1g mode
leads to a modulation of the electronic energy gap. Conversely, the excitation
of electrons from the “valence” band into the “conduction” band reduces the
total energy gain since states become filled which had been raised in energy by
the opening of the gap. It therefore destabilizes the distortion and transfers
energy into the A1g mode. This excitation process falls under the name of
displacive excitation [21], since it corresponds to a sudden translation of the
equilibrium position for the atomic displacements.
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7.3 “Coherent phonons”

The main background phenomenon which this project is based upon is the
“coherent”3 vibrational response observed in pump-probe experiments on Bis-
muth.
The most simple response which can be expected in such an experiment is the
production, due to the interaction with the pump pulse, of an excitation and
its subsequent thermal relaxation. In such a situation, the reflectivity of the
sample behaves in the way depicted in figure 7.3, in which the relative vari-
ation of the reflectivity ∆R

R is plotted as a function of time t (i.e. time-delay
between the excitation and the probing, or pump-probe delay).

Figure 7.3: Simple pump-probe trace

However, more complex responses can occur (as is the case for Bismuth). As
an example, a coherent modulation of the underlying thermal relaxation-signal
can be present. In these cases two distinct contributions to ∆R

R (t) can be iden-
tified, which we call coherent and incoherent part, as depicted in figure 7.4.
If the frequency of the coherent modulation of the reflectivity corresponds to
the known frequency of a vibrational mode in the solid, which can be measured
in a scattering experiment (e.g. Raman), the modulation itself can be associ-
ated with the presence of a coherent lattice vibration4. In these cases, there
exists a mechanism which maps the vibrational response, and in particular
the vibrational mode’s position (i.e. atomic positions), onto the high-energy
optical properties of the sample. In fact, while the energy of vibrational ex-
citations in condensed matter is of tens of millielectronvolts, their presence is
mapped, for example, in the reflectivity at ∼ 1.5 eV (800 nm). Furthermore,

3In this chapter we will use the term coherence in relation to oscillations with a well
determined phase. From now on we will drop the quotes here.

4Note that there is not necessarily a strict correspondence with quantum coherent states
of the vibrational mode considered.
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the damping of the coherent part of ∆R
R is due to the damping of the vibra-

tional oscillation. This is, in turn, caused by the interactions of the phonons
with various degrees of freedom.
Bismuth crystals behave as described above. However, Bismuth (as also Anti-
mony) displays coherent reflectivity oscillations whose amplitude is unusually
large. As described in the previous section, the A7-structure allows for two
different symmetries of optical vibrations. Oscillations at the frequency of the
A1g mode can be seen in the transient reflectivity under general experimental
conditions. Modulations due to the Eg mode, instead, have been seen in the
anisotropic reflectivity change of polycrtystalline films [22] or in the reflectiv-
ity change of single crystals below 200 K [23].
The efficient mapping and the consequent large contribution of the A1g oscil-
lations to the ∆R

R (t) signal are due to the coupling of the electronic degrees
of freedom and the A1g mode. In order to concentrate on the simplest case,
our discussion here will relate to the situation in which only the A1g mode is
visible. The measurements which we present in chapter 8 are performed under
these conditions too.

One of the parameters which can be varied in a pump-probe experiment
is the amount of energy brought by each pump pulse on the sample. How-
ever, since the dimensions of the transverse section of the pulse depend on the
specific experimental set-up, rather than the energy per pulse, the relevant
number is the energy surface density brought by a pump pulse on the sample,
which is called fluence and is generally expressed in J/cm2.
It has been extensively reported [24, 25, 26] that the frequency of the oscilla-
tion changes during the oscillation itself and that, the higher the fluence of the
pump pulses, the larger the total frequency shift is. In particular, for short
times after the excitation, when the amplitude of the oscillation is large, the
phonon-mode is softened, i.e. there is a shift of the frequency towards lower
values, whereas it tends to the Raman-measured A1g mode frequency with
increasing time.
This effect had been originally ascribed to the anharmonicity of the lattice po-
tential [24]. In fact, the frequency shifts away from the ”harmonic” value when
the amplitude of the oscillation is large, i.e. when the mode is heavily pop-
ulated, while it recovers the “harmonic” value when the amplitude becomes
small. In classical terms, the larger the amplitude of the oscillation the more
the atoms “explore” anharmonic regions of the lattice potential. However,
further works have suggested another explanation for the phonon softening,
which involves an electronic screening of the lattice potential [27, 18, 28].
Together with the phonon-softening, the oscillation is also damped more strongly
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the higher the excitation-fluence is.
It is also known that there is a temperature-dependent equilibrium phonon
softening, i.e. the equilibrium frequency of the vibrational mode becomes
lower at higher temperatures of the crystal.

Both the thermal equilibrium softening and the dynamical short times
softening can be accounted for in the electronic screening picture. In fact,
the shape of the potential will depend on the total energy gain. This, in turn,
depends on the density of electrons in the conduction band, since the presence
of electrons excited across the gap lowers the gain in electronic energy. We
can therefore consider the expansion of the mode’s frequency in powers of the
electronic density in the conduction band [18, 28]:

Ω(n) = Ω(0)− an. (7.1)
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Figure 7.4: ∆R
R (t) and its incoherent and coherent parts.



Chapter 8

Results

In this chapter we present the analysed data obtained in our pump-probe ex-
periments on Bismuth. The measurements reported in the first section are
the reflectivity-noise data, in which we study the behaviour of ∆R

R (t) and of
its variance. As described in chapter 7, the A1g vibrational response of the
Bismuth crystal to the excitation is mapped in its high energy-reflectivity.
The goal of these measurements is to extract statistical information about
the state of the A1g mode through the study of the statistical properties of
the reflectivity. These are the first step in the core direction of the project.
In fact, also the full tomography of a state consists of the measurement of its
statistical properties. The measurements we report here, however, do not con-
stitute a tomographic reconstruction, because the vibrational mode evolves in
time due to interactions, and the statistical information about its state is only
partial for every pump-probe delay. Moreover, the observed statistics is not
necessarily exclusively related to the vibrational dynamics but can contain
contributions due to the transient dynamics of the electrons. The mapping
process could map the statistics of the underlying vibrational state in a non-
faithful way.
The other two sections contain data, which are auxiliary to the project. They
do not play a role in the determination of the state of the system but are help-
ful to have a clearer picture of the phenomenon occurring in the sample out of
equilibrium. In particular, they could help to understand in more depth the
mapping process of the vibrational response into the high-energy optical prop-
erties. Pump-probe measurements with white light-probes (section 8.2) are
useful to track the variations of the reflectivity over a broad energy-interval.
The measurement of the transient phase-shift in the field and hence, in the
field-reflectivity r, (section 8.3) is, instead, an alternative to time-resolved
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polarization ellipsometry.

8.1 Noise in “monochromatic” pump-probe
measurements

The set-up we use to perform pump-probe noise measurements is described
in detail in section 6.2. The key feature is that we can acquire a large set of
∆Ri
R (t) values at each pump-probe delay t. Taking their average

∆R

R
(t) =

1

N

∑
i

∆Ri
R

(t)

(separately for each delay) we obtain the standard pump-probe trace, e.g. the
one in figure 8.1. Moreover, with such a large amount of data, it is also possi-

Figure 8.1: A standard reflectivity pump-probe trace: ∆R
R is plotted as a

function of time (i.e. pump-probe delay). Note that the spike at 0 pump-probe
delay is due to the interference between the pump and the probe pulses.

ble to reliably calculate the variance of ∆R
R (t) for each pump-probe delay. As

mentioned in chapter 6, the acquisition of, say, 50 000 values of ∆R
R (t) takes

0.2 s, which is below the low-frequency noise characteristic times that can be
relevant in a laboratory. Moreover, thanks to the fast digitalizer and to the
balanced detector, we perform single pulse measurements, which are free from
possible distortions induced by intermediate instruments and which we have
verified to be uncorrelated one with another. The acquisition of the reported
data was done in the following way: For each pump-probe delay we acquired
50 000 values for ∆Ri

R (t), which were used to calculate the average and the
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variance values. We repeated the pump-probe delay scan many times (from
10 up to 100 times, depending on the set of data). The plotted data, for both
the reflectivity and its variance, are the average over these scans. A variance
calculated in this way has no statistical significance over the full set of data
for each pump-probe delay (50 000 points · the number of scans) but such
a procedure allows us to retain only the features in the variance signal that
appear in all the scans.

As described in chapter 7, it is well known that the higher the excita-
tion fluence the stronger the damping of the coherent oscillation, i.e. the
smaller τ is. We performed measurements with different excitation-flueces in
sligthly different experimental conditions, i.e. different points on the sample
and slightly different pump spot size. In order to have the labelling of the
measurements as uniform as possible, we preferred to associate them with the
oscillation’s damping time τ rather than with the pump fluence. The time
τ was extracted, together with other parameters, with a fit of the coherent
part of the transient reflectivity signal (see section 7.3). The first step was to
subtract the incoherent contribution of the signal. In order to avoid compli-
cations of the fitting functions which would have been useless in this specific
context, we considered only the data for pump-probe delay t ≥ 0. A fit with
a low-order polynomial gives the incoherent part of the signal, since such a
function is unable to follow the high-frequency oscillations of the reflectivity
signal.

Once the incoherent contribution has been extracted, the coherent one is
the difference between the signal and the fitted polynomial. These data can
be then fitted with an oscillating function. The latter takes into account,
apart from the damping, also the frequency variation due to the “phonon”-
softening1, and is

f(t) = f0 +A sin
(
2πν(1− b e−t/c) t+ φ

)
e−t/τ . (8.1)

In the above expression, A is the initial oscillation’s amplitude, ν is the asymp-
totic oscillation frequency while b is the fraction of which ν is softened. c is
the decay time of the softening and φ is the oscillations initial phase. Finally,
τ is the damping time, which is used here as a label for the different set of
data. The exponential function for the frequency can be justified considering
the linear dependence between the frequency and the electron density in the
conduction band (already mentioned in chapter 7) [18, 28],

ν(n) = ν(0) − an. (8.2)

1Described in section 7.3
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The used fitting function can be retrieved supposing an exponential decay of
n(t) after the excitation:

ν(t) = ν(0) − an0e
−t/c

= ν(0)

(
1− an0

ν(0)
e−t/c

)
.

(8.3)

The acquired noise data shows that for t ≥ 0 also the variance displays
a periodic modulation as a function of time. For weak dampings, the ∆R

R (t)-
variance’s oscillation seems to follow the ∆R

R (t) signal, i.e. the two frequencies
are the same within experimental errors. For strong dampings instead, there
is a significant mismatch between the frequencies at which the average and
the variance oscillate. For this reason, we adopted the same fitting procedure
described in the previous passages also for the var

(
∆R
R

)
(t) signal. We report

two of the most representative sets of data, the one for τ = 2.89 ps and the
one for τ = 1.21 ps. Figure 8.2 reports the plots of the reflectivity and of
its variance in the two cases. Figure 8.3 reports instead the time-dependent
frequencies for the four traces as obtained by the fit, and hence

ν(t) = ν(1− b e−t/c).
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∆R
R (t) and its variance for τ = 2.89 ps.

∆R
R (t) and its variance for τ = 1.21 ps.

Figure 8.2:
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Figure 8.3: Frequency of ∆R
R and of its variance as a function of t for τ = 2.89

ps and 1.21 ps.
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As shown in figure 8.4 and as previously reported in other works [24, 25,
26], the short times-frequency of ∆R

R (t) (calculated as ν0 = ν(1− b)) is lower
for stronger damping, i.e. small τ and high fluence. We could not go to smaller
τs because higher fluences would damage the sample.
Looking at figure 8.5, it is clear that the asymptotic frequency is not constant
with τ . This general softening of the vibrational mode, which does not depend
on the oscillation’s amplitude, can be ascribed to the pump-induced heating.
In fact, previous works [18] reported a dependence of the frequency of the A1g

mode as a function of the temperature of 0.012 cm−1/K.

Figure 8.4: Initial frequency ν0 of the reflectivity’s oscillation vs damping time
τ .

Figure 8.5: Asymptotic frequency ν of the reflectivity’s oscillation vs damping
time τ .
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For what concerns the variance var
(

∆R
R

)
(t) we report the same kind of

graphs, in which we plot ν and ν0 of the variance as a function of the reflectiv-
ity ’s damping time τ . In figure 8.6 we do not report the error bars, because,
given the quality of the variance signal, the errors provided by the fitting pro-
cedure on the parameter b (and hence of ν0) are very large for many of the
points. They would hide the underlying trend. However, it must be remarked
that the ν0(τ) plot could be non-significant.

Figure 8.6: Initial frequency ν0 of the variance’s oscillation vs the reflectivity ’s
damping time τ . We have excluded the point at τ = 1.61 ps, which is instead
present in the plots for the reflectivity, since the relative variance signal is very
noisy.

Figure 8.7: Asymptotic frequency ν of the variance’s oscillation vs the reflec-
tivity ’s damping time τ .
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8.2 White light-probe measurements

As described in section 6.3, we also performed pump-probe experiments with
white light-probes. After the excitation of the sample with a quasi - monochro-
matic pump pulse, a white light-probe is used to study how its optical prop-
erties vary in time. Once reflected by the sample, the white light is dispersed
by a prism on an array of photodiodes and its spectral content can be studied
at different wavelengths.

We report here measurements corresponding to increasing excitation flu-
ences. Each line in the top color maps in figures 8.8 and 8.9 is a ∆R

R (t)
pump-probe trace similar to the ones in the previous section. However, they
correspond, here, to the probe energies contained in the interval [1.5, 2.5] eV
(while in section 8.1 the reflectivity was measured only at 1.5 eV).
Over this interval, the coherent and incoherent contributions to ∆R

R (t) are dif-
ferent. In order to extract them, each line of the top color maps2 was first of
all fitted (from 0 pump-probe delay on) with a low-order polynomial, as pre-
viously described. These fits are the incoherent contributions to ∆R

R (t), and
are reported in the second color map of the figures. The oscillating part of the
data is extracted as the difference between the data and the fitted function.
Calculating the magnitude of its Fourier-transform for each probe energy, we
obtained the third color maps. These show the magnitude of the Fourier-
transform as a function of both the oscillation frequency in time and the
probe energy. The identified frequency is the known one, i.e. approximately
2.95 THz3. However, the amplitude of the reflectivity’s coherent oscillation
is not uniform throughout the probed energy interval. This is shown in fig-
ure 8.10, which is a vertical profile of the Fourier-transform maps at 2.95 THz.
The amplitude of the coherent part of ∆R

R (t) is large in the interval [1.5, 1.8]
eV at all fluences, while it becomes appreciable also between 2.2 and 2.4 eV

2The white-light pulses are chirped, which means that the frequency content of the pulse
depends on the temporal position within the pulse itself. In other words, different frequencies
arrive at different times. In particular, the chirp is linear and the temporal offsets that have
to be applied to the pump probe traces to be re-aligned are a linear function of time. We did
not discuss this step in this chapter, since it is mainly technical manipulation of the data.
For a discussion about it, see [29].

3The set-ups used for the white light probe experiments and the “monochromatic” ones
use two different models of translator to change the optical path of the pump-pulses (and,
hence, the pump-probe delay). The mismatch between this frequency and the one measured
in the “monochromatic” experiments reported in the previous section (ν = 2.92 THz) can
be accounted for by tiny (1/100) miscalibrations of the translators or simply because of the
resolution in the fast Fourier transform calculations.
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with high excitation-fluences. The electronic degrees of freedom responsible
for the reflectivity in these two intervals are therefore coupled to the A1g vi-
brational mode. Papalazarou et al. [30] report the observation, in time- and
angle-resolved photoemission from the (111) surface of a Bismuth crystal, of
an electronic band oscillating at the A1g frequency. The amplitude of the
oscillation depends on the crystal momentum of the electrons and is larger
closer to the center of the Brillouin zone.

As already mentioned, the identification of the mapping mechanism of
the low-frequency vibrational mode in the high-energy reflectivity could be of
fundamental importance in the interpretation of the statistical data obtained
in the “monochromatic” pump-probe measurements reported in the previous
section.
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Figure 8.8: 0.5 mJ/cm2 fluence
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Figure 8.9: 2.5 mJ/cm2 fluence
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Figure 8.10: Normalized amplitude of the coherent contribution as a function
of the probe energy.

Figure 8.11: Incoherent contribution at 0 pump probe delay as a function of
the probe energy.
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8.3 Transient phase-shift

We report here an example of the measurements performed with the transient
phase-shift set-up, described in chapter 6. The goal in building this set-up is
to measure the transient phase variations ∆θ(ω) of the field -reflectivity

r(ω) = |r(ω)|eiθ(ω).

However, a more efficient procedure to extract the relevant information still
has to be developed. Furthermore, the refinement of the set-up should be
done using a sample which is known, from Kramers-Kronig calculations, to
have large transient phase-shifts. This would provide a better starting point
for the optimal calibration of the apparatus.
Nonetheless, from figures 8.12 and 8.13 of a measurement performed on Bis-
muth is clear that a small phase shift can be resolved, be it of thermal nature
(due to pump-induced heating of the sample) or of electronic one. As de-
scribed in chapter 6, the procedure to extract the phase-shift is to fit the red
(at equilibrium) and blue (out of equilibrium) segments of the interferomet-
ric pattern with two different sinusoidal functions. In figure 8.13 we show
that there is a phase difference between the equilibrium data and the out of
equilibrium one. However, in order to perform a quantitative analysis, the
experimental and analysis procedures should be refined.
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Figure 8.12: Example of interferometric pattern split in at and out of equilib-
rium sample.

Figure 8.13: Zoomed view of a portion of the above graph.





Chapter 9

Discussion

The “monochromatic” reflectivity-noise data we have reported in the previous
chapter offer many directions for their interpretation. While they allowed us
to identify these various details to be studied, more sistematic measurements
must be performed in order to address the specific questions which have arisen.
For these experiments, the laser stability should be optimized to avoid spurious
contributions to the variance of the reflectivity signal. Denser fluence scans
would be helpful for the clear identification of some trends. Moreover, lowering
the repetition rate of the laser source would allow the exploration of higher
excitation-fluence regimes.
However, some speculations are still possible starting from the set of available
data. In particular, the most simple interpretations can be done for short
pump-probe delays. In that limit, we consider only the effects of the excitation
of the mode via the displacive excitation mechanism, and not the interactions
of the vibrational mode with other degrees of freedom. The evolution of
the reflectivity tells that these interactions play a major role in the phonon
dynamics. As an example, with low excitation fluences the damping of the
oscillation can be ascribed to the creation of phonons into modes of acoustical
branches [31].

9.1 Possible squeezing of the lattice vibrations

There is a feature (shown in figure 9.1) in the first cycle of the variance’s
oscillation, which appears only at high excitation-fluences and seems to be,
therefore, a non-linear effect. In particular, it is a shoulder in the variance
signal placed between the first maximum and the first minimum of the oscil-
lation. There is also a mismatch between the minimum of the variance signal
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and the one of the reflectivity. Figures 9.1a and 9.1b show a zoomed view of
the first cycles of two high fluence measurements, the ones with damping time
τ = 1.21 ps and τ = 1.96 ps.

(a) τ = 1.21 ps (b) τ = 1.96 ps

Figure 9.1: First cycles of the oscillations of the reflectivity and of its variance.

As a comparison, we report in figure 9.2 also a plot of the case in which the
damping time τ is 2.82 ps, i.e. a low fluence one.

Figure 9.2: First cycles of the oscillations of the reflectivity and of its variance
(τ = 2.82 ps).

The coordinate of the vibrational mode is mapped in the reflectivity. As
briefly discussed in chapter 3, as a function of the phase of the oscillation, the
variance of q̂ of a mode in a squeezed state is modulated at twice the frequency
of the mode itself.
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(a) Wigner function of a
squeezed state.

(b) Distribution of the electric
field of a squeezed state

Figure 9.3: Squeezed state

In this context, the phase of the oscillation depends on the pump-probe
delay. Since the time-resolution of pump-probe experiments is shorter than
the period of the phonon oscillation, such a technique is phase-resolved for
what concerns vibrational oscillations.
We must, however, consider that the variance we observe is the variance in the
intensity of the probe, which contains contributions which come from different
independent players. In particular, there are contributions which are intrinsic
to the dynamics in the solid and contributions which are extrinsic to them.
In the following we will consider that the modulation of the reflectivity leads to
a modulation of the probe’s intensity. We expect, hence, a modulation of the
shot-noise which follows exactly the reflectivity signal. Furthermore, there is
a contribution to the variance which comes from the noise in the reflectivity of
the sample itself. If the coordinate of a squeezed vibrational state were mapped
into the reflectivity, the variance we measure would contain a term oscillating
at twice the frequency of the reflectivity’s oscillation. Considering just these
two contributions (apart from the constant background), the variance would
have a pump-probe delay-dependence given by the sum of a sin(t) term and
a sin(2t) term.1 (Note that we concentrate just on the first cycle, in order to
neglect the frequency variations in time.) In figure 9.4 we plot the function

sin(t) + a0 sin(2t)

1We neglect here the fact that the initial frequency of the variance, as given by our fits,
is different from the initial frequency of the reflectivity. In fact, their difference is very small
and, at this stage, the argument we present is only qualitative.
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for two different values of a0. sin(t) is plotted as a reference in both graphs.

(a) a0 = 0.2 (b) a0 = 0.4

Figure 9.4: sin(t) + a0 sin(2t) for different values of a0.

By tuning a0, a feature similar to the shoulder and the mismatch present in
the variance trace can be reproduced.

Since this behaviour takes place only at high excitation-fluence, the fol-
lowing hypothesis can be made. At low pump-fluences the vibrational mode
is excited with the linear simple displacive excitation mechanism described in
the context of the Jones-Peierls distortion for small potential-displacements.
Such an interaction is linear in the phononic mode operators, since it consists
in a change of the equilibrium position of the oscillator. In fact, the Hamilto-
nian in the harmonic approximation of the potential in which the atoms lie,
is

Ĥ =
p̂2

2
+

(q̂ − q0)2

2

=
p̂2

2
+
q̂2

2
+
q2

0

2
− q0q̂

(9.1)

The term representing the interaction of the electrons with the phononic mode
is

− q0q̂. (9.2)

Expanding q0 in the electron excitation density parameter n [21], it becomes2

− c1 n q̂. (9.3)

This term can be written effectively as

Ĥ1 = γ1

(
âb̂† + â†b̂

)
, (9.4)

2Note that we are not considering the decay of n(t) after the excitation in the short
times limit in order to have a simple time dependence of the Hamiltonian.
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where, as mentioned in chapter 4, â and â† refer to photonic modes and b̂ and
b̂† refer to phononic modes. Such a linear coupling must be mediated by the
electrons (as it is in the Jones-Peierls mechanism [21]), since the A1g mode
is not electric dipole-active. In Ĥ1 the electronic degrees of freedom have
been integrated out in the coupling constant γ1 and the interaction is written
as an effective photon-phonon coupling. Supposing a spatially homogeneous
excitation of the electrons, the vibrational mode involved is at the centre of
the Brillouin zone:

Ĥ1 = γ1

(
âb̂†0 + â†b̂0

)
, (9.5)

where b̂0 is the annihilation operator of the k = 0 mode. As described in
chapter 4, for what concerns the vibrational mode, such an Hamiltonian pro-
duces a displacement of the Wigner function of the mode. Therefore, in this
fluence-regime, the excited vibrational state is a displaced thermal state. This
means that the phonon-contribution to the variance is not phase-dependent.

Going to higher pump-fluences, and hence to larger potential displace-
ments, other terms in the coupling become relevant. The next term in the
Hamiltonian for the vibrational mode can be seen to be of second-order in
the mode operators taking into account the known phonon softening due to
“electronic screening” [28]:

Ĥ =
p̂2

2
+ (1 + c2 n)

(q̂ − c1 n)2

2

=
p̂2

2
+ (1 + c2 n)

(
q̂2

2
+

(c1 n)2

2
− c1 n q̂

)
=
p̂2

2
+
q̂2

2
+ (1 + c2 n)

(c1 n)2

2
− (1 + c2 n)c1 n q̂ +

c2 n

2
q̂2

(9.6)

The second-order term in the interaction Hamiltonian can be written as

Ĥ2 = γ2

(
(b̂†0)2 + (b̂0)2

)
. (9.7)

As shown in chapter 4, this Hamiltonian produces squeezed states, which
have variances that oscillate as a function of the phase at twice the mode’s
frequency.
The total first- and second-order interaction Hamiltonian is then

Ĥ1,2 = γ′1
(
b̂†0 + b̂0

)
+ γ2

(
(̂b†0)2 + (b̂0)2

)
, (9.8)

where we have substituted â with z because of the high fluence regime, and
have absorbed it in γ′1. As already mentioned, the first-order term in this
Hamiltonian could be what is generally described as displacive excitation,
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while the second-order one becomes relevant in the high fluence-regime and
hence large displacements of the atomic potential.

The most simple initial condition is that all the vibrational modes are
at thermal equilibrium with the sample, i.e. their initial state is a thermal
one. In the high-fluence regime, the density matrix of the final state produced
(under these hypotheses) in the excitation is, at t = 0+

ρ̂(t = 0+) = Û †t ρ̂T Ût. (9.9)

It has been shown [5] that the linear and bilinear/quadratic term in Ĥ1,2 and
in Ût can be factorized to give a squeezing and a displacement operator. The
final state can then be written as

ρ̂(t = 0+) = D̂†(α)Ŝ†(ξ)ρ̂T (0)Ŝ2(ξ)D̂(α). (9.10)

The initial and t = 0+ Wigner functions for the mode at k = 0 are depicted
in figure 9.5.

(a) Initial thermal state
(b) Final squeezed and displaced

thermal state

Figure 9.5: The initial and final Wigner function under these excitation hy-
potheses.



Chapter 10

Conclusions and perspectives

In this thesis we have shown that the framework developed in quantum optics
to describe and study the modes of the electromagnetic field can be extended
to condensed matter. It can be used to describe phenomena modelled with
harmonic oscillators, such as vibrational dynamics in atomic lattices. We have
analysed, from this point of view, the well known “coherent” vibrational re-
sponse of Bismuth in pump-probe experiments. As we discussed, something
that is classically “coherent” can correspond to different quantum states, and
namely to coherent, squeezed and displaced thermal ones. The state of the
vibrational mode is linked to the kinds of interactions it has undergone and,
therefore, knowing it, one can deduce some of the charateristics of the Hamil-
tonians that determined its evolution.

We have presented two experimental set-ups we have built to study the
state of systems in condensed matter. The first one, our pump-probe balanced
homodyne detector, is a balanced homodyne detector adapted to study the
state of the probe pulses after their interaction (i.e. reflection) with the ex-
cited sample in pump-probe experiments. The main question we will address
is whether the sample dynamics can be mapped, not only into the intensity,
but also in the state of the reflected pulse. This set-up still has to be refined
before it can be used for such measurements.
The scheme for noise pump-probe measurements, instead, showed that it can
be used to perform a partial characterization of the states which are mapped
in the reflectivity of the sample. With such an apparatus we studied the sta-
tistical properties of the transient reflectivity of Bismuth. Its time-domain
reflectivity is modulated following the expectation value of the position q̂ of
the A1g vibrational mode. Measuring the distribution of the values of ∆R

R (t)
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at a given t gives, therefore, access to the statistics of the underlying vibra-
tional state. The data we collected suggest that the vibrational state excited
with high pump-fluences may be a squeezed state. However, this conclusion
should be supported by more measurements.

We also performed pump-probe measurements on Bismuth using white
light probes. These experiments allow to track the transient reflectivity vari-
ation over a broad range of frequencies, in order to be able to draw a more
complete picture of the dynamics induced by the pump-pulses.

The set-ups we have built give, moreover, the possibility to perform mea-
surements of the transient phase-shift of the field -reflectivity in pump-probe
experiments. While this technique is equivalent to the standard polarization
ellipsometry, which is performed also in non-equilibrium conditions, to our
knowledge this kind of phase-resolved measurements are not performed.

Current work in our group is concentrating on exploring how the reflection
of the probe’s light from the sample could map the state of a system in the
solid into the quantum state of the probe itself. A scattering described by a
linear Hamiltonian may lead just to encode some of the information in the
variance of the measured intensity. This can be measured using our noise
pump-probe set-up. However, it may be worth to explore the possibility of
studying the state of, for example, Raman scattered light from the sample or
other un-conventional “reflectivities” in order to extract information on the
underlying dynamics.



Appendix A

Time evolution of a coherent
state

The expectation value of the position q̂ of a harmonic oscillator in a coherent
state oscillates in time at the frequency of the mode. This can be shown in
the following way.

Let us express q̂ as

q̂ =
1√
2

(
â+ â†

)
.

The evolution of the operators â and â† in the Heisenberg picture is given
by

˙̂a = i[Ĥ(t), â]

= iω [â†â, â]

= iω [â†, â]â

= −iω â.

Therefore,

â(t) = e−iωtâ

and similarly for â†

â† = eiωtâ†.
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The expectation value of q̂(t) on a coherent state becomes, therefore,

〈q̂(t)〉|α〉 = 〈α|q̂(t)|α〉

=
1√
2
〈α|â(t) + â†(t)|α〉

=
1√
2

(
e−iωt〈α|â|α〉+ eiωt〈α|â†|α〉

)
=

1√
2

(
e−iωtα+ eiΩtα∗

)
=

1√
2

2Re(e−iωtα).

In the following figures we report a comparison of classical and quantum har-
monic oscillators in coherent states for three different times.

Figure A.1: Classical harmonic oscillator in a “coherent” state during its free
time evolution.

Figure A.2: Quantum harmonic oscillator in a coherent state during its free
time evolution.



Appendix B

Quorum for a two-level
system

In order to give a simple example of the need to measure a quorum of observ-
ables to reconstruct the density matrix, let’s consider a two level-system. The
Hilbert space H of such a system is two-dimensional and the density matrix
describing the state of the system can be written, in the {|0〉, |1〉} base, as

ρ̂ =

(
ρ00 ρ01

ρ10 ρ11

)
.

The diagonal elements, ρ00 and ρ01 are the probabilities of finding the system
in the states |0〉 and |1〉, respectively. They can be measured as the normalized
frequencies of observing the eigenvalues of |0〉 and |1〉 for a high number of
measurements, i.e. they are the expectation values of the operators |0〉〈0| and
|1〉〈1|. However, in order to fully reconstruct the density matrix, also the
values of ρ01 and ρ10 must be measured. They are the mean values of the
observables

Ô01 =
1√
2

(
|0〉〈1|+ |1〉〈0|

)
Ô10 =

1

i
√

2

(
|0〉〈1| − |1〉〈0|

)
.

|0〉〈0|, |1〉〈1|, Ô01 and Ô10 constitute a quorum of observables. Their measure-
ment allows the complete reconstruction of the density matrix ρ.
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Appendix C

D3d point group

The character table of the irreducible representations of the D3d group is the
following:

E 2C3 3C2 i 2S6 3σd linear bases quadratic bases

A1g 1 1 1 1 1 1 x2 + y2,z2

A2g 1 1 -1 1 1 -1 Rz
Eg 2 -1 0 2 -1 0 (Rx, Ry) (x2 − y2, xy) (xz, yz)

A1u 1 1 1 -1 -1 -1

A2u 1 1 -1 -1 -1 1 z

Eu 2 -1 0 -2 1 0 (x, y)
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Appendix D

Transient phase-shift and
Kramers-Kronig relations

As an alternative to the direct measurement of the transient phase-shift, dis-
cussed in section 6.4, it is possible to estimate it starting from the knowledge
of ∆R

R (t) over a broad range of energies and using the Kramers Kronig rela-
tions. This kind of data is the one acquired, for example, with the white-light
pump-probe set-up described in section 6.3.
The complex field -reflectivity can be written as

r = |r(ω)|eiθ(ω),

where ω is the frequency of the electromagnetic wave. Using the Kramers-
Kronig relations,

θ(ω0) =
ω0

π
P
∫ ∞

0

dω

ω2
0 − ω2

log
(
R(ω)

)
.

In the excited (or, pumped) situation,

θp(ω0) =
ω0

π
P
∫ ∞

0

dω

ω2
0 − ω2

log
(
Rp(ω)

)
=
ω0

π
P
∫ ∞

0

dω

ω2
0 − ω2

log
(
Req(ω) + ∆R(ω)

)
=
ω0

π
P
∫ ∞

0

dω

ω2
0 − ω2

{
log
(
Req(ω)

)
+ log

(
1 +

∆R(ω)

Req(ω)

)}
= θeq(ω0) + ∆θ(ω0),

where p labels quantities in the pumped situation and eq instead the equilib-
rium ones. Therefore, to estimate ∆θ(ω0, t) it is necessary to know ∆R

R (ω0, t)
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RELATIONS

over a broad range of frequencies, while the knowledge of the equilibrium re-
flectivity is, in principle, unnecessary. If the integration is done on a finite
frequency range, it is important for ω0 to lie far from its borders, since the
finite range-approximation would otherwise be unjustified.



Appendix E

Acquisition software

We have written the software for our experimental set-up in LabVIEW. It
controls the piezo-translator, which is used to change the phase of the lo-
cal oscillator in the interferometer, the micrometric stage, used to change
the pump-probe delay, and the acquisition board with its options (Multiple
Recording, BXIO).

The communication with the translators occurs over serial channels and
the connections are managed using the VISA LabVIEW library. The com-
mands are sent to the devices directly via the VISA library and, partially,
using the LabVIEW drivers provided by the manufacturer (PI).

The acquisition board, instead, is directly mounted in a PCI-express slot of
the PC. In this case, it is entirely managed using the provided drivers. Their
initialization parameters allow to set the number of channels of the ADC to
be acquired (1 or 2) and the Multiple Recording and BXIO options.
The main parameters for the Multiple Recording option are the numbers of
samples to acquire before and after each trigger. These have to be set in order
to acquire the data related to the entire response of the photodiode to a pulse.
The data are downloaded from the acquisition board to the PC via the FIFO
interface.
When the BXIO option is active, the status of the 8 digital BXIO channels
are sent to the PC in the last 8 bits of the timestamp. The latter is a set of
bytes sent together each sample acquired by the ADC.
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Riassunto

La cinematica dei fenomeni coerenti nella materia condensata è generalmente
descritta in modo classico. Un chiaro esempio a riguardo è il caso delle vi-
brazioni nei reticoli atomici. Infatti, mentre le loro interazioni con gli altri
gradi di libertà del materiale vengono generalmente descritte come processi
quantistici, lo stato del modo vibrazionale in sé è descritto da parametri clas-
sici: ampiezza e fase (oltre che dalla sua frequenza e momento). Tranne che
in casi limitati, le proprietà statistiche degli stati nella materia condensata,
introdotte quando si descrive il sistema come un oggetto quantistico, non
vengono considerate, nonostante questo tipo di informazioni possa porre dei
vincoli su quale sia la dinamica a cui è soggetto il sistema. La conoscenza
dello stato quantistico di un sistema durante la sua evoluzione può, per alcuni
aspetti, determinare l’Hamiltoniano che la descrive.

Durante il lavoro per questa tesi abbiamo studiato gli stati vibrazionali nei
solidi e, in particolare, abbiamo scelto un cristallo di Bismuto come sistema
modello poiché mostra una risposta vibrazionale coerente negli esperimenti di
pump-probe. In un esperimento di pump-probe il campione è portato fuori
equilibrio tramite un impulso di luce ultracorto molto intenso (detto pompa)
e la sua risposta ottica transiente (come ad esempio la variazione della sua
riflettività) viene studiata grazie ad un secondo impulso di luce ultracorto,
meno intenso del primo (detto probe, o sonda). Modificando il ritardo tra
l’eccitazione e la misura (detto pump-probe delay) si può studiare come le
proprietà ottiche del materiale evolvono nel tempo. Nel caso del Bismuto,
l’impulso di pompa eccita un modo fononico a simmetria A1g e l’oscillazione
coerente della coordinata di quest’ultimo viene osservata nella misura della
riflettività ad alta energia del campione.
La risposta coerente nel Bismuto è spiegabile nel contesto del meccanismo
di Jones-Peierls [20, 19]: la struttura del cristallo elementale di Bismuto è
descrivibile come una struttura cubica semplice distorta, in cui è avvenuta
una dimerizzazione lungo la direzione [111]. Il cristallo risulta quindi essere
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cubico a facce centrate, con due atomi per cella. Poiché la distorsione e la con-
seguente riduzione di simmetria sono favorite da un guadagno netto in energia
elettronica tramite il meccanismo di Jones-Peierls, la riduzione di guadagno
energetico provocata dall’eccitazione elettronica da parte della pompa desta-
bilizza la struttura distorta, inducendo delle vibrazioni coerenti lungo la di-
rezione [111] del cristallo. Questo tipo di eccitazione viene chiamato displacive
excitation. La direzione [111] è quella propria del modo vibrazionale A1g, che,
a seguito dell’eccitazione con la pompa, presenta quindi un valore della sua
coordinata che oscilla coerentemente nel tempo. Tuttavia, oscillazioni coerenti
della coordinata q̂ e del momento p̂ di un oscillatore armonico corrispondono
a più stati quantistici diversi, come ad esempio gli stati coerenti e gli stati
squeezed. Ciò che li distingue sono le proprietà statistiche della misura delle
loro osservabili.

Il framework dell’ottica quantistica offre degli strumenti molto potenti per
trattare la varietà di stati dell’oscillatore armonico quantistico. Essa infatti
riguarda la trattazione quantistica dei modi del campo elettromagnetico, che
sono descritti da oscillatori armonici come i modi vibrazionali nei solidi. In-
oltre, negli ultimi vent’anni è stata sviluppata e perfezionata una tecnica,
chiamata rivelazione omodina bilanciata (balanced homodyne detection), che
permette di studiare gli stati quantistici dei modi della radiazione elettromag-
netica. La rivelazione omodina è un’implementazione del processo detto to-
mografia quantistica, nel quale viene ricostruita la matrice densità dello stato
del sistema studiato. Ciò è possibile attraverso la misura ripetuta (su copie
identiche del sistema) di un insieme di osservabili del sistema detto quorum di
osservabili.
Le misure omodine bilanciate consistono in misure interferometriche (e quindi,
risolte in fase) della distribuzione dei valori del campo elettrico del modo che
si vuole studiare. Quest’ultimo viene mescolato su un beam-splitter 50-50 con
un modo in uno stato coerente popolato da un alto numero di fotoni. La
differenza tra le intensità dei due fasci uscenti dal beam-splitter vengono mis-
urate grazie ad un detector bilanciato, in cui viene amplificata la differenza
tra le fotocorrenti prodotte in due fotodiodi.
Queste misure vengono effettuate comunemente nei laboratori di ottica quan-
tistica per caratterizzare lo stato di un modo della radiazione dopo le inter-
azioni con i sistemi fisici posti sul suo cammino ottico (beam-splitter, dispositivi
ottici non lineari, ecc..).

Dati questi strumenti è naturale chiedersi se, nell’interazione degli impulsi
di probe con il campione fuori equilibrio (ovvero nella loro riflessione), infor-
mazioni sullo stato del campione possano venir mappate nello stato ottico del
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probe. Qualora questo fosse possibile tale informazione può essere poi estratta
effettuando la tomografia dello stato dell’impulso di luce. Abbiamo svilup-
pato, pertanto, un apparato sperimentale che combina la tecnica omodina
bilanciata con quella di pump-probe. Esso dovrà però essere perfezionato nei
prossimi mesi e ne presentiamo soltanto la caratterizzazione.

Esistono, tuttavia, altre tecniche che permettono di accedere ad infor-
mazioni statistiche, sebbene parziali, sugli stati nella materia condensata. In
particolare, abbiamo sviluppato un apparato che permette di misurare non
solo la variazione di riflettività negli esperimenti di pump-probe, ma anche
la sua varianza per ciascun pump-probe delay. Le nostre misure hanno di-
mostrato che effettuando misure di questo tipo su sistemi in cui si osserva
una risposta vibrazionale coerente, come il Bismuto, è possibile ottenere in-
formazioni statistiche sullo stato del modo fononico coinvolto. Queste misure
sono, per alcuni aspetti, simili ad una misura omodina, poiché la misura della
coordinata del modo fononico è risolta in fase, ma esistono fattori, come le
interazioni del modo con altri gradi di libertà, che le rendono non completa-
mente tomografiche.
L’apparato che abbiamo costruito per effettuare queste misure si basa sullo
stesso detector bilanciato utilizzato per le misure omodine ed in particolare i
due apparati sono compatibili, ovvero è possibile passare da uno all’altro sem-
plicemente sollevando due specchi posti su dei montaggi ribaltabili. Su uno
dei due fotodiodi del detector incide un fascio impulsato di riferimento, men-
tre sul secondo viene focalizzato il fascio di probe. In questo modo, quando

Figure 1: Schema semplificato dell’apparato bilanciato per le misure di pump-
probe.

l’intensità del fascio di probe cambia a seguito della variazione della riflettività
∆R del campione, il segnale differenziale in uscita dal detector è direttamente
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proporzionale a ∆R. Grazie ad un digitalizzatore veloce possiamo acquisire
un valore di ∆R per ciascun impulso di probe. Pertanto, i tempi di acqui-
sizione di grandi quantità di dati sono molto piccoli, in quanto ogni secondo è
possibile acquisire tante volte il valore di ∆R quanti sono gli impulsi prodotti
dal laser, ovvero 250 000. Le medie di questi numeri calcolate per ogni pump-
probe delay costituiscono la consueta traccia di pump-probe, che mostra la
variazione di riflettività del campione in funzione del tempo. Ma per ciascun
pump-probe delay è possibile calcolare anche la varianza dei valori di ∆R mis-
urati.

Come già anticipato e come già noto, la variazione della riflettività del
campione di Bismuto è modulata alla frequenza del modo A1g, che viene am-
morbitida per tempi brevi quando la densità di eccitazioni elettroniche è alta.
Ciò che abbiamo osservato è che anche la varianza è modulata coerentemente.
Per basse densità di eccitazioni le frequenze delle modulazioni di ∆R(t) e della
sua varianza sono molto simili o coincidono. Ciò è giustificabile considerando
che, a variazioni di intensità degli impulsi di probe riflessi corrispondono vari-
azioni nello shot noise dello stato ottico stesso. Per alte densità di eccitazioni,
invece, la frequenze delle due differiscono significativamente.
Inoltre, il primo ciclo dell’oscillazione della varianza mostra una spalla. Essa
è riproducibile se si considera, oltre al contributo dello shot noise alla var-
ianza, che oscilla come sin(ωt), un termine del tipo sin(2ωt), proprio della
varianza della coordinata di un oscillatore armonico preparato in uno stato
squeezed. Per basse densità di eccitazioni, il meccanismo della displacive exci-
tation è descritto da un Hamiltoniano lineare negli operatori del modo fononico
(ovvero, b̂ e b̂†) e produce stati coerenti, in cui la varianza della posizione q̂ non
dipende dalla fase dell’oscillazione. Per alte densità, invece, termini quadratici
dell’Hamiltoniano di interazione diventano rilevanti e, un’interazione del tipo

H = λ b̂† + ζ
(
b̂†
)2

+ h. c.

porta l’oscillatore armonico in uno stato squeezed.
Tuttavia, dovrebbero essere effettuate altre misure a supporto di questa ipotesi.

Oltre a queste misure abbiamo effettuato anche esperimenti di pump-
probe sullo stesso campione con probe di luce bianca. Essi permettono di
studiare la risposta ottica del materiale su un ampio intervallo di lunghezze
d’onda, in modo da avere un’immagine più chiara delle dinamiche indotte
dall’eccitazione.
Inoltre, l’interferometro dell’apparato per le misure omodine può essere uti-
lizzato, sempre nell’ambito degli esperimenti di pump-probe, per misurare le
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variazioni transienti della fase del campo elettrico del probe riflesso dal campi-
one. Di questo schema abbiamo presentato una caratterizzazione e una misura
preliminare.
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