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Introduction

The development of femtosecond lasers has pushed forward the perspectives of
standard vibrational spectroscopies, allowing the detection of the coherent motion
of the atoms on time scales that are shorter than their oscillation periods.

The typical approach in this sense is the pump-probe one that consists in in-
jecting in the system a large number of vibrational excitations (phonons) within
a femtosecond time window and subsequently monitor the system optical re-
sponse by mean of a second ultrafast pulse (probe) at a variable delay time. The
modification of the probe spectral features as a function of the delay from the
sudden excitation will carry information on the temporal dynamics of the excited
vibrational mode and eventually on the photon-phonon coupling.

This coupling between optical and vibrational degrees of freedom is easier
to understand in non-absorbing materials. In such materials there are no elec-
tronic transitions allowed within the probe bandwidth and the energy exchange
in photon-phonon interaction is mediated by Impulsive Stimulated Raman Scat-
tering (ISRS). ISRS is an intrinsic multimode process and occurs whenever an
ultrashort pulse (i.e. with a frequency bandwidth greater than the phonon fre-
quency Ω) propagates in a Raman-active medium. As a matter of fact, all optical
modes in the pulse with an energy difference corresponding to ~Ω can resonantly
interact and create (Stokes Raman process) or annihilate (Anti-Stokes Raman
process) a phonon (Figure 1). Owing to its multimode nature, we hence expect
ISRS to imprint on the transmitted pulse a correlation structure between all the
phonon-coupled optical modes.

Figure 1: Schematic representation of Stokes (a) and Anti-Stokes (b) processes involv-
ing a pair of optical modes of frequencies ω1 and ω2 and a phonon of frequency
Ω. The Raman interaction occurs between all the phonon-coupled frequencies
within the pulse bandwidth.

In standard time-resolved Raman spectroscopy the coherent dynamics of the
excited vibrational mode is addressed by measuring the intensity variation of
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the probe pulse as a consequence of photon-phonon interaction. Even if this
approach is useful to retrieve the excited vibrational frequencies, it does not
allow to reconstruct the full structure of the probe electric field after its non-
linear interaction. Indeed, all phase information is lost through the integration.
Moreover, an integrated technique does not permit to unveil information hidden
inside higher order momenta of photon number distribution, such as correlations
introduced trough non-linear interactions.

In this thesis, we have set up an experiment that can go beyond the integrated
approach. We have accomplished this purpose by mean of an interferometric
technique named Balanced Homodyne Detection which has been coupled to the
standard pump-probe set-up. The novelty of our approach resides in the fact
that the homodyne detection of the probe has been performed in a multimode
scheme. Thanks to this innovative possibility, we can selectively have access to
amplitude and phase of each spectral component of the probe pulse and monitor
their out-of-equilibrium dynamics.

(a) (b)

Figure 2: Mean value (a) and statistical distribution (b) of a single mode electric field
detected with our set-up. Shot-noise working conditions ensure the field
fluctuations to be of purely quantum origin.

Furthermore, we have exploited the capability of our detection system of per-
forming single pulse acquisition on equally prepared quantum systems to have
access to the full statistics of each probe mode after the pump excitation (Figure
2). In this sense, Balanced Homodyne Detection has a powerful potentiality: it
allows to maintain the external noise smaller than the intrinsic fluctuations of the
number photons (shot-noise limit). Therefore, the field fluctuations detected with
our set-up all pertain to the fundamental quantum nature of light. This possibil-
ity, together with the frequency resolution of our technique, opens the perspective
of unveiling multimode quantum correlation imprinted on an optical pulse trough
its non-linear interactions with a phononic system. The latter are indeed encoded
in multimode higher-momenta distributions of the photon number.

The thesis is organized as follows:

• In Chapter 1 we provide the theoretical concepts on what "measuring quan-
tum light systems" means and how homodyne detection can achieve this
purpose. We will then focus on the application of the technique on multi-
mode light states.
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• Chapter 2 provides the theoretical framework needed to describe photon-
phonon interaction. A classical and a fully quantum model will be presented
and exploited to interpret the mean value outcomes of an homodyne mea-
surement in time domain.

• Chapter 3 is dedicated to the description of the experimental set-up specif-
ically developed in the q4q laboratory at Elettra Sincrotrone Trieste. It en-
ables to perform shot-noise-limited measurements of amplitude and phase
of each mode of a pulse.

• In Chapter 4 we present the complete characterization of our set-up noise,
which is crucial to test the quantum noise sensitivity of the technique and
eventually select suitable experimental conditions to ensure a shot-noise-
limited detection.

• In Chapter 5 the mean value outcomes of time-resolved multimode homo-
dyne are presented. The technique has been firstly tested on α-quartz,
which represents a benchmark system to track the photon-phonon Raman
coupling in transparent materials. In particular, we have exploited the in-
formation obtained both from phase and amplitude dynamics of each probe
mode to characterize photon-phonon coupling effects and eventually esti-
mate their cross-sections. The cross-sections have been calculated exploiting
the quantum model presented in Chapter 2. We have then tested the tech-
nique on an absorptive system (CuGeO3) where photon-phonon coupling
allows high energy orbital transitions.

• In Chapter 6 we present the preliminary statistical measurements performed
in shot-noise regime on α-quartz and CuGeO3. The objective of the last
part of the thesis is to see whether exists a pump-driven modification of
the probe quantum statistics. In this sense, we have explored the statistics
variation of a single probe mode and the modification of the joint statistics
of phonon-coupled probe modes. We expect the latter to encode ISRS-
driven quantum correlations.
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Chapter 1

Detection of quantum light states

In quantum mechanics all the properties of a physical system are encoded in
its quantum state [6]. Measuring the quantum state of a system means predicting
the statistical distributions of the outcomes of all possible measurements that can
be performed on it [10]. In this thesis we will focus on the detection of quantum
light systems and in particular in the study of how they can be modified as a
consequence of their interaction with a photo-excited material.

In this chapter we introduce the theoretical framework in which the detection
of quantum light states is inserted. In particular, we will point out the neces-
sity of having simultaneously access to amplitude and phase of an optical field
in order to completely characterize its quantum state and show a phase-resolved
technique (Balanced Homodyne Detection) able to accomplish this requirement.
We will preliminary apply the technique to single mode states of the electromag-
netic field and then move to multimode fields, that are the ones employed in the
thesis. Looking at intrinsic multimode statistical properties of an optical field is
particularly interesting, since we expect the latter, rather then the single mode
ones, to encode the quantum correlations introduced between the field modes
through the non-linear interaction with matter.

1.1 The quantum state of a physical system
In this section we present a brief introduction on what measuring a quantum

state means. We will exploit the concepts provided in this section as a benchmark
framework for introducing the detection of quantum light systems. In particular,
we will see how performing measurements on equally prepared quantum systems
allows to have access to deeper statistical information on the state itself. This is
the one we are looking for with our spectroscopic approach.

"State means whatever information is required about a specific system, in
addition to pysiscal laws, in order to predict its behaviour in future experiments"
[10]. The state of a quantum object is commonly described by a normalized
vector |ψ〉 belonging to a Hilbert-space H. If we want to extract a piece of
information about the system, we have just to compute the expectation value of
the corresponding operator Ô on the quantum state |ψ〉:

〈Ô〉 = 〈ψ|Ô|ψ〉 (1.1)

If the initial state and the Hamiltonian operator of the system are known, the
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previous formalism provides a complete description of the system, of its time
evolution and of the properties of its observables [13].

Nonetheless, there are physical circumstances in which we are not able to know
|ψ〉. In this cases the system can be described in a statistical way, making the
ensemble average over many identical systems equally prepared and introducing
a new formalism: the density matrix one. In order to introduce this formalism,
let us assume to have an ensemble of physical states equally prepared and to have
statistical information about them, that is, to have a set of eigenstates |ψn〉 in
which the system stays with probabilities pn. In this case, the mean value of a
physical observable Ô becomes:

〈Ô〉 =
∑
n

pn〈ψn|Ô|ψn〉 (1.2)

Therefore, the statistic state of a quantum system can be defined as a linear
combination of the states |ψn〉 weighted on the corresponding probabilities pn.
All the previous information can be gathered in just one operator, called density
operator, which is the weighted average over the projectors on the states |ψn〉:

ρ̂ =
∑
n

pn|ψn〉〈ψn| (1.3)

In this statistical framework, the mean value of a physical observable can be
expressed in terms of the density operator as follows:

〈Ô〉 =
∑
n

pn〈ψn|Ô|ψn〉∑
m

∑
n

pn〈ψn|Ô|ψm〉〈ψm|ψn〉

= Tr(ρ̂Ô)

(1.4)

where Tr(ρ̂Ô) is the trace of ρ̂Ô, i.e. the sum of its diagonal matrix elements in
any matrix representation.

The set of the matrix elements of the operator ρ̂ on whatever basis is called
density matrix and plays the crucial role in the statistical description of a
quantum state. As a matter of fact, the probability of any outcome of any
measurement performed on a system can be extracted from the density matrix of
that system [6]. In particular, the diagonal elements ρnn represent the probability
of the system to be in the eigenstate |ψn〉, while the off-diagonal elements ρmn
provide the coherence between the state |ψn〉 and |ψm〉. This means that ρmn
is different from zero only if the system is in a coherent superposition of the
eigenstates |ψn〉 and |ψm〉 [9].

Therefore, all the information needed to perform statistical previsions on a
quantum system are encoded inside the density matrix. By its elements ρij we are
hence able to predict the statistical distributions of the outcomes of all possible
measurements that can be performed on the system.

We stress that, while the state of a classical system can be determined by
performing repeated measurements on it, the knowledge of a quantum state is
not accessible, in general, when a single copy of the system itself is available. In
fact, the act of measuring an observable of the system changes its state, making
repeated measurements on it meaningless towards the determination of its initial
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state [6]. Therefore, statistical previsions on a quantum system are only possible
when an ensemble of identically prepared systems is available.

As proved in [10], in order to fully reconstruct the density matrix, it is neces-
sary to measure a set, called quorom, of at least two non-commuting observables
Ôi.

The previous statement has a direct implication on the measurement of optical
quantum state. Indeed, it implies that no complete statistical information on an
optical field can be retrieved if we limit in measuring only its intensity. To
have access to a meaningful statistics, a phase-resolved approach has to be
implemented.

1.2 Phase-sensitive measurement of light: Bal-
anced Homodyne Detection

In the previous section we have pointed out the necessity of having access
to the statistics of at least two non-commuting observables in order to perform
statistical previsions of any measurement on a quantum state. In the quantum
optics framework, this requirement implies the necessity of having access to phase
dynamics, which cannot be unveiled in standard intensity measurements. In this
section we will present an interferometric technique, named Balanced Homodyne
Detection (BHD), able to accomplish this requirement. We will preliminary study
this approach in the case in which the optical state under investigation is a single
electromagnetic field mode of the form1[9]:

Êj(z, t) = i

√
ωj

2ε0V
[
âje
−i(ωjt−kjz) − â†jei(ωjt−kjz)

]
(1.5)

where âj and â†j are the ladder operators of the quantum-harmonic oscillator
satisfying the bosonic commutation relation:

[â†j, âk] = δjk (1.6)

The expression of the quantized electromagnetic field can be written in terms of
the adimensional position and momentum of the quantum harmonic oscillator

Q̂j = 1
2(â†j + âj)

P̂j = i

2(â†j − âj)
(1.7)

as follows:
Êj(z, t) =

√
ωj

2ε0V
[
Q̂j cos(φj) + P̂j sin(φj)

]
(1.8)

where we have defined the phase φj as:

φj ≡ ωjt− kjz + π

2
1To simplify the notation in the present expression we have not considered the polarization

index of the field, but only its mode index j.
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If we now define the phase-dependent operator X̂φj as:

X̂φj = 1√
2
(
âje
−iφj + â†je

iφj
)

(1.9)

the quantized electromagnetic field can be expressed as:

Êj(z, t) =
√
ωj
ε0V

X̂φj (1.10)

X̂φj is dubbed the quadrature operator, it is proportional to the quantized electric
field and we will see that it is the detected observable in a Balanced Homodyne
experiment, whose main features will be highlighted in the following.

Balanced Homodyne Detection (BHD) is a powerful method for measuring
phase-sensitive properties of travelling optical fields that is used for the recon-
struction of quantum light states [6]. In this framework, the quantum state is
characterized through the repeated measurement of the optical field quadratures
X̂φj (Equation 1.9) for different phases φj ∈ [0, π] [8]. Quadratures at fixed phase
φj are continuum-spectrum observables and constitute a quorum of observables,
whose measurement hence provides a complete information about the quantum
state of the electromagnetic field [7]. The schematic diagram employed in Bal-
anced Homodyne Detection is depicted in Figure 1.1. The optical state under in-

Figure 1.1: Schematic representation of balanced homodyne detector. The signal under
investigation (in the mode state â) is mixed in a 50:50 beam splitter with
the local oscillator (in the mode state b̂) whose relative phase φ can be
controlled. The intensities of the output modes (ĉ and d̂) are detected
by two photodiodes and the differential current Î (homodyne current) is
measured.

vestigation, named signal, is mixed with a strong classical reference state, named
local oscillator (LO), by a 50:50 beam spitter (whence the attribute balanced).
Since the signal beam (mode â in Figure 1.1) can be prepared in a unknown
way, it can be conveniently described in a statistical way by mean of its density
operator ρ̂ (Equation 1.3). The local oscillator (mode b̂ of Figure 1.1) is instead
in a classical coherent state2 |z〉〈z|. Therefore, it satisfies:

b̂|z〉 = z|z〉 z ∈ C (1.11)
2Coherent states are the eigenstates of the annihilation operator â of the harmonic oscillator.

They are used in quantum optics to represent classical states, since the mean evolution of the
canonical operators (p̂ and q̂) on those states is the same as the classical one.
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The BS outputs in the mode states ĉ and d̂ are collected by two photodiodes and
the differential photocurrent Î (homodyne photocurrent) is measured. The modes
ĉ and d̂ are linked to the incoming modes â and b̂ by mean of the balanced beam
splitter, whose action is ruled by the unitary operator (see Section 1.2.1):

ÛBS = 1√
2

(
1 1
−1 1

)
(1.12)

Therefore, as a consequence of the action of ÛBS, we get:â 7−→ ĉ = (â+ b̂)/
√

2
b̂ 7−→ d̂ = (b̂− â)/

√
2

(1.13)

After the 50:50 BS, the two modes are detected by two identical photodiodes
and the respective photocurrents (Îc and Îd) are measured and subtracted. The
currents Îc and Îd (Figure 1.1) are the measured values of the photon number
observables n̂c = ĉ†ĉ and n̂d = d̂†d̂. Therefore, the differential photocurrent Î
reads:

Î = n̂c − n̂d = ĉ†ĉ− d̂†d̂ (1.14)
which, exploiting the beam spitter transformation (Equation 1.13), becomes:

Î = â†b̂+ b̂†â (1.15)

The phase-sensitivity of the technique is achieved by tuning the phase difference
between the local oscillator and the signal, which can be controlled by changing
the length of the LO optical path. This implies that the LO mode is subjected
to the following phase shift: b̂ 7−→ b̂eiφ

b̂† 7−→ b̂†e−iφ
(1.16)

and the homodyne current operator can be subsequently redefined as:

Îφ = â†b̂eiφ + b̂†âe−iφ (1.17)

Now, a natural question arises: how, by measuring the phase-resolved homo-
dyne current Îφ can we obtain a value for the quadrature of the electric field? The
answer comes from the fact that the expectation value of the homodyne current
Îφ on the total LO-signal input state ρ̂ ⊗|z〉〈z| is proportional to the expectation
value of the field quadrature X̂φ defined in Equation 1.103

〈Îφ〉 = Tr
[
ρ̂⊗ |z〉〈z|Îφ

]
= Tr

[
ρ̂⊗ |z〉〈z|(â†b̂eiφ + b̂†âe−iφ)

]
=
√

2|z|〈X̂φ〉
(1.18)

By mean of balanced homodyne detection we can therefore measure the quadra-
ture of the signal field and amplify it by mean of the local oscillator. Indeed, the
detected homodyne current scales linearly with the LO amplitude |z|.

3In the following equation we will neglect the phase of the initial local oscillator coherent
state, i.e. z = |z| (Equation 1.11).
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We underline that, in order to ensure the homodyne current to be a repre-
sentative observable of the field quadrature at each phase, is not sufficient that
their expectation values coincide. Indeed, all higher order momenta of the two
observables must coincide. For the second order momentum we get the following
expression [7]:

〈Î2
φ〉 = 1

2|z|2Tr
[
ρ̂⊗ |z〉〈z|(â†b̂eiφ + b̂†âe−iφ)2

]
= 〈X̂2

φ〉+ 〈 â
†â

2|z|2 〉
(1.19)

which can be generalized to higher momenta [12] as follows:

〈Înφ 〉 = 〈X̂2n−2
φ (X̂2

φ + â†â

2|z|2 )〉 (1.20)

We notice that the homodyne current higher momenta tend to the quadrature
ones only if |z|2 >> 〈â†â〉. Therefore, through BHD we can extract meaningful
statistical information on the quantum signal field only if we mix it with a much
more intense classical field (the local oscillator). This situation can be hence
referred as a quantum regime of the interferometer, opposed to the classical one
in which the signal field is in a large-amplitude coherent state |α〉:

â|α〉 = α|α〉 α ∈ C (1.21)

In the latter case only mean value coincides and classical interference pattern can
be retrieved. If the signal field is classical (|z|2 ∼ 〈â†â〉 = |α|2 >> 1) we have
indeed4:

〈X̂φ〉 = Tr[X̂φ|α〉〈α|] = 〈α| âe
−iφ + â†eiφ√

2
|α〉 =

√
2|α| cos(φ) (1.22)

which implies:

〈Îφ〉 = 2|z||α| cos(φ) (1.23)
We will make use of this result in Chapter 2, where we will exploit the homodyne
framework to retrieve mean value information on photon-phonon interaction.

Equations 1.20 and 1.19 show that a requirement for BHD to be sensitive on
quantum fluctuations of the signal quadrature is to work with a local oscillator
in a strong classical state. A natural question therefore arises: how can we filter
out its inevitable classical noise and ensure a quantum noise sensitiviy? In
the following section we will analyse this issue and prove that through balanced
homodyne the quantum sensitivity is ensured.

1.2.1 Quantum noise sensitivity
The crucial element on which quantum noise sensitivity relies is the last beam

splitter before the differential detection (Figure 1.1).
4In the equation we have neglected the phase of the signal coherent state, i.e. supposed

α = |α|.
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Figure 1.2: Representation of a lossless beam splitter. In a quantum formalism, n̂2
must always be present, even if the signal channel is blocked. In this case,
n̂2 is described by the vacuum state |0〉.

A beam splitter is a dielectric medium able to split a beam into two with a
defined proportion [19]. A representation of a lossless beam splitter is depicted
in Figure 1.2, in which two beams, that we will indicate with their annihilation
operators â1 and â2, imping on it and two other beams (â3 and â4) emerge from
it. We can write the relation between the input and the output states as:

â3 = Râ1 + T â2

â4 = T â1 +Râ2
(1.24)

where R and T represent the complex reflectivity and transmittance of the beam
splitter: R = |R|eiφR , T = |T |eiφT . In order to ensure photon number conserva-
tion the following relations must hold between the BS parameters:

|R|2 + |T |2 = 1
RT ∗ + TR∗ = 0

(1.25)

As a consequence of Equation 1.24, the output photon number operators are
related to input ones by the relations:

n̂3 = â†3â3

= |R|2â†1â1 +R∗T â†1â2 + T ∗Râ†2â1 + |T |2â†2â2
(1.26)

n̂4 = â†4â4

= |R|2â†1â1 + T ∗Râ†1â2 +R∗T â†2â1 + |R|2â†2â2
(1.27)

From the expressions of the number operators (Equation 1.26 and 1.27) we can
retrieve for each output the mean number of photons and the related variance.
The expressions for the mean photon number of the two outputs are:

〈n̂3〉 = |R|2〈n̂1〉+ |T |2〈n̂2〉
〈n̂4〉 = |T |2〈n̂1〉+ |R|2〈n̂2〉

(1.28)

The same calculation can be done for the related variances. In order to simplify
the notation, we will only consider the case in which n̂2 is in a vacuum state |0〉.
In this situation, the expressions of the variances of the two output beams read:

σ2
3 = |R|4σ2

1 + |T |2|R|2〈n̂1〉
σ2

4 = |T |4σ2
1 + |T |2|R|2〈n̂1〉

(1.29)
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We can recognize that the variances of both channels have two contributions [19]
(Figure 1.3):

• Classical noise: it is proportional to the input noise σ2
1 of the only phys-

ical beam impinging on the BS and it is related to the intensity of the
reflected/transmitted beam.

• Quantum (partition) noise: it is caused by the random division of the
input photons in the two channels with probabilities |R|2 and |T |2. There-
fore it pertains to the intrinsic quantum nature of the electromagnetic field.

Figure 1.3: Classical vs Partition noise (Adapted from [19]).

Let us now exploit the beam splitter formalism to retrieve mean value and
noise information on the homodyne current, which is the observable in our ex-
periment (Figure 1.1). For the fluctuations, we will limit to the second order
momentum (variance), thus neglecting the information encoded in higher order
momenta. With the notation of Figure 1.2, mean value and variance of the ho-
modyne current n̂3 − n̂4 can be expressed as follows:

〈n̂3−4〉 = 〈n̂3 − n̂4〉 = (|R|2 − |T |2)〈n̂1〉 (1.30)

σ2
3−4 =

〈
(n̂3 − n̂4)2

〉
− 〈(n̂3 − n̂4)〉2

= (|R|2 − |T |2)2σ2
1 + 4|R|2|T |2〈n̂1〉

(1.31)

From the previous equations we can immediately recognize that, by working
in balanced conditions (i.e. by setting |R|2 = |T |2 = 1/2), the classical noise can
be completely filtered out from the differential response. As a matter of fact, we
get:

σ2
3−4 = 〈n̂1〉 (1.32)

which represents the minimum reachable noise level due to photon field quantiza-
tion: the shot-noise. Although the mean of value of n̂3 and n̂4 are equal, single
measurements are characterized by partition fluctuations (Figure 1.3(right)) scal-
ing as 〈n̂1〉.

In the homodyne framework (Figure 1.4(left)), where do these fluctuations
come from? Since we have proved (Equation 1.20) that the differential current is
a map of the signal at all the orders, they originate from the vacuum fluctuations
of the signal encoded inside the partition noise of the local oscillator (Figure
1.4(right)). Vacuum noise is equal to 1/2 for every value of the phase φ and
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hence provides a rescaling factor for signal fluctuations in the general cases in
which the signal is not in a vacuum state. We will explore this issue in Section
4.3.

Figure 1.4: Homodyne trace of the vacuum signal state. Homodyne allows to map the
signal vacuum fluctuations σ2

vacuum onto the partition noise of the local
oscillator.

1.3 Multimode quantum light states
The single mode description provided in the previous section has to be gen-

eralized when ultrashort laser pulses are used. Indeed, owing to the Heisenberg
uncertainty principle, to a short pulse duration corresponds a broad spectrum of
frequency modes of the radiation. In the following we will introduce multimode
light states and show that we can generalize single mode homodyne formalism
for their statistical description.

In Section 1.1, we have seen that all the information required to perform
statistical previsions on a quantum state are encoded inside its density matrix.
The density matrix dimension is determined by the number of elements of the
Hilbert space basis on which the quantum state is represented.

The state space of a multimode field can be expressed as the tensor product
of the Fock spaces of N harmonic oscillators [2], where N is the number of modes
of the optical field. In terms of number states, the basis vector of this multimode
space can be written as:

|n1 : 1〉 ⊗ |n2 : 2〉 ⊗ ...|nN : N〉 ≡ |n1 : 1, n2 : 2, ..., nN : N〉 (1.33)

In the previous expression we have denoted the single mode state as |nl : l〉 where
nl represents the number of photons in the l mode. If the multimode basis can
be expressed as a factorized state (Equation 1.33), the density operator ρ̂ of the
multimode state reads:

ρ̂ = ρ̂1 ⊗ ρ̂2 ⊗ ...⊗ ρ̂N (1.34)
where:

ρ̂l =
∑
nl

pl|nl : l〉〈nl : l| (1.35)

In this case the density matrix of the N -mode state is hence the product of the
single mode density matrixes.
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However, due to the possibility of performing superpositions between different
modes, there is much more "space" in the multimode Hilbert space. For this
reason, the factorized basis of Equation 1.33 is generally not a complete one. For
example, a single photon can be shared between two different mode states (m
and n), i.e. it can live in a multimode superposition of the form:

1√
2

(|0 : m〉+ |1 : n〉) (1.36)

This state is called entangled if no change of the basis exists such that the state
is mapped onto a factorized one (Equation 1.33). Entangle states are generated
whenever an interaction between the modes is allowed [2], i.e. when dealing
with interacting quantum systems. For example, the decay of an excited atomic
state generates a continuous superposition of one-photon states, where an infinite
number of modes share a single photon.

The description of a multimode interacting optical state can be significantly
simplified in the case of gaussian light states, i.e. states in which the probability
distribution of the field canonical variables P̂ and Q̂ (Equation 1.7) is gaussian.
A gaussian state is completely characterized by second-order momenta5 and can
be completely described by mean of its covariance matrix Cij(ωi, ωj)(φi, φj) [1]:

Cij(ωi, ωj)(φi, φj) =


σ2(X̂1(ω1))(φ1) . . . 〈X̂1(ω1)X̂N(ωN)〉(φ1, φN)

... . . . ...
〈X̂N(ωN)X̂1(ω1)〉(φN , φ1) . . . σ2(X̂N(ωN))(φN)


(1.37)

where X̂i(ωi)(φi) is the single mode phase-dependent quadrature operator defined
in Equation 1.9. The number of elements of the covariance matrix is 2N × 2N
and represent the dimension of the basis of a gaussian state with N modes. We
underline that the factor 2 accounts for the fact that for each matrix element
amplitude and phase have to be given.

The diagonal terms of the covariance matrix account for single mode fluctua-
tions, while the off-diagonal ones encode correlations between modes of different
frequency. Multimode quantum correlations are possible since quadratures be-
longing to different modes commute:[

X̂i(ωi), X̂j(ωj)
]

= 0 (1.38)

and can be hence measured simultaneously [1].
We stress that in this framework we are considering multimode correlations

up to second order, thus neglecting correlations involving more than two fre-
quency components. Therefore, without loss of generality, we can consider only
two modes inside the broadband pulse (with indexes i and j) and subsequently
calculate the two-modes covariance matrix as follows:

Cij(ωi, ωj)(φi, φj) =
(

σ2(X̂i(ωi))(φi) 〈X̂i(ωi)X̂j(ωj)〉(φi, φj)
〈X̂j(ωj)X̂i(ωi)〉(φj, φi) σ2(X̂j(ωj))(φj)

)
(1.39)

The elements of the covariance matrix can be measured trough homodyne
detection whose formalism has to be adapted in order to describe multimode

5For a gaussian state, momenta higher than the second order ones can always be expressed
as a function of the second order ones.
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interference. Supposing both the signal and the local oscillator to be in multimode
states, the homodyne photocurrent operator reads:

Î =
∑
j

â†j b̂je
iφj + b̂†j â

†
je
−iφj (1.40)

In Appendix A we will prove that no contribution derives from mixed frequency
terms, i.e. interference occurs only between modes of the same frequency. Con-
sequently, the mean multimode current is (cfr Equation 1.18):

〈Î〉 =
√

2
∑
j

|zj|〈X̂φj〉 (1.41)

which, in the case of a signal in a classical coherent state, becomes:

〈Î〉 = 2
∑
j

|αj||zj| cos(φj) (1.42)

The multimode variance instead reads:

σ2
[
Î
]

=
√

2σ2

∑
j

(
|zj|X̂φj

) (1.43)

The previous equations have a fundamental consequence: if we are able to select
a single frequency of the local oscillator (i.e. a mode b̂j) we can drive the the
homodyne interference to select only the response of the corresponding mode of
the signal field (Figure 1.5) and therefore reconstruct in a frequency-resolved
scheme the mean quadratures of each signal mode and its phase-resolved statis-
tics. These single mode fluctuations correspond to the diagonal terms of the
covariance matrix (Equation 1.39).

Figure 1.5: Multimode homodyne with a single frequency local oscillator. As a conse-
quence of Equation 1.40, the selection of the local oscillator frequency drives
the selection of the signal quadrature component at the same frequency and
of its variance. The latter is linked to the diagonal terms of the covariance
matrix of the multimode signal. We have neglected the dependence of the
phase shift on the LO frequency by setting a frequency-independent phase
delay φ.
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Conversely, by working with a multiple shaped local oscillator (Figure 1.6)
we can have access to the joint statistics of the corresponding signal modes
(σ2(X̂i(ωi) + X̂j(ωj))). This joint statistics encode instrinsic multimode effects,
such as two-modes correlations, and can be exploited to reconstruct the off-
diagonal terms of the covariance matrix through the following relation:

〈X̂i(ωi)X̂j(ωj)〉(φ) = σ2(X̂i(ωi) + X̂j(ωj))(φ)− σ2(X̂i(ωi))(φ)− σ2(X̂j(ωj))(φ)
(1.44)

In the previous equation σ2(X̂i(ωi) and σ2(X̂j(ωj) represent the phase-dependent
single mode quadrature variance obtained through the homodyne measurement
with a single LO frequency (Figure 1.5). Conversely, σ2(X̂i(ωi) + X̂j(ωj))(φ)
is the homodyne current variance measured in the case of a two mode-shaped
local oscillator (Figure 1.6). In all the previous relations we have neglected the
dependence of the phase shift on the frequency of the local oscillator. Indeed we
have set a global frequency-independent phase delay φ.

Figure 1.6: Multimode homodyne with a double frequency local oscillator. The sum of
the corresponding quadrature components of the signal can be measured,
as well as their joint statistics. Through Equation 1.44 the latter can be
used to calculate the off-diagonal terms of the covariance matrix, related to
two-modes quantum correlations. We have neglected the dependence of the
phase shift on the LO frequency by setting a frequency-independent phase
delay φ.
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Chapter 2

Theoretical framework of
photon-phonon interaction

In Chapter 1 we have provided the theoretical framework in which the detec-
tion of quantum light states is inserted. In particular, we have seen that through
the innovative scheme of multimode homodyne detection we are able to address
all the statistical information encoded in each mode of the optical state under
investigation.

The purpose of the thesis goes beyond the description of optical states by
themselves. It indeed focuses on how they couple to collective excitations in
condensed matter systems, allowing to disclose information on their dynamics.
In this thesis, we have addressed the coherent evolution of lattice vibrations in
solids, which are commonly dubbed coherent phonons. The typical approach to
track coherent phonon dynamics is the pump-probe one. With this approach,
a first intense pulse (pump) excites collective nuclear vibrations in the sample
lattice, which were initially in a thermal ground state. These nuclear modes will
modulate the atomic structure and, consequently, its optical properties. These
are observed employing another ultrashort pulse, the probe.

While in standard pump-probe spectroscopy the optical observable is the
probe intensity, with multimode homodyne detection we are able to selectively
address each probe mode response in both its phase and amplitude and eventually
reconstruct the full emitted field resulting from photon-phonon interaction.

In this chapter we provide the theoretical framework in which photon-phonon
interaction is inserted. We will start with a classical picture and then move to a
more fundamental quantum formalism [4]. In this chapter we will focus only on
mean value features of the probe pulse (amplitude and phase) imprinted through
its interaction with the excited phonon.

2.1 Classical formalism
In this section we study the photon-phonon interaction in a classical picture.

In this framework, the phonon modes are treated as classical harmonic oscillators
driven by a force exerted by a multimode electromagnetic field. We will analyse
in detail how an optical pulse can be coupled with the vibrational degrees of
freedom and disclose information on their dynamics.
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2.1.1 Optical driving force
Optical phenomena can be interpreted as the effect of the interaction between

the electric field components of an electromagnetic radiation and the charged par-
ticles inside the target material. In visible and near-infrared range (∼ 102 THz)
the interaction is dominated by the coupling of the electric field with electrons,
since the frequencies involved are too high for the nuclei to follow adiabatically
the optical field oscillations [5]. In this regime the driving electric field couples
with the electrons inducing dipole moments whose amplitude varies according to
the strength of the bond with the nuclei. This microscopic effect can be mapped
into a macroscopic one, that is the onset of a time-dependent macroscopic polar-
ization, that, for an electric field with λ′ polarization, reads:

Pλ(x, t) = ε0
∑
λλ′

χλλ′Eλ′(x, t) (2.1)

Although it is the electrons that are set in motion by the visible or near-IR
optical fields, their oscillatory motion contains information about the motion of
nuclei. The reason for this is that the adiabatic-electronic potential depends on
the nuclear coordinate [5]. Therefore, even if the optical pulse can be coupled
only with the electronic degrees of freedom, it can be used to disclose information
about the nuclei vibrational modes, since the latter will modulate the electronic
polarizability ε0χ. In the presence of a single nuclear mode inducing a tiny atomic
displacement and far from any electronic transitions, we can expand the electronic
susceptibility in terms of the nuclear positions qn:

χλλ′(qn) ' χ
(0)
λλ′ +

(
δχ

δqn

)
λλ′

∣∣∣∣∣
qn=0

qn (2.2)

In this expansion, χ(0)
λλ′ represents the static susceptibility in the absence of any

nuclear mode excitation. This term rules all the static refractive effects of the
sample, such as birefringence and polarization rotation. The term (δχ/δqn)|qn=0
can be instead interpreted as the cross-section of the interaction process, since it
represents the strength of the coupling between nuclear and electronic coordinates
[5]. The presence of a nuclear mode excitation (phonon) therefore leads to the
onset of a polarization that oscillates following the position of the nuclei. The
energy required to establish this polarization is:

U(x, t) = −P (x, t) ·E(x, t) = −ε0
∑
λλ′

χλλ′Eλ(x, t)Eλ′(x, t) (2.3)

From this expression of the interaction energy we can subsequently evaluate the
force exerted by the driving optical field E(x, t) along the nth normal mode
coordinate of the phonon:

Fn(x, t) = −dUphot−phon(x, t)
dqn

= ε0
∑
λλ′

(
δχ

δqn

)
λλ′

∣∣∣∣∣
qn=0

Eλ(x, t)Eλ′(x, t) (2.4)

Let us start with a simplified situation in which the optical driving fieldE(x, t)
is a superposition of only two frequency components ω1 and ω2 far from any
electronic resonance but whose difference ωv = ω2 − ω1 can match a phonon

18



excitation mode Ω. We will model these two incoming fields as plane waves
propagating along z direction of the form:

Ei(z, t) = Aie
−iωi(t−nc z) = Aie

−iωit′ i = 1, 2 (2.5)

where the spatial dependence on the propagation length z has been included
inside the term t′ = t − nz/c. Moreover, let us treat the phonon as a classical
harmonic oscillator with proper frequency Ω initially at rest. The combined time-
dependent action of these two electric fields will perturb the electron cloud whose
oscillations will exert a force along the nuclear coordinates, thus exciting the
nuclear mode. In this classical framework, the previous process is described as
an harmonic oscillator driven by the force exerted by the combined action of the
two electric fields (Fn(t′)). The equation of motion describing this process is:

dqn(t′)
dt′

+ Ω2qn(t′) = Fn(t′)
m

(2.6)

and its solution for the phonon oscillation has an amplitude qn(ωv) that reads:

qn(ωv) = 1
m
ε0
∑
λλ′

(
δχ

δqn

)
λλ′

∣∣∣∣∣
qn=0

Aλ1A
λ′∗
2

ω2
v − Ω2 (2.7)

The previous expression shows that the extent of the forced nuclear oscillations is
proportional to the amplitude of the two applied fields, to the magnitude of
the coupling between the nuclear coordinate and the electronic polarizability
((δχ/δqn)|qn=0) and it is resonantly enhanced when ωv = ω2 − ω1 = Ω, i.e. when
the frequency difference between the two driving fields matches the phonon one1.

Having in mind this picture, let us now move to the case of an excitation
driven by a multimode field. This case represents our experimental situation,
since we employ ultrashort laser pulses. We model this multimode electric field
as a coherent sum of plane waves:

E(z, t) =
∑
ω

Eωe
−iω(t−nc z) + c.c =

∑
ω

Eωe
−iωt′ + c.c (2.8)

Here and in all the following calculations we will use phase-matching conditions,
assuming that before the interaction all the frequencies inside the pulse have the
same phase. In this case, the force exerted along the nth nuclear mode coordinate
is:

Fn(t′) = ε0
∑
λλ′

(
δχ

δqn

)
λλ′

∣∣∣∣∣
qn=0

(∑
ω

Eλ
ωe
−iωt′ + c.c

)(∑
ω′
Eλ′

ω′e−iω
′t′ + c.c

)
(2.9)

However, we have notice (Equation 2.7) that phonon oscillations are resonantly
enhanced by modes inside the impinging pulse whose frequency difference equals
Ω. Therefore we can safely limit the multimode sum to the fields of frequency ω
and ω ± Ω. With this assumption, the resulting time-dependent force along the
nth phonon mode coordinate turns out to be:

Fn(t′) = 2ε0
∑
λλ′

(
δχ

δqn

)
λλ′

∣∣∣∣∣
qn=0

∑
w

Eλ
ω

(
Eλ′

ω+Ω + Eλ′

ω−Ω

)
cos(Ωt′) ≡ fn cos(Ωt′)

(2.10)
1In the resonant case ωv = ω2 − ω1 = Ω the amplitude diverges only because we have not

taken into account the finite time application of the force.
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The driving force therefore oscillates at the same frequency of the considered
phonon mode and has an amplitude that depends on the cross-section of the in-
teraction process ((δχ/δqn)λλ′ |qn=0) and on the amplitudes of the exciting optical
fields, i.e. all the pairs differing in frequency by Ω.

2.1.2 Pump-probe dynamics
Until now we have shown that by mean of a multimode pulse we can excite

a nuclear mode oscillation. Indeed, the electric fields inside the incoming pulse
differing in frequency by the phonon one couples themselves originating a periodic
force that set in motion the nuclei.

In this section we will model in a classical framework the pump-probe ex-
periment. As shown in Figure 2.1, the pump-probe approach enables to map
the phonon evolution into the spectral modification of a second pulse (probe) in-
teracting with the sample at a variable delay from the excitation. These probe
spectral changes are commonly detected by means of intensity measurements.

In the present thesis we adopt an innovative approach. Indeed, we monitor
them through multimode homodyne detection. With this frequency-resolved in-
terferometric technique we can retrieve amplitude and phase dynamics of each
probe mode and subsequently reconstruct the phonon field.

Figure 2.1: Schematic description of the pump-probe experiment. The pump induces
a coherent vibrational excitation on the thermal phonon ground state. The
latter is probed through homodyne detection at a variable delay ∆t from
the pump arrival.

Let us starting by modelling the pumping process and by retrieving the time
evolution of the excited phonon position qn(t′) resulting from the sudden interac-
tion. In order to do this we solve the equation of motion of the driven harmonic
oscillator (Equation 2.6) in the case of a sudden application of the force described
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in 2.10 for a time τ . This interaction time τ is shorter than the phonon evolution
period (∼ 0.3 ps) and we set it comparable with the pump duration (∼ 100 fs).
Moreover, since we suppose that there are no excited nuclear modes before the
pump interaction, we set the initial phonon amplitude to zero. By defining the
amplitude of the pump force:

fpumpn = 2ε0
∑
λλ′

(
δχ

δqn

)
λλ′

∣∣∣∣∣
qn=0

∑
w

Eλ pump
ω

(
Eλ′ pump
ω+Ω + Eλ′ pump

ω−Ω

)
(2.11)

the solution of the equation of motion reads [15]:

qn(t′) = τfpumpn

2Ωm sin(Ωt′) (2.12)

As in [15] we set a sine function for the phonon position dynamics since the
instant of the maximum cosine force (Equation 2.10) is the one when to the
vibration is imparted the maximum momentum (Figure 2.2). This periodic lattice

Figure 2.2: Time evolution of phonon position qn(t′) resulting from the instantaneous
application of the periodic force Fn(t′). As in [15] we set a sine function for
the phonon position oscillations since the instant of the maximum driving
force has to correspond with the maximum induced momentum pn(t′).

deformation will consequently affect the electronic susceptibility, by making it
oscillate in phase with the pump excited phonon:

χλλ′(t′) = χ
(0)
λλ′ +

(
δχ

δqn

)
λλ′

∣∣∣∣∣
qn=0

τfpumpn

2Ωm sin(Ωt′) (2.13)

Starting from the previous equation, we can now express the force on the nth
mode as in 2.11 and, by using the notation (δχ/δqn)λλ′ |qn=0 ≡ (δχ/δqn)0

λλ′ , we
obtain:

χλλ′(t′) =χ(0)
λλ′+

+ ε0τ

Ωm
∑
µµ′

( δχ
qn

)0

µµ′

(
δχ

qn

)0

λλ′

∑
w

Eµ pump
ω

(
Eµ′ pump
ω+Ω + Eµ′ pump

ω−Ω

) sin(Ωt′)

(2.14)

The previous expression is crucial for the description of the spectral variations
imprinted in the probe, since it rules the phonon-dependent optical properties. In
particular, we underline that the nuclear mode-dependent dynamics is ruled by
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the four rank non-linear susceptibility tensor (δχ/δqn)0
µµ′ (δχ/δqn)0

λλ′ , disclosing
the fact that the phonon-dependent polarization response is non-linear.

In order to retrieve the spectral changes undergone by the probe pulse propa-
gating in a media with a non-linear phonon-dependent susceptibility, let us start
by the classical wave equation in a medium with no free charges:

∇2E(z, t)− 1
c2
∂2E(z, t)

∂t2
= 1
c2
∂2 (χ(q)E(z, t))

∂t2
(2.15)

Here, for simplicity, we have used the scalar formulation for χ(q) and considered
a single nuclear mode, thus neglecting the n index:

χ(q) ' χ(0) +
(
δχ

δq

) ∣∣∣∣∣
q=0

q ≡ χ(0) +
(
δχ

δq

)0

q (2.16)

We will show in the following that there are mainly two effects on the probe
pulse propagating through the pumped sample: Linear Refractive Modula-
tion (LRM) and Impulsive Stimulated Raman Scattering (ISRS) [4].

The first amounts to the modulation of the refractive index due to to the
instantaneous position of the nuclei and does not involve an energy exchange
among probe modes, while the latter produces a spectral shift among the phonon-
coupled probe modes. We underline that these effects both results from a non-
linear response in the electronic susceptibility. The term linear inside LMR is
only used to clarify that in this process no probe frequency mixing occurs.

In the following we will separately study the two effects in a classical frame-
work and, by mean of the homodyne formalism, we will retrieve in the two cases
the amplitude and phase pump-probe dynamics for each probe frequency.

Linear refractive modulation (LRM)

Let us start by recalling the classical wave equation 2.15 describing the probe
electric field propagating through the excited sample:

∇2E(t′)− n2

c2
∂2E(t′)
∂t2

= 1
c2

(
δχ

δq

)0
∂2 (q(t′)E(t′))

∂t2
(2.17)

Since the probe pulse impinges on the sample at a variable time ∆t from the the
pump excitation, we have to evaluate the nuclear displacement at t′ + ∆t:

∇2E(t′)− n2

c2
∂2E(t′)
∂t2

= 1
c2

(
δχ

δq

)0
∂2 (q(t′ + ∆t)E(t′))

∂t2
(2.18)

If we now group all the terms containing the second time derivative of the probe
field, we get a wave equation with a time-dependent index of refraction ñ(∆t)
that, if we consider t′ = 0 as the pump excitation time, reads:

ñ(∆t) =

√√√√n2 +
(
δχ

δq

)0

q(∆t) (2.19)
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Since the modulation of the electronic susceptibility induced by the nuclear mode
is small compared with the equilibrium one, we can Taylor expand the modulated
refraction index ñ(∆t) obtaining:

ñ(∆t) ' n

1 + 1
2n2

(
δχ

δq

)0

q(∆t)
 (2.20)

Now the question is: how this periodic modulation of the sample refractive prop-
erties affects phase and amplitude of the electric fields of each probe mode?

In our experiment these observable are detected in a frequency-resolved scheme
trough the measurement of the mean homodyne current. For this reason, let us
recall the expression of the classical multimode homodyne current (Equation 1.42)
that, under the hypothesis of a phase-matched local oscillator, reads:

I(∆t) = 2
∑
j

|zj||Ej(∆t)| cos
(
φj − φTj (∆t)

)
(2.21)

Here we have denoted with Ej(∆t) the jth mode of the emitted probe field and
with φTj (∆) its phase. The modulation of the refraction index ruled by Equa-
tion 2.20 affects both the amplitude and the phase of the transmitted probe, in
accordance with the following equations2:

φTj (∆t) = ñ(∆t)ωj
c
z = n

ωj
c
z + ωjz

2nc

(
δχ

δq

)0

q(∆t) (2.22)

|Ej(∆t)| = |Einc
j |

2
1 + ñ(∆t) ' |E

inc
j |

1
1 + n

1− 1
2n(1 + n)

(
δχ

δq

)0

q(∆t)

(2.23)

These trends will subsequently cause a time-dependent variation of phase and
amplitude of the field quadrature, that is the observable measured through ho-
modyne. These detectable shifts induced by the phonon dynamics take the form:

∆φj(∆t) = ωjz

2nc

(
δχ

δq

)0

q(∆t)

= ωjz

2nc

(
δχ

δq

)0
τfpump

2Ωm sin(Ω∆t)
(2.24)

∆Aj(∆t) = |zj||Einc
j |

1
n(1 + n)

(
δχ

δq

)0

q(∆t)

= |zj||Einc
j |

1
n(1 + n)

(
δχ

δq

)0
τfpump

2Ωm sin(Ω∆t)
(2.25)

In summary, the pump induces a time-dependent modulation of the refrac-
tive index of the sample in phase with the phonon oscillations. Therefore, as a
function of the pump-probe delay ∆t, the probe pulse will experience different
refractive conditions. This results in an oscillation of the phase and amplitude of
the transmitted probe field in phase with the nuclear displacement.

2For the amplitude of the transmitted electric field we have exploited the Fresnel equation
in the case of normal incidence.
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Furthermore, we note that the phase dynamics is only sensitive to the pump
power through fpump and it does not depend on the probe intensity. Conversely,
the time-dependent amplitude shift is affected by both the pump and the probe
power. In particular, it scales linearly with the amplitude of the incoming probe
field.

Impulsive stimulated Raman Scattering (ISRS)

As previously stated, the refractive modulation is not the only spectral mod-
ification undergone by the probe pulse. We expect indeed that by changing the
phase between the phonon and the force exerted by the probe pulse (ie. by con-
trolling ∆t) we can dynamically force or dump the atomic oscillations. In the
former case the optical pulse will leave energy to the vibrational degrees of free-
dom, while in the latter it will gain energy from them. For this reason, we expect
a time-dependent modification of the amplitude of the phonon-coupled optical
modes. We will refer to this effect as Impulsive Stimulated Raman (ISRS). For
modelling it, let us recall the wave equation 2.18 describing the emitted probe
field E(t′):

∇2E(t′)− n2

c2
∂2E(t′)
∂t2

= 1
c2

(
δχ

δq

)0
∂2 (q(t′ + ∆t)E(t′))

∂t2
(2.26)

By changing the variable of the derivative from t to t′ = t−zn/c and by integrating
the wave equation in the spatial domain with the boundary condition E(z =
0, t′) = Einc(t′) we get:

− 2n
c

(
∂E(t′)
∂t′

− ∂Einc(t′)
∂t′

)
= z

c2

(
δχ

δq

)0
∂2 (q(t′ + ∆t)E(t′))

∂t′2
(2.27)

We can now integrate also in the t′ variable. Assuming a that the polarizability
modulation is much smaller then the equilibrium one, we can approximate E(t′)
with Einc(t′) in the r.h.s. of the Equation 2.27 and thus, after the integration,
we obtain [15]:

E(t′)−Einc(t′) = − z

2nc

(
δχ

δq

)0 ∂
(
q(t′ + ∆t)Einc(t′)

)
∂t′

(2.28)

Since we want to analyse the spectral modification of the probe pulse as a conse-
quence of its sudden interaction with the excited phonon, it is useful to rewrite
the fields inside Equation 2.28 in Fourier domain:

E(ω) =
∫
dtEωe

iωt (2.29)

By substituting this Fourier expansion of the field inside 2.28 and recalling that
nuclear displacement induced by the sudden interaction with the pump is ruled
by Equation 2.12

q(t′ + ∆t) = τfpump

2Ωm sin(Ω(t′ + ∆t))

we get:

Eω(∆t)−Einc
ω = z

4nc

(
δχ

δq

)0
τfpump

2Ωm ω
(
Einc
ω+Ωe

−iΩ∆t −Einc
ω−Ωe

iΩ∆t
)

(2.30)
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Let us now link the expression of the emitted field with the homodyne current
equation. In the hypothesis of a phase-matched local oscillator and since the prop-
agation of the electric field is along z (Eω(z) ≡ Eω), the current reads (Equation
1.42):

I(∆t) = 2
∑
j

|zj||Ej(∆t)| cos(φj − φTj (∆t)) (2.31)

where we have denoted with φTj the phase of the jth emitted field mode ruled by
the modulated refractive index ñ.

We want now to explore how the Raman process affects the amplitudes of
the phonon-coupled modes and compare it with the LRM case. By labelling the
frequencies inside the pulse as: ωj = ω0 + jδ,−J ≤ j ≤ +J and supposing that
before the interaction the probe is in phase-matched state (i.e. Einc

j = |Einc
j |),

the amplitude of the jth emitted field mode up to first order in (δχ/δq)0 reads:

|Ej(∆t)| =

√√√√|Einc
j |2 + z

4nc

(
δχ

δq

)0
τfpumpωj

2Ωm |Einc
j |

(
|Einc

j+ Ω
δ

| − |Einc
j−Ω

δ

|
)

cos(Ω∆t)

(2.32)
Since we expect the spectral amplitude variation to be much smaller than the
incident one, we can Taylor expand the emitted amplitude, obtaining:

|Ej(∆t)| ' |Einc
j |+

z

8nc

(
δχ

δq

)0
τfpumpωj

2Ωm

(
|Einc

j+ Ω
δ
| − |Einc

j−Ω
δ
|
)

cos(Ω∆t) (2.33)

From the previous equation we clearly notice that ISRS is an intrinsic multimode
process resulting from the interaction between different photon modes of the
incident pulse. In particular, considering a gaussian distribution of the incoming
probe mode around ω0, we note that by changing the delay between the force
exerted by the pump and the probe (i.e. by controlling ∆t) we have two different
situations:

• Ω∆t = 0: the force induced by the probe is in phase with the one induced
by the pump. Since the nuclear oscillations is π/2-shifted with respect to
the pump force (Eqs. 2.10, 2.12), by choosing Ω∆t = 0 the probe is exerting
a force on the phonon in phase with its velocity. Exploiting Equation 2.33,
we see that in this case the probe modes with frequency greater than the
central one ω0 are suppressed (since |Einc

j+ Ω
δ

| − |Einc
j−Ω

δ

| < 0) while the ones
with frequency smaller than ω0 are enhanced (since |Einc

j+ Ω
δ

| − |Einc
j−Ω

δ

| > 0).

This means that in this case the probe-phonon interaction is a stimulated
Stokes process, that result in a red-shift of the pulse.

• Ω∆t = π: the force induced by the pump is anti-phase with respect to the
phonon velocity. Conversely, in this case the probe modes with frequency
less than ω0 are suppressed, while the others are enhanced. Therefore, the
probe-phonon interaction is a stimulated Anti-Stokes process that result in
a blue-shift of the incoming pulse.

In our experiment, this amplitude dynamics resulting from ISRS can be monitored
by measuring the homodyne current for each probe mode. Indeed, the differential
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amplitude induced by the Raman is:

∆Aj(∆t) = |zj|
z

4nc

(
δχ

δq

)0
τfpumpωj

2Ωm

(
|Einc

j+ Ω
δ
| − |Einc

j−Ω
δ
|
)

cos(Ω∆t) (2.34)

We note that the ISRS-driven amplitude shift is sensitive to the incident probe
intensity. Indeed, it scales linearly with amplitude of the incoming probe field.

In Figure 2.3 we summarize the phase and amplitude features imprinted on
the probe pulse in case of a Raman dominated interaction. We note that while
the phase temporal dynamics is ruled by the nuclear oscillations, the amplitude
follows the phonon momentum and exhibits the Raman features previously de-
scribed.

Figure 2.3: Schematic description of the temporal evolution of the probe spectral fea-
tures in the case of ISRS probing process. In black we depict the phonon
oscillations excited by the pump at t = 0, while in red and green the
phase and amplitude shifts for two probe modes. ISRS causes a π-shift
between the amplitude oscillations of modes with opposite frequency. This
results in a time-dependent spectral shift among the probe modes that
can be controlled through the pump-probe delay (red and blue dotted
lines). Conversely, the phase shift follows the refractive modulation ruled
by the phonon position q and in this limited energy range can be considered
frequency-independent.

Finally, we underline that both LRM and ISRS are ruled by the four rank non-
linear susceptibility tensor (δχ/δqn)0

µµ′ (δχ/δqn)0
λλ′ (Equation 2.14) whose symme-

try depends on the selected phonon and can be exploited to distinguish the two
probing effects.

26



In particular, we expect ISRS not to change the polarization of the involved
modes. Indeed, it is a stimulated process and the new photons are likely to be
created in mode states initially occupied [21]. On the contrary, we expect LRM
to be responsible for the polarization rotation of the probe modes. This indeed
results from the anisotropy of the static electronic susceptibility.

2.2 Quantum model

In the previous section we have described the photon-phonon interaction in
a classical picture, modelling both the optical and the vibrational degrees of
freedom as classical harmonic oscillators. In this section we want to translate the
classical language into a more fundamental quantum one.

The main reason of a fully quantum formalism of light-phonon interaction re-
sides in the fact that it can be potentially applied also in more general situations
where the classical model fails. This is the case of weak photon fields with quan-
tum statistics. The model will permit us to go beyond the standard mean value
approach, by opening the possibility of describing intrinsic quantum fluctuations
imprinted on the probe pulse by the non-linear interaction and eventually multi-
mode quantum correlations among the photon modes (Chapter 6). In this section
we will preliminarly focus on mean value dynamics of the interacting photon field
and retrieve from the quantum formalism the classical predictions.

In the previous section we have pointed out that the phonon-dependent op-
tical response is determined by the modification of the electronic susceptibility
((δχ/δq)0q) due to the lattice distortion (Equation 2.16). Therefore, the descrip-
tion of the probing process in a fully quantum formalism has to go through its
quantization and through the contemporaney quantization of the optical field. In
this section we achieve this purpose by treating both the optical and the elastic
modes as quantum harmonic oscillators. Following the model presented in [4],
we will translate the classical description of the photon-phonon interaction into a
quantum formalism and derive the Hamiltonians describing LRM and ISRS. We
will then exploit the homodyne formalism to retrieve the amplitude and phase
mean dynamics of each optical mode induced by the separate action of the two
Hamiltonians.

2.2.1 Derivation of the interaction Hamiltonian

The starting point for the quantum formulation is the photon-phonon inter-
action energy (Equation 2.3):

U(x, t) = −P (x, t) ·E(x, t)
= −ε0

∑
λλ′

χλλ′(q1, ..., qn)Eλ(x, t)Eλ′(x, t) (2.35)
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Considering tiny nuclear displacements, the electronic susceptibility can be ex-
panded as a function of the lattice normal mode coordinates qn:

χλλ′(q1, ..., qN) ' χ
(0)
λλ′ +

N∑
n=1

(
δχ

δqn

)
λλ′

∣∣∣∣∣
qn=0

qn

≡ χ0
λλ′ +

N∑
n=1

χ
(1)
λλ′(n) qn

(2.36)

χ0 is the static electronic susceptibility describing static refractive effects, such
as birefringence and polarization rotation. χ(1) is instead the phonon modu-
lated susceptibility whose components χ(1)

λλ′ are assumed to be real and such that
χ

(1)
λλ′ = χ

(1)
λ′λ. The fully quantum Hamiltonian ruling photon-phonon interaction

is obtained by expressing the potential energy 2.35 in terms of the optical and
elastic quantized fields.

The optical field is treated as a set of harmonic oscillators, each representing a
radiation mode with a defined frequency ωj = ω0+jδ,−J ≤ j ≤ +J . Each optical
mode is described through the operators â†λj and âλj, representing respectively
the creation and annihilation operators for the photons with frequency ωj and
polarization λ. They obey the bosonic commutation relation:

[â†λj, âλ′k] = δλλ′δjk (2.37)

The λ-polarized quantized electric field can be subsequently written as a sum
over all the single mode quantized fields and it reads:

Êλ(x, t) = i
∑
j

√
ωj

2V ε0

(
âλje

−i(ωjt−kj ·x) − â†λjei(ωjt−kj ·x)
)

(2.38)

In the expression of the quantized multimode electric field we have denoted with
V the quantization volume and with kj the propagation direction of the jth
mode component The elastic field describing the lattice distortion is analogously
modelled as a set of harmonic oscillators, each representing a phonon mode. We
denote with b̂†Ωj ,un and b̂Ωj ,un the creation and destruction operator of a phonon
with frequency Ωj propagating along the un normal mode coordinate. These two
operators satisfy the bosonic commutation relation:

[b̂†Ωj ,un , b̂Ωk,um ] = δnmδjk (2.39)

Therefore, the quantized canonical variables (position and momentum) corre-
sponding to the nth phonon are:

q̂n(x, t) = 1√
2mnΩnVs

(
b̂†Ωne

i(Ωnt−un·x) + b̂Ωne
−i(Ωnt−un·x)

)
p̂n(x, t) = i

√
mnΩn

2Vs

(
b̂†Ωne

i(Ωnt−un·x) − b̂Ωne
−i(Ωnt−un·x)

) (2.40)

In the previous equations we have denoted with Vs the sample volume, supposing
that it is comparable with the correlation phonon volume.
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The photon-phonon interaction Hamiltonian is derived by substituting the
expression of the quantized optical and vibrational fields inside Equation 2.35
and by subsequently integrating over the sample volume:

Ĥint = −ε0
∫
Vs
dx

(
χ0
λλ′ +

N∑
n=1

χ
(1)
λλ′(n) q̂n(x, t)

)
Êλ(x, t)Êλ′(x, t) (2.41)

In order to simplify the Hamiltonian expression and point out its main features,
let us exploit some approximations:
• We consider the interaction of a single nuclear mode with light, thus ne-

glecting the summation over n inside the integral.

• We make use of the Rotating Wave Approximation, neglecting all the terms
in the mixed products between optical and vibrational fields whose time-
dependent exponents are such that ωj − ωl 6= Ω.

• Since the nuclear mode wavelength is much longer than the optical one
we can set the phonon wave vector un ' 0 and treat the photon-phonon
scattering as unidimensional. With this approximation, the wave vector of
the emitted photon indeed coincides with the wave vector of the incident
one.

Exploiting these approximations, we get a time-independent Hamiltonian [4] that
can be split into two parts describing two different physical situations. Ĥref rules
the Linear Refractive Modulation, while Impulsive Stimulated Raman Scattering
is modelled through ĤRaman.

Ĥint = Ĥref + ĤRaman (2.42)

ĤRaman = −
√
Vs

2V
√

2mΩ
∑
λλ′,j

ωjχ
(1)
λλ′

[(
â†λj âλ′j+ Ω

δ

)
b̂†Ω +

(
âλj â

†
λ′j+ Ω

δ

)
b̂Ω

]
(2.43)

Ĥref = − Vs
2V

∑
λλ′,j

ωj
(
χ

(0)
λλ′ + q̂Ωχ

(1)
λλ′

) (
â†λj âλ′j + âλj â

†
λ′j

)
(2.44)

The previous expressions clarify all the main different features of the two photon-
phonon interaction effects:
• ĤRaman involves the exchange of a quantum of elastic energy ~Ω between

the pulse and the sample. Indeed, by the action of the Raman Hamiltonian
photons with frequency ωj are destroyed through âλj and photons with
frequency ωj ± Ω are created through â†

λj±Ω
δ

, together with the absorption
(b̂Ω) or emission (b̂†Ω) of a phonon. This results in a spectral weight shift
inside the interacting optical pulse. The term containing b̂†Ω inside ĤRaman

rules the Stokes process, while the one containing b̂Ω rules the Anti-Stokes
process.

• ĤRef does not describe an energy exchange between the pulse and the sam-
ple, since it does not couple optical modes of different frequency. ĤRef acts
indeed as a beam-splitter Hamiltonian, describing the photon redistribution
between the two polarization λ and λ′. This is mediated by the static (χ(0))
and by the phonon-dependent (χ(1)) susceptibility. The latter is ruled by
the phonon position operator q̂Ω.
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In this quantum framework, we will now model the pump-probe experiment.

2.2.2 ISRS phonon excitation process
Let us start by describing the phonon excitation resulting from the interaction

between the pump pulse and the sample. In the quantum language, the pump-
driven excitation corresponds to the sudden application of ĤRaman on a phonon
thermal ground state for a time τ much shorter than the phonon oscillation period.
We stress that the phonon excitation is an ISRS process described by ĤRaman.
ĤRaman is indeed the part of the interacting Hamiltonian (Equation 2.42) ruling
the energy exchange between vibrational and optical degrees of freedom.

Concerning the initial states, we model the pump state |α〉 as a mode-locked
coherent pulse consisting of linearly polarized photons with frequencies ωj =
ω0 + jδ,−J ≤ j ≤ +J :

|α〉 = exp
∑
j,λ

αλj â
†
λj − α∗λj âλj

 |0〉 âλj|α〉 = αλj|α〉 (2.45)

Here |0〉 represents the multimode vacuum state and αλj the complex amplitude
of the jth mode. Moreover, we suppose that the 2J+1 frequencies ωj are gaussian
distributed around the central frequency ω0 with a separation δ depending on the
laser repetition rate. Under these hypothesis we can write the jth component of
the multimode field as:

αλj = αλe
−(jδ)2/2σ2

eiϕα(j) = |αλj|eiϕα(j) (2.46)

Since the incoming pulse is mode-locked, the single mode phases satisfy ϕα(j) =
jϕα +ϕ0

3. As in the classical treatment we will suppose that the incoming pulse
is phase-matched. This implies ϕα = 0 and hence the jth component of the
impinging pulse reads:

αλj = αλe
−(jδ)2/2σ2 = |αλj| (2.47)

We want now to analyse what are the effects on the optical and vibrational
degrees of freedom resulting from the sudden pump excitation. We will model
this instantaneous interaction by mean of the evolution operator ÛRaman(τ) =
e−iτĤRaman . Under the action of ÛRaman a generic operator Ô evolves in time
following:

Ô(τ) = Û †Raman(τ) Ô ÛRaman(τ) (2.48)

Since we are assuming that the phonon related non-linear susceptibility coeffi-
cients χ(1)

λλ′ are small in absolute value [4], we can perform a perturbative expan-
sions of Ô(τ) in the coupling parameter τχ(1). Therefore, up to second order in
τχ(1) we obtain:

Ô(τ) ' Ô + iτ
[
ĤRaman, Ô

]
− τ 2

2
[
ĤRaman,

[
ĤRaman, Ô

]]
(2.49)

Firstly, let us single out the effect of the ISRS-driven excitation on the vibrational
degrees of freedom. By applying Equation 2.49 to the phononic operator b̂Ω, we

3Since ϕ0 is a frequency-independent constant phase we will set it equal to 0.
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get its perturbed expression up to a time τ :4

b̂Ω(τ) ' b̂Ω + iτ

√
Vs

2V
√

2mΩ
ĝ ; ĝ ≡

∑
λλ′,j

ωjχ
(1)
λλ′ â

†
λj âλ′j+ Ω

δ
(2.50)

Since the photon-phonon system can be described as a factorized state
ρ̂phon0 ⊗ |α〉 〈α| where ρ̂phon0 is the density operator of the phonon thermal state,
the mean value of b̂Ω(τ) reads:

〈b̂Ω(τ)〉 = Tr
[(
ρ̂phon ⊗ |α〉 〈α|

)
b̂Ω(τ)

]
=

= 〈b̂Ω〉+ iτ

√
Vs

2V
√

2mΩ
γ

(2.51)

where:
γ ≡ 〈ĝ〉 =

∑
λλ′,j

ωjχ
(1)
λλ′ |αλ,j||αλ′,j+ Ω

δ
| (2.52)

From the previous calculation we can subsequently derive up to second order in
τχ(1) the mean phonon position and momentum resulting from a Raman-driven
excitation:

〈q̂Ω(τ)〉 = 1√
2mΩVs

(
〈b̂Ω(τ)〉+ 〈b̂†Ω(τ)〉

)
= 〈q̂Ω(0)〉 (2.53)

〈p̂Ω(τ)〉 = i
mΩ√
2Vs

(
〈b̂†Ω(τ)〉 − 〈b̂Ω(τ)〉

)
= 〈p̂Ω(0)〉+ τ

2V |γ| (2.54)

Equation 2.54 shows that through ISRS the photon imparts to the phonon a mo-
mentum shift (Figure 2.4) proportional to the interaction time τ , to the photon-
phonon coupling χ(1) and to the amplitude of the phonon-coupled optical modes.
On the contrary, the mean phonon position shift (〈q̂Ω(τ)〉− 〈q̂Ω(0)〉) due to ISRS
is null.

Figure 2.4: Representation of ISRS-driven excitation in phonon phase space. The pho-
ton imparts to the phonon a momentum displacement generating a phonon
state with a non null mean momentum. The circular trajectory represents
the free evolution of the phonon after the excitation. In absence of any
dissipative effects, it is ruled by an harmonic oscillator Hamiltonian.

4This expression is correct up to 2nd order since [ĤRaman, [ĤRaman, b̂Ω]] = 0.
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Moreover, exploiting Equation 2.50 we can evaluate up to second order in the
coupling parameter τχ(1) the mean number of phonons excited by the optical
pulse:

〈N̂Ω(τ)〉 = 〈b̂†Ω(τ) b̂Ω(τ)〉 = 〈N̂Ω(0)〉+ τ
Vs|γ|

2V mΩ〈p̂Ω(0)〉+ τ 2 Vs
8V 2mΩ〈ĝ

†ĝ〉 (2.55)

The previous equation clarifies how first order and second order photon-phonon
coupling affects phonon population.

Indeed, only the phonon number variation linear in the coupling τχ(1) depends
on the mean value properties of the initial vibrational state (i.e. the mean phonon
momentum 〈p̂Ω(0)〉). This means that if the system is initially in a displaced
phononic state, the description of its interaction with the optical modes can be
limited to first order in the photon-phonon coupling τχ(1). Conversely, the second
order contributions are the leading ones if the photon interacts with a vibrational
thermal ground state (i.e. with 〈p̂Ω(0)〉 = 〈q̂Ω(0)〉 = 0).

The variations on the phononic degrees of freedom due to ISRS have their
counterpart on the optical ones. The latter can be retrieved by applying Equation
2.49 to the operator âµj, representing the jth photon mode polarized along µ:

âµj(τ) ' âµj + iτ
[
ĤRaman, âµj

]
− τ 2

2
[
ĤRaman,

[
ĤRaman, âµj

]]
≡ âµj + â

(1)
µj (τ) + â

(2)
µj (τ)

(2.56)

Let us starting by calculating the first order corrections â(1)
µj (τ) . Since the in-

volved optical frequencies (∼ 400 THz) are larger then the vibrational ones (∼ 10
THz) we can make use of the approximation ωj + Ω ∼ ωj inside the commutator
in 2.56, obtaining:

â
(1)
µj (τ) = iτ

√
Vs

2V
√

2mΩ
∑
λ

χ
(1)
µλωj

(
âλj+ Ω

δ
b̂†Ω + âλj−Ω

δ
b̂Ω
)

(2.57)

The perturbation of â(1)(τ)
µj due to ISRS is responsible for the spectral modification

of the pulse, i.e. of phase and amplitude shifts of each optical mode. Their
mean values can be retrieved from the expectation value of the homodyne current
operator Îµ,φj , measured in a frequency-resolved scheme. Recalling Equation 1.17,
under the hypothesis of a classical local oscillator in a phase-matched state, the
latter reads:5

Îµj ,φj = |zµj|
(
âµje

−iφj + â†µje
iφj
)

(2.58)
By substituting inside the previous equation the expression of the photonic op-
erator derived in 2.57 and averaging on the factorized state ρ̂phon0 ⊗ |α〉 〈α|, we
get the correction to the frequency-resolved homodyne current up to first order
in τχ(1):

〈Î(1)
µj ,φj

(τ)〉 = Tr
[(
ρ̂phon0 ⊗ |α〉 〈α|

)
Î

(1)
µj ,φj

(τ)
]

= |zµj|
ωjτ
√
Vs

2V
√
mΩ

∑
λ

χ
(1)
µλ

[
|αλj+ Ω

δ
|〈X̂phon

φj
(0)〉 − |αλj−Ω

δ
|〈X̂phon

−φj (0)〉
]

(2.59)
5In the experiment the detected probe and the local oscillator share the same polarization

state µ.
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In the previous expression we have denoted with X̂phon
φj

the quadrature of the
phononic field which before the interaction (i.e. at t = 0) reads:

X̂phon
φj

(0) ≡ i√
2
(
b̂†Ω(0)e−iφj − b̂Ω(0)eiφj

)
= cos(φj)

√
Vs√
mΩ

p̂Ω(0) + sin(φj)
√
mΩVs q̂Ω(0)

(2.60)

Therefore, the ISRS-driven phonon excitation results in a variation of the ho-
modyne response 〈Î(1)

µj ,φj
(τ)〉 proportional to the phononic field quadrature. By

substituting the expression of X̂phon
φj

(0) inside Equation 2.59 and adding to the
homodyne current the equilibrium phonon-independent contribution, we get:

〈Îµj ,φj(τ)〉 =|zµj ||αµj | cos(φj)+

+ |zµj |
τVsωj

2V
∑
λ

χ
(1)
µλ

(
cos(φj)

(
|αλj+ Ω

δ
| − |αλj−Ω

δ
|
) 〈p̂Ω(0)〉

mΩ +

+ sin(φj)
(
|αλj+ Ω

δ
|+ |αλj−Ω

δ
|
)
〈q̂Ω(0)〉

) (2.61)

This equation confirms that if the system is initially in a phonon thermal
ground state ρ̂phon0 (i.e. 〈q̂Ω(0)〉 = 〈p̂Ω(0)〉 = 0) no information on Raman inter-
action can be retrieved from the optical measurements if we limit at first order.
This means that the pulse spectral modification due to ISRS interaction with a
phonon thermal ground state is a second order effect and hence proportional to
the square of the photon-phonon coupling

(
τχ(1)

)2
(cfr Equation 2.55).

In our experiment we make use of the pump field to drive via ISRS a coherent6

vibrational excitation with non-null mean momentum and position, and probe the
displaced phononic state with another optical pulse (probe). As pointed out in
Equation 2.61, the leading contribution to the probe optical response will be
linear in its coupling with the excited phonon. Moreover, as we will explore in
detail in Section 2.2.3, the pump excitation will drive an enhancement of the
cross-section between the probe pulse and the coherent phonon.

2.2.3 Pump-probe dynamics
In the previous section we have formalized in a quantum framework the pump-

driven phonon excitation. In the following, we will exploit the homodyne formal-
ism to retrieve the spectral modification undergone by the probe pulse propagat-
ing through the pumped sample at a variable time ∆t from the excitation. In
particular, we will single out the two main probing effects: the Linear Refractive
Modulation ruled by Ĥref and the Impulsive Stimulated Raman Scattering ruled
by ĤRaman.

To do this, we have to preliminary model the phonon temporal evolution after
the the pump interaction. Neglecting any dissipative effects, the excited phonon

6We stress that here we have used the term coherent only to indicate a temporal periodic
evolution of the lattice distortion with non-null mean position and momentum. This does not
imply that the pump excited phonon is in a coherent state of the quantum harmonic oscillator.
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evolves as a free harmonic oscillator with frequency Ω. The temporal evolution
up to the probing time ∆t is ruled by the unitary operator:

Ûfree(∆t) = e−iΩ̂b
†
Ωb̂Ω∆t (2.62)

The optical probing effects are consequently determined by the phononic state at
time ∆t, that is the instant at which the probe interaction occurs. The phononic
state at the probing time is fully described through its density operator ρ̂phon(∆t)
which is determined by the ISRS pump excitation and by the subsequent free
evolution up to ∆t:

ρ̂phon(∆t) = Ûfree(∆t) ÛRaman(τ) ρ̂phon0 Û †Raman(τ) Û †free(∆t) (2.63)

Therefore, up to first order in the phonon-photon coupling parameter τχ(1) the
average of the phononic operator b̂Ω at time ∆t reads:

〈b̂Ω(∆t)〉 = Tr

[
ρ̂phon0

(
e−iΩ∆t

(
b̂Ω + iτ

√
Vsγ

pump

2V
√

2mΩ

))]
= iτ

√
Vsγ

pump

V
√

2mΩ
e−iΩ∆t

(2.64)
where we recall:

γpump =
∑
λλ′,j

ωjχ
(1)
λλ′|αpumpλ,j ||α

pump

λ′,j+ Ω
δ

| (2.65)

The probe hence acts on a phonon excited state whose mean value position and
momentum evolve as:

〈q̂Ω(∆t)〉 = τγpump

2V mΩ sin(Ω∆t) ≡ R

mΩ sin(Ω∆t)

〈p̂Ω(∆t)〉 = τγpump

2V cos(Ω∆t) ≡ R cos(Ω∆t)
(2.66)

In the previous equations we have expressed the mean momentum and position
of the coherent phonon in terms of the radius R of its trajectory in phase space.
The latter corresponds to the phonon momentum shift imparted by the pump:

R ≡ γpump
τ

2V
= τ

2V
∑
λλ′,j

ωjχ
(1)
λλ′|αpumpλ,j ||α

pump

λ′,j+ Ω
δ

|
(2.67)

and it is a crucial parameter, since it describes the symmetry properties of the
excited phonon.

Having in mind these preliminary concepts, let us now move to the fully
description of the processes undergone by the the probe pulse.

Linear refractive modulation (LRM)

The modification of the probe photonic operator âµj due to LRM interaction
with the pumped sample is ruled by the unitary operator Ûref (τ) = e−iĤref τ . Up
to first order in τχ(1) its evolution therefore reads:

âµj(τ) ' âµj + iτ
[
Ĥref , âµj

]
=

= âµj + Vs
V

∑
λj

ωj
(
χ

(0)
µλ + q̂Ωχ

(1)
µλ

)
âλj

(2.68)
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In our experiment, the perturbation of the photonic degrees of freedom of the
probe pulse is mapped in the phase and amplitude dynamics of the mean
homodyne current. If we single out only the LRM probing effect, the latter
reads:

〈ÎRefµj ,φj
(∆t)〉 = |zµj||αµj| cos(φj)+|zµj |

2τVsωj
V

sin(φj)
∑
λ

|αλj|
(
χ

(0)
µλ + χ

(1)
µλ〈q̂Ω(∆t)〉

)
(2.69)

If we now separate the equilibrium and the phonon-dependent contribution, we
note that the refractive modulation affect both the pumped and the unpumped
response.

〈ÎRefµj ,φj
(∆t)〉eq = |zµj||αµj| cos(φj) + |zµj |

2τVsωj
V

sin(φj)
∑
λ

|αλj|χ(0)
µλ

〈ÎRefµj ,φj
(∆t)〉pump = |zµj |

2τVsωj
V

sin(φj)
∑
λ

|αλj|χ(1)
µλ

R

mΩ sin(Ω∆t)
(2.70)

As a matter of fact, the static homodyne current is influenced by the phonon-
independent susceptibility χ(0), while the pumped response is sensitive to the
phonon modulated refractive properties modelled through χ(1).

We stress that we dub this effect as Linear only because it is linear in the
photonic degrees of freedom of the probe, i.e. it does not cause any spectral
weight shift. The non-linearity of the process resides in the ISRS-driven pumping
excitation which is mapped into a non-linear probe response ruled by a phonon-
dependent susceptibility χ̃(1)

µλ of the form:

χ̃
(1)
µλ = R

mΩχ
(1)
µλ = τ

2V mΩ
∑
j

∑
mn

χ
(1)
µλχ

(1)
mn|α

pump
mj ||α

pump

nj+ Ω
δ

|ωj

≡ τ

2V mΩ
∑
j

∑
mn

χ
(3)
µλmn|α

pump
mj ||α

pump

nj+ Ω
δ

|ωj
(2.71)

In the previous equation we have pointed out the non-linearity of the probing
process by making explicit the four rank susceptibility tensor χ(3)

µλmn. Moreover,
we note that the cross-section of the probe-phonon interaction χ̃(1)

µλ is enhanced
through the pumping process, since it is proportional to the phonon-coupled pump
modes. By looking at the structure of Equation 2.69, we note that the refractive
effect results both in a phase and in an amplitude shift of the homodyne current.
Indeed, LRM introduces both in the equilibrium and in the pumped current, a
response proportional to sin(φj) which is π/2-shifted with respect to the sample-
independent one (∝ cos(φj)).

The LRM-driven phase and amplitude dynamics are shown in Figure 2.5.
The presented plots have been obtained by separately fitting the pumped and
the equilibrium response (Equation 2.70 ) with a sinusoidal function and by tak-
ing the difference between the pumped and equilibrium parameters (phase and
amplitude). In this way we are able to single out the phonon-dependent shifts.
Moreover, in this preliminary simulation we have taken χ(0) as a real tensor, thus
supposing that at equilibrium the sample does not exhibit birefringence7.

7In Chapter 5, where the mean value measurements on α-quartz are presented, we will also
take into account static birefringence.
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The simulated dynamics confirms what has been predicted with the classical
model. As a matter of fact, phase and amplitude shifts resulting from the modu-
lation of the refractive properties follows the temporal evolution of the coherent
phonon oscillations 〈q̂Ω(∆t)〉, confirming the classical predictions.

(a) Amplitude dynamics (refractive contribution)

(b) Phase dynamics (refractive contribution)

Figure 2.5: Simulated amplitude and phase dynamics of each probe mode in case
of LRM probe-phonon interaction. The trends have been obtained by
separately fitting 〈ÎRefµj ,φj

(∆t)〉eq and the full response 〈ÎRefµj ,φj
(∆t)〉pump +

〈ÎRefµj ,φj
(∆t)〉eq with a sinusoidal function and by taking the difference be-

tween the pumped and unpumped parameters. In the present simulation:
|zj | = 10|αj |; |αpumpj | = 103|αj |; τ = 50 fs; χ̃(1)

µλ ' 10−4 (Chapter 5);
χ

(0)
λλ′ ∼ 0.1 [14]. Phase and amplitude shifts follow the nuclear displace-

ment dynamics (black line). We note that LRM causes no spectral weight
shifts among probe modes.
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Impulsive Stimulated Raman Scattering (ISRS)

Let us now study the energy exchange between the probing pulse and the
excited phonon. In non-absorbing media this is dominated by ISRS. Since the
effect of the Raman process is a shift of phonon momentum, we expect that by
probing the sample at different times from the excitation (i.e. at different points in
the phase space trajectory of the free evolving phonon) we can dynamically dump
or force the phonon oscillations (Figure 2.6). This means that by controlling the
pump-probe delay we can induce a Stokes or an Anti-Stokes process among the
modes of the probe pulse.

Figure 2.6: Effects of the ISRS interaction between the probe pulse and the coherent
phonon. The probe imparts to the phonon a positive momentum shift (ar-
row). The momentum shift, depending on the phonon phase space coordi-
nate, can force (Stokes process) or dump (Anti-Stokes process) the phonon
oscillations, thus modifying the radius of its trajectory.

In this case, the probe-phonon interaction is ruled by the action of ĤRaman

and the frequency-resolved homodyne current therefore reads (cfr Equation 2.61):
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)
(2.72)

In order to retrieve the ISRS-driven modifications of the probe field, let us split
the homodyne current equation in its equilibrium and a pumped contribution:

〈ÎRamanµj ,φj
(∆t)〉eq = |zµj||αµj| cos(φj)

〈ÎRamanµj ,φj
(∆t)〉pump = |zµj |
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δ
|+ |αλj−Ω

δ
|
) R sin(Ω∆t)

mΩ

)
(2.73)
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The previous equation shows that ISRS induces a pumped optical response having
two contributions.

The first one is in phase with the equilibrium response (∝ cos(φj)) and it
is therefore mainly responsible for the phonon-induced amplitude shifts. The
temporal dependence of this contribution is ruled by the phonon momentum.

Conversely, the second term in Equation 2.73 is π/2-shifted with respect to the
unpumped response and follows the instantaneous atomic displacement 〈q̂(∆t)〉.
This contribution rules the phase dynamics and its origin resides in the fact that
the homodyne response resulting from ISRS interaction is a map of the quadra-
ture of the excited phonon field, and hence of the linear combination of phonon
momentum and position (Equation 2.59). Therefore, the phase modulation ruled
by the instantaneous lattice displacement is present also in the case of Raman
probe-phonon interaction.

Let us focus on the ISRS-driven amplitude shifts (Figure 2.7) and retrieve their
peculiar dynamics. As previously stated, the leading contributions to phonon-
dependent amplitude shifts originate from the pumped term proportional to
cos(φj) and hence in phase with the equilibrium one. The pumped response
proportional to sin(φj) is indeed null when the equilibrium one is maximum, and
therefore causes negligible amplitude shifts. The ISRS-driven amplitude dynam-
ics has been obtained by fitting with a sinusoidal function the pumped response
and the equilibrium one and by subsequently subtracting the pumped fitted am-
plitude to the unpumped one. Figure 2.7 shows that the amplitude exhibits the
Raman behaviour. Indeed, the ISRS-driven photon-phonon interaction induces a
spectral weight shift among the probe modes which follows the phonon momen-
tum (cfr classical model).

In Figure 2.8 we compare the ISRS-driven amplitude dynamics with the LRM-
driven phase trend. They are π/2-shifted for any probe frequency, since respec-
tively ruled by phonon momentum and phonon position.

The extent of phonon-driven amplitude shifts are ruled by the cross-section
of the Raman process χ̃(1)

µλ . In this quantum model, the latter reads8
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µλ = R

mΩχ
(1)
µλ = τ

2V mΩ
∑
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∑
mn

χ
(1)
µλχ

(1)
mn|α
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≡ τ

2V mΩ
∑
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∑
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χ
(3)
µλmn|α

pump
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pump

nj+ Ω
δ

|ωj
(2.74)

The previous equation clearly shows that ISRS results from a non-linear response
in the susceptibility ruled by the four rank tensor χ(3)

µλmn.
We stress that since the probe interacts with an excited coherent phonon, the

cross-section of the interaction (χ̃(1)
µλ) is sensitive to the intensity of the pulse that

has induced the vibrational excitation (i.e. the pump). In particular, Equation
2.74 shows that the Raman cross-section χ̃(1)

µλ scales as the product of the phonon-
coupled pump modes. Therefore, if the pump intensity is constant, we can exploit
the measure of the Raman cross-section to retrieve the coupling strength between
electronic and vibrational degrees of freedom.

8By using this definition, the cross-section of the non-linear probing process χ̃(1)
µλ is adi-

mensional. Indeed, R
mΩ represents the spatial extent of nuclear oscillations, while χ(1)

µλ has the
dimension of the inverse of a length (Equation 2.36).
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(a) Amplitude dynamics (ISRS contribution)

Figure 2.7: Simulated amplitude dynamics of each probe mode in case of ISRS probe-
phonon interaction. The trends have been obtained by separately fitting
〈ÎRamanµj ,φj

(∆t)〉eq and the full response 〈ÎRamanµj ,φj
(∆t)〉pump + 〈ÎRamanµj ,φj

(∆t)〉eq
with a sinusoidal function and by taking the difference between the pumped
and unpumped parameters. In the present simulation: |zj | = 10|αj |;
|αpumpj | = 103|αj |; τ = 50 fs; χ̃(1)

µλ ∼ 10−4 (Chapter 5). ISRS causes a
dynamical spectral weight shift inside the probe in phase with the mo-
mentum phonon oscillations (black line). This results in a π-shift of the
differential amplitude of modes at opposite sides of the gaussian pulse.

In Figure 2.9 we summarize the quantum model of the pump-probe experiment
with the description of the observable effects.

We stress that in this chapter we have separated the LRM and the ISRS re-
sponse only to distinguish their peculiar features. In the real experiment, the
two effects occur together in the probing process. However, since we expect to be
LRM the only probing effect responsible to polarization rotation, we can isolate
it by controlling the polarization of the incident and emitted probe field. Conse-
quently, in order to completely describe the experimental homodyne response we
will need to introduce a further Hamiltonian modelling the polarization selection
of the outgoing probe. We will examine in detail this issue in Chapter 5, where we
will apply the model to the employed α-quartz and CuGeO3 samples and discuss
the symmetry properties of their Raman phonons.
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Figure 2.8: Comparison between ISRS-driven amplitude dynamics and LRM-driven
phase dynamics. The amplitude shift imprinted on the probe resulting
from the Raman interaction follows the phonon momentum. Conversely,
the phase is ruled by the mean phonon position (black line) and it is there-
fore π/2-shifted with respect to the amplitude.
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Figure 2.9: Description of the pump-probe experiment by mean of the quantum model.
In a) we depict the mean phonon oscillations induced trough ISRS by the
pump at t = 0 and ruled at positive times by a quantum oscillator Hamil-
tonian. In (b) we illustrate the modification of the phonon phase space
trajectory due to the probe-target interaction. The ISRS probing effect
is maximum when the phonon carries the maximum momentum modulus.
ISRS results indeed in a positive shift of the phonon trajectory along the
p axis. Depending on the probing time, ISRS can either force (Stokes pro-
cess) or dump (Anti-Stokes process) the phonon. The first occurs when the
probe interacts at the positive maximum phonon momentum, while the lat-
ter when the phonon exhibits at the interaction time the minimum negative
momentum. As depicted in (c) Stokes and Anti-Stokes probing processes
result respectively in a red shift or blue shift of the probe pulse. Conversely,
at the extremes of the phonon oscillations the ISRS-driven amplitude shift
is negligible and no change of the spectral weight occurs. In this case the
dominating probing effect is the Linear Refractive Modulation.
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Chapter 3

Experimental apparatus

In Chapter 2 we have theoretically described how we can exploit multimode
homodyne detection to address the coherent motion of atoms in solids in both its
amplitude and phase dynamics. In this chapter we provide the experimental de-
scription of this innovative spectroscopic technique. After having outlined which
are the experimental requirements needed for the realization of the technique, we
will focus on the pulse-shaper, that is a crucial component on which the success
of multimode homodyne relies. Eventually, we will describe the potentiality of
our detection system of performing measurements in shot-noise conditions. This
possibility, together with the frequency resolution of our technique, can open the
perspective of unveiling multimode quantum correlation imprinted on an optical
pulse trough its non-linear interactions with a phononic system (Chapter 6).

3.1 Time-resolved multimode homodyne set-up
As anticipated in Chapter 2, the scope of this work is to build a set-up suit-

able to combine two different spectroscopic techniques: pump-probe spectroscopy
and multimode homodyne detection. By combining these two approaches we are
able to overcome the intensity detection limitation of standard pump-probe spec-
troscopy and have access to phase and amplitude dynamics of each probe mode.
A simplified scheme of this experimental combination is depicted in Figure 3.1.

The experiment can be divided into three consecutive parts:

• The sample under investigation is driven out of equilibrium by an intense
ultrashort pulse. At a precise delay ∆t after the sudden excitation a second
laser pulse, the probe, interacts with the material and it is scattered carrying
information about the photo-excited system (Figure 3.1(a)).

• Each transmitted probe pulse, called signal in the homodyne framework
(Figure 3.1(b)), is made interfere through a 50:50 beam splitter with a
local oscillator (LO) shaped in its frequency content. The local oscillator
shaping is the innovative part of the approach and determines the frequency
resolution of the technique. Indeed, by modulating the LO spectral con-
tent, we are able to drive the interference to select the frequencies of the
emitted probe field. Experimentally, this purpose is accomplished trough
an ultrafast pulse-shaper that permits to modulate amplitude and phase of
each spectral component of a pulse. As illustrated in Figure 3.1, we have
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decided to send to the pulse-shaper also the probe (signal), even if no fre-
quency modulation has been applied to it. This choise ensures to increase
the noise stability of the interferometer, since signal and local oscillator
share most of the same optics. Moreover, exploiting the capability of the
pulse-shaper to modulate the phase of each spectral component, we can
correct the probe temporal compression (Section 3.2), without changing its
spectral content.

• Finally the two outputs of the 50:50 beam splitter are acquired with two
photodiodes and the difference between the two generated photo-voltages
(homodyne current) is measured. This observable maps the phase-resolved
quadrature of the probe field (Equation 1.18). The differential current can
be acquired by changing three different degrees of freedom: the local oscil-
lator frequency, its relative phase with respect to the signal and the pump-
probe delay ∆t. In particular, as presented in Figure 3.2, we are able to
reconstruct each probe mode for every pump-probe delay and eventually re-
trieve its full statistics. We will exploit the latter possibility of our detection
system in Section 3.3.

Figure 3.1: Pump-probe multimode homodyne detection set-up. The combination be-
tween standard pump-probe approach (a) and multimode homodyne bal-
anced detection (b) gives rise to the set-up adopted in this thesis (c).

In Figure 3.3 we present a more detailed representation of the employed set-
up. The ultrashort pulses are produced by a Kerr-Lens-Mode-Locked Nd-YAG
oscillator (Pharos Light Conversion) followed by a Chirped Pulse Amplifier. The
pulses, produced at a repetition rate of 200 kHz, are subsequently sent to a
two-stage Optical Parametric Amplifier (Orpheus-F OPA) seeded with supercon-
tinuum white light. The signal in output of the OPA is sent to interferometer
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Figure 3.2: Frequency-resolved homodyne map obtained at a fixed pump-probe delay.
The selection of the local oscillator frequency (green arrow) allows to re-
construct the quadrature of each probe mode. This is achieved by scanning
the LO phase at a fixed frequency νi.

and has a duration of 50 fs and a tunable wavelength. The wavelengths used for
our experiment are 760 nm and 745 nm. Conversely, the idler in output of the
parametric amplification stage is employed as pump. The latter has a duration
of 100 fs and a wavelength in the Near-Infrared-Range (1656 nm).

The signal is divided by mean of a beam splitter into two beams: one acts as
local oscillator, while the other is employed as probe. Both the probe and the
local oscillator are sent to the pulse-shaper which allows the frequency resolution
of the experiment, enabling the modulation of the spectral content of the LO.
The phase-mismatch between the probe and the local oscillator is controlled by
mean of a wedge mounted on a piezoelectric translator.

Figure 3.3: Experimental set-up adopted for performing multimode homodyne detec-
tion in time domain.

The delay ∆t between the pump and the probe is controlled by mean of
a mechanical translation stage inserted on the pump line. Since we want to
isolate from the homodyne current purely dynamical features imprinted on the
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equilibrium response (i.e. without the pump), we have inserted a chopper along
the pump beam. Indeed, by chopping the pump beam at a frequency (400 Hz)
much slower than the laser repetition rate and by triggering the pump arrival
by mean of a diode, both the pumped and the equilibrium quadrature can be
measured at each delay. The difference between the previous two will encode
the pump-dependent dynamics of the probe quadrature. Moreover, by chopping
the pump, we can eliminate from the homodyne current noises slower than the
chopping rate (400 Hz).

Polarization selectivity In the set-up we have also implemented the possibil-
ity of performing polarization dependent measurements. This is crucial to map
the phonon symmetry properties and to discriminate the two leading probing
effects resulting from photon-phonon interaction: LRM and ISRS (Chapter 2).
The polarization selectivity has been implemented by controlling the pump-probe
polarization angle and by selecting the polarization of the transmitted probe field.
To accomplish this requirement an half-wave-plate (λ/2) has been introduced be-
fore the sample on both pump and probe beam and a polarizer (analyzer) has
been placed on the probe line after the sample. The relative orientation between
the two λ/2 rules the pump-probe polarization angle. Conversely, the orientation
of the analyzer with respect to the λ/2 on the probe line, enables to select the
polarization of the emitted field.
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3.1.1 Multimode homodyne with multiple-shaped local
oscillator

Our set-up is also feasible to perform homodyne detection with a multiple-
shaped local oscillator. By working with a multiple-shaped local oscillator we can
have access to the jointly statistics of the corresponding probe modes. The latter
encodes multimode correlations (Figure 1.6) which, thanks to the possibility of
the detector of working in shot-noise regime, are of quantum origin. In Figure
3.4 we show the set-up employed for the preliminary measurement of two mode
correlation presented in Chapter 6. In this configuration, the local oscillator
is shaped into a two-mode state and the statistics of the differential current is
measured as a function of the frequency difference of the two LO modes.

Figure 3.4: Set-up adopted for measuring two-modes correlations among the probe
modes selected by the local oscillator shaping.
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3.2 Ultrafast pulse-shaping
In the previous section we have pointed out the necessity of controlling the

spectral content of the local oscillator in order to reconstruct in a frequency-
resolved scheme the probe field. We have accomplished this requirement by
mean of an ultrafast pulse-shaper, whose main features will be highlighted in
this section.

Before going trough the description of how our pulse-shaper works, let us give
a general outlook on pulse-shaping techniques.

With the expression ultafast pulse-shaping we refer to all the techniques able
to manipulate femtosecond pulses in both its frequency and phase content. Even
if there are many ways to achieve this purpose [24], here we will only focus in the
shaping techniques involving the spatial masking of the spatially dispersed pulse
frequency spectrum. With this widely employed approach, an arbitrary shaping
of the ultrashort pulse can be achieved by independently controlling the phase
and the amplitude of each dispersed spectral component.

The most basic pulse-shaper adopting spatial masking shaping is depicted in
Figure 3.5 and it is commonly called 4f -line. It consists of a pair of diffraction
gratings and cylindrical lenses, arranged so that they are equally spaced by a
distance f, corresponding to the focal length of the lenses. The frequency com-
ponents within the incoming pulse are angularly dispersed by the first grating
and are then focused by the first lens at its Fourier plane. By placing a spatial
mask M(x) = |A(x)|eiφ(x) in the Fourier plane we are able to selectively act on
the dispersed frequency components and thus transfer a precise amplitude and
phase pattern from the mask to the pulse spectrum. After the spatial shaping, a
second pair lens-grating recombines the dispersed light, so that the final output
is a shaped collimated beam.

Figure 3.5: Simplified scheme of a spatial masking pulse-shaper, working in a 4f ge-
ometry.

The masks previously described are static, in the sense that they need to be
replaced if one wants to change the features of the pulse more then ones. In our
experiment a scan in the local oscillator frequency content is required (Figure
3.3). Therefore, static masks are not suitable for our purpose. We have overcome
this limitation by using a 2D Liquid Crystal Spatial Light Modulator (LC-SLM)
which enables to dynamical control the shaping mask.
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3.2.1 Two-dimensional Liquid Crystal Spatial Light Mod-
ulator (LC-SLM)

A Liquid Crystal Spatial Light Modulator (LC-SLM) is a pulse shaper that
exploits the birefringent properties of liquid crystals to dynamically control the
optical path (and hence the phase) on light impinging on it. It consists of a pair
of electrodes with a thin layer of nematic1 liquid crystals placed between them,
in such a way that their director is parallel to the substrates when no voltage
in applied between them [32]. As shown in Figure 3.6, if the incoming beam is
linearly polarized along the direction parallel to the director of the liquid crystals,
it experiences two distinct situations according to whether or not a voltage is
applied between the electrodes. When no voltage is applied, the beam experiences
the maximum difference between the extraordinary (ne) and the ordinary (no)
refractive index. On the contrary, when a voltage is applied, the molecules of
the liquid crystal realign along the electric field that has been established. In
this configuration, the impinging pulse experiences no difference between the two
refractive indices along the two directions (Figure 3.6). Therefore, the LC-SLM
acts as a waveplate which is responsible for a voltage-dependent phase delay φ
equal to:

φ(V, ω) = ω∆n(V, ω)d
c

(3.1)

where V is the applied voltage, ω the frequency of the impinging light, ∆n(V, ω)
the differential refractive index between the ordinary and the extraordinary axis
and d the thickness of the liquid crystal layer [24]. Consequently to Equation

Figure 3.6: Birefringence of the nematic liquid crystals placed between the two elec-
trodes of the LC-SLM. A light beam linearly polarized along the extraordi-
nary axis of the liquid crystals experiences different refractive indices (and
hence different phase shifts) according to whether or not a voltage is applied
between the electrodes [32].

3.1, the first outcoming beam in Figure 3.6 is phase-shifted with respect to the
second one.

1Liquid crystals are named nematic when their molecules have no positional order but tend
to point towards the same direction, indentified by the name director.
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In a more general framework, by independently varying the voltages applied
in distinct sections of the layer, we can imprint a specific phase delay for a light
beam impinging on that specific section. This possibility is shown is Figure 3.7,
where we present a side view of the LC-SLM. The crucial difference between this

Figure 3.7: Side view of Liquid Crystal Spatial Modulator (LC-SLM) working in re-
flection geometry [32]. The phase shift between the incoming and the out-
coming light (red arrows) depends on the applied voltage.

general configuration and the simplified scheme presented in Figure 3.6 resides
in the pixelation of the bottom electrode. Therefore, we can think the simple
representation of Figure 3.6 as just one single pixel of the more general structure
of Figure 3.7. Moreover, the presence of a dielectric mirror (Figure 3.7) suggests
that a reflection geometry rather than a transmission one can be also employed
[32]. Recalling the 4f scheme of Figure 3.5, a reflection geometry (typically called
folded 4f scheme) can be set up by using only the first grating-lens pair, which
act both as dispersive and collimating element.

Therefore, a simple LC-SLM consists of a pixelated array on which the pulse
spectrum is dispersed along the direction of pixelation (i.e. in the horizontal
direction of Figure 3.7). By controlling the voltage applied at each pixel it is
possible to control the phase of each dispersed spectral component impinging on
it.

Until now, we have only explored the capability of the LC-SLM of manipu-
lating the phase of each pulse component. However, more complex tools based
on a similar scheme (Figure 3.7) can be used to achieve a simultaneous shaping
of both phase and amplitude of the femtosecond pulse. We stress that having
access to frequency-resolved amplitude shaping is crucial in our experiment since
we need to control the spectral content of the local oscillator. To achieve this
experimental purpose we have exploited the method presented in [23], which is
the basis of the pulse-shaper arrangement employed in our experiment (Figure
3.3).

The method relies on the use of a 2D LC-SLM instead of a linear one. The
LC-SLM employed in our set-up consists of a pixelated matrix of 1050 x 1440
pixels, which is placed at the focal plane of a folded 4f scheme. The fundamental
advantage of using a 2D matrix relies in the fact that in this case we have access
to an additional degree of freedom, that is the choise of the voltages to be applied
along the vertical direction. The method proposed in [23] consists in choosing a
proper combination of voltages, whose final effect results in the application, to
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each spectral component, of a sawtooth phase function along the vertical direction
of the matrix. The overall result of this method is that every frequency component
impinging on the LC-SLM sees a blazed phase grating (Figure 3.8), by which it
will be diffracted according to well known grating equation:

d[sin(θm)− sin(θi)] = mλ (3.2)

In the previous equation, d is grating period, m the diffraction order, Θm the
angle at which the m-order beam is diffracted, Θi the incidence angle and λ the
wavelength of the impinging spectral component.

Figure 3.8: Diffraction of a monochromatic beam by a blazed grating with period d
and amplitude A.

By aligning the pulse-shaper, it is possible to make the first order diffracted
beam (Figure 3.8) go back to the cylindrical lens, in order to eventually get a
collimated beam out of the pulse-shaper (Figure 3.9).

Figure 3.9: LC-SLM 4f -folded geometry employed in our experiment.

In the experimental adopted framework (Figure 3.9) the LC-SLM mask can be
hence regarded as a set of several blazed gratings, as many as the pixels along the
horizontal direction. Therefore, a complete control on the first-order diffracted
light can be achieved by modifying the parameters of each blazed grating. More
precisely, the vertical position and the depth of each grating (A) can be modified
in order to modulate respectively the spectral phase and the amplitude of the first-
order diffracted beam. Experimentally, these phase and amplitude manipulations
related to the sawtooth grating parameters are obtained by applying a proper
combination (a pattern) of voltages at each pixel within the 2D matrix.
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In order to illustrate how the pattern selection is mapped onto the amplitude
and phase spectral features of the pulse, in Figure 3.10 we present four simple
patterns that can be sent to the 2D LC-SLM and discuss the corresponding effects
on the outcoming pulse.

• Figure 3.10(a): The same blazed grating is chosen throughout all the ma-
trix. Therefore, each spectral component dispersed along the horizontal
direction will see the same blazed grating. All the outcoming pulse modes
will hence preserve their relative amplitude and phase relation. However,
the absolute pulse amplitude will change, since only the first-order diffracted
beam is analyzed.

• Figure 3.10(b): A blazed pattern is applied only in correspondence with
certain pixels along the the dispersion direction (x). Only the dispersed
frequency components impinging on the blazed grating will experience first-
order diffraction and subsequently be refocused out of the 4f -folded line.
Therefore, applying this pattern is suitable to independently select the fre-
quency content of the pulse without changing the phase relation among the
selected spectral components. We will exploit such a pattern to modulate
the local oscillator spectral content. We note once again that, since we are
analyzing only the first-order of diffraction, the absolute amplitude of each
modulated spectral component will be reduced.

• Figure 3.10(c): This pattern is similar to the one depicted in Figure 3.10(c)
with the difference that a discontinuity has been introduced along the hori-
zontal axis, affecting the phase properties of the pulse. Indeed, the grating
of the second half of the matrix has been shifted by half of a period with
respect to the first one. This implies that spectral components in the same
portion keep their initial phase relation, but spectral components impinging
on different halves of the matrix gain a relative phase shift of π. Conversely,
the relative amplitudes are conserved along the whole horizontal axis.

• Figure 3.10(d): In this case both the amplitude and the vertical position of
the grating have been modified along the LC-SLM horizontal axis. Indeed,
the depth of the sawtooth grating increases going from the left to the right
(and so does the diffraction efficiency), while the vertical position of the
grating follows a quadratic trend along the horizontal axis. By applying
this pattern we get a chirped 2 pulse with a linearly decreasing intensity.
Applying a quadratic phase pattern (i.e. introducing a quadratic displace-
ment of the blazed gratings along the vertical direction) is therefore suitable
to control the temporal broadening of the pulse. In our experiment (Fig-
ure 3.3), we exploit this possibility of the LC-SLM to accurate control the
probe temporal compression and to eventually ensure a short duration of
the pump-probe overlap (approximatively 150 fs).

Until now we have only taken into account the situation in which a single beam
impinges the shaping matrix. However, our pulse-shaper can be easily adapted to

2The pulse is chirped since we are introducing a quadratic frequency dependence of the
spectral components phase. Therefore, the pulse phase velocity will scale linearly with the
frequency, thus introducing a temporal chirp.
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(a) (b)

(c) (d)

Figure 3.10: Representative example of 2D LC-SLM patterns. Below them the corre-
sponding amplitude and phase features imprinted by the SLM pattern on
an incoming gaussian pulse (dotted line).

perform multiple-beam shaping, that is a needed requirement to independently
shape the signal and the local oscillator in our multimode homodyne set-up. The
multiple-beam shaping can be accomplished by applying a different pattern in
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distinct vertical portions of the SLM matrix. In Figure 3.11 we illustrate the
double shaping configuration adopted in our set-up (Figure 3.3). The incoming
local oscillator sees a grating pattern that enables its frequency selection. Con-
versely, the signal (probe) experiences a uniform pattern along the dispersion axis
which does not modulate its spectral content. For the measurements presented in
Chapter 5 and 6 we will adopt this double shaping configuration3. In Appendix
B we instead present a case in which also the signal is shaped in its frequency
content.

Figure 3.11: Double shaping configuration of both signal and local oscillator adopted
in our LC-SLM.

Pulse-shaper calibration

In order to introduce these spectral features in a controlled manner, a calibra-
tion of the pulse-shaper is required. In particular, the following calibration tests
are needed [32]:

• Frequency calibration, in order to retrieve which frequency component of
the incoming pulse impinges on which pixel along the dispersion axis of the
LC-SLM. In our experiment, this calibration is required to determine the
selected frequency components of the shaped local oscillator.

• Calibration of liquid crystals phase, in order to know which voltage has to
be applied in order to get the desired phase shift from the liquid crystal
(Equation 3.1)

• Amplitude calibration, to obtain a relation between the blazed grating depth
and the first-order diffracted amplitude.

• Grating period calibration: We note that, according to Equation 3.2, dif-
ferent frequencies would be diffracted in different directions by a grating

3Actually, the signal (probe) pattern has been modified in order to introduce a frequency
dependence of the spectral phase (cfr Figure 3.10(d)). Through this modulation the probe
temporal compression can be controlled.

54



having a fixed period. Since our purpose is to collimated the shaped beam
in output of the 4f -folded-line, we linearly increase the period of the grat-
ings on which higher frequency spectral components impinge.

The fully characterization of the LC-SLM adopted in our set-up can be found
in [34]. In the following, we illustrate only the frequency calibration of the shaped
pulses. This is particularly crucial in our experiment (Figure 3.3), since it is
the selection of the local oscillator frequencies that drives the selection of the
correspondent modes in the probe field, thus allowing the frequency resolution of
the homodyne detection.

The aim of the frequency calibration is to match each SLM horizontal pixel
with the central frequency of its corresponding range and determine the spectral
resolution of the pulse shaper. The latter consequently determines the frequency
resolution of our multimode homodyne scheme. To achieve this purpose, we send
to the LC-SLM a single mode pattern like the one depicted in Figure 3.12(a), in
which a one-pixel-diffraction grating is applied at a specific horizontal position
within the illuminate area of the LC-SLM. The result of the application of this
pattern is that the first-order diffracted beam contains only the narrow band
components which have impinged on the one-pixel grating. The outgoing beam
from the pulse-shaper is detected by mean of a fiber spectrometer which allows
to acquire the shaped spectrum (green line of Figure 3.12(b)). To determine
the frequency position of the peak, we subtract the detected spectrum from its
background and we eventually perform a gaussian fit on the rescaled peak. By
repeating the previous procedure by changing the horizontal position of the one-
pixel grating (Figure 3.12(a)) we can construct the graph presented in Figure
3.12(c). In this plot the central frequencies of the peaks estimated through the fit
are plotted as a function of their corresponding SLM horizontal pixels at which
the narrow gratings are centred. By fitting the red points of Figure 3.12(c) with
a linear function, we get the whole frequency scale (black line) which assigns a
specific frequency to each of the 1050 pixels.

The frequency difference between two neighbouring pixels determines the max-
imum spectral resolution ∆ω of the pulse-shaper and hence of our frequency-
resolved interferometer. For our pulse-shaper we have estimated ∆ω ∼ 0.1 THz.
In the homodyne framework, this implies that interference patterns originating
by probe modes (Figure 3.3) that differ less then 0.1 THz can not be isolated.
Consequently, supposing the shaped local oscillator to be a gaussian with stan-
dard deviation σ, in the frequency-resolved measurements presented in Chapter
5 and 6 we have always set σ ≥ 0.1 THz.
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Figure 3.12: Frequency calibration of the LC-SLM pulse-shaper. In (a) the SLM pat-
tern used for the frequency calibration procedure and in (b) the corre-
sponding shaped spectrum (green line). For the frequency calibration, the
single grating pattern is gradually shifted (green arrow) along the whole
horizontal direction of the SLM matrix. In (c) the central frequencies (red
dots) of the shaped single mode spectra for different horizontal position
of the grating. In (c) the whole frequency scale (black line) is obtained
through a linear fit.
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3.3 Detection system
In this section we present the fundamental characteristic of the detection

system employed in our set-up. Since we want to design an apparatus in which
quantum noise sensitivity is contemplated, the following requirements has to be
accomplished:

• In order to have access to statistical property of light, the detector electronic
should be fast enough to separate the signals coming from different laser
pulses. The laser produces pulses at a repetition rate of 200 kHz, that is
a pulse every ∆τ = 5 µs. In order to acquire single pulses, the detector
temporal response should hence be shorter than 5 µs.;

• The detector must operate a precise subtraction of the two photocurrents
(Figure 3.3) in order to ensure a prefect balanced detection and eventually
filter out the classical noise of the local oscillator (Section 1.2.1);

• The detector should be able to work in shot-noise conditions. This means
that it has to be sensitive to fluctuations pertaining to the intrinsic quantum
nature of light. To accomplish this requirement the detector should provide
low noise to the differential current. The noise contribution given by the
detector to the differential current is quantified by the efficiency parameter
ηeq which describes the ratio between the shot-noise and the total noise at a
certain intensity of the local oscillator. A complete characterization of the
shot-noise sensitivity will be provided in Chapter 4.

In the following we describe how we have experimentally achieved the previ-
ously stated requirements.

3.3.1 Balanced detector and fast digitizer
The detector consists of two Hamamatsu S3883 Silicon PIN photodiodes

with quantum efficiency ηpd = 0.94 at 800 nm [7]. This means that the number
of electrons produced by the diode is the 94% of the total number of photons
impinging on it. The two photodiodes are connected in reverse bias and followed
by a low noise charge amplifier. The reverse bias configuration allows to physically
subtract the two photocurrents produced by the diodes, while the amplification
takes place only at the final stage (i.e. after the subtraction). Performing the
amplification after the physical subtraction permits not to increase the value of
the noise produced by the electronic system. The charge amplifier sensitivity
is 5.2 mV/fC, i.e. a detector response of 1 mV corresponds to approximatively
1.15 × 103 electrons [19]. In Figure 3.13 we present how the amplifier output
voltage scales as a function of the number of photons impinging on a single diode.
Up to 4 V (i.e. 3.0 × 106 ph/pulse) the relation is linear for either the positive
and the negative diode.

The amplifier output voltage is digitized by a high speed digitizer ADC card
(Spectrum M2i) with a dynamical range of 16 bit. The voltage digitalization is
performed by exploiting the Multiple Recording option of the card, which allows
to trig the acquisition to acquire only for a limited time-range each trigger. In
fact, the repetition rate of the pulses is 200 kHz, which means that there is a 5
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Figure 3.13: Linearity test of each diode of the balanced detector. The amplifier output
voltage is measured on a single diode at an increasing photon fluence. The
relation is linear up to 4 V (i.e. 3.0× 106 ph/pulse).

µs interval between two successive pulses. Since the response of the diodes to a
single pulse lasts for about 80 ns (Figure 3.15), a continuous acquisition of the
output of the charge amplifier would contain mostly irrelevant data. Conversely,
by using the Multiple Recording option and triggering the acquisition with copies
of the pulse themselves, the acquisition is limited to the "duration" of the pulses4,
eliminating the dead times in between (Figure 3.14).

Figure 3.14: Working principle of the Multiple recording mode used in our digitizer [29].

Differential current integration

Once the detector response has been digitized, we need a systematic way to
convert the acquired signal (Figure 3.14) to a number representative of the pulse
intensity.

This single number has been obtained by performing the scalar product
between the digitized pulse and the detector response and by subsequently in-
tegrating the so obtained pulse. The detector response has been measured by
digitizing the output voltage of a single diode and by normalizing its response.

4Here, we refer as the actual "duration" of the pulse the temporal response of the diode
which is approximatively 80 ns
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The scalar product enables to apply different weights to different noise contribu-
tion. In particular, the negative time current fluctuations (i.e. before the pulse
arrival), related to electronic noise, can be strongly reduced. With this integra-
tion process we can hence enhance the detection efficiency ηeq. In Figure 3.15 we
illustrate an example of digitized pulses: the positive, negative and differential
response are plotted. They are all multiplied by the normalized detector response
measured on the positive channel. If the two channels are balanced, the differ-
ential current fluctuations (black line) map the intrinsic quantum noise (Section
1.2.1).

Figure 3.15: Positive, negative and differential current response multiplied by the nor-
malized detector response. The latter has been obtained on the positive
diode.
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Chapter 4

Measuring quantum fluctuations:
set-up noise calibration

Since the final purpose of the project is to retrieve intrinsic quantum fluctu-
ations imprinted on an optical pulse by its non-linear interaction with matter,
a systematic characterization of our set-up noise is essential. In Chapter 1 we
have proved that through Balanced Homodyne Detection we are sensitive to in-
trinsic quantum fluctuations of an optical field that can be unveiled exploiting
the potentiality of our set-up of performing single pulse acquisition (Section 3.3).
These fluctuations are directly linked to the electromagnetic field quantization
and correspond to the minimum detectable noise: the shot-noise.

The optical element required to reach the shot-noise limit is the 50:50 beam
splitter (Section 1.2.1). Indeed, measuring the variance of the differential intensity
between the outgoing beams of a 50:50 BS enables to eliminate the classical
contribution to the total noise and keep only the partition one pertaining to the
intrinsic quantum nature of light (Equation 1.32).

However, it is experimentally very hard to find an ideal 50:50 beam splitter.
We have hence to introduce dissipative optical elements in the two output chan-
nels of the BS in order to work in balanced conditions. In this chapter we focus on
the description of how the presence of these dissipative elements affects the noise
detection. Unveiling this link is crucial in order to discriminate from the mea-
sured noise dynamics only the sample-dependent one. For the characterization
of the quantum noise sensitivity of our set-up we will make use of the quantum
model presented in [19]. This model is based on the assumption that any optical
dissipative element can be described as an ideal beam splitter which splits the
incoming beam in two.

Noise conditions have been tested by taking the signal in its vacuum state
(Figure 4.1) and by performing two different tests:

• Classical noise characterization: The test is performed by measuring
the differential intensity of BS outputs (homodyne current) for different
unbalance conditions between the two channels. In this way, we can study
how local oscillator classical fluctuations enter in the homodyne current
noise.

• Shot-noise test: The test is performed by changing the local oscillator
intensity in balanced conditions. With this experiment the shot-noise lin-
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earity (Equation 1.32) can be tested and confronted with the theoretical
prediction of the model [19].

Both the tests have been performed either in the low and high fluence regime
of the local oscillator in order to characterize how detector non-linearities affect
the noise detection and eventually select a suitable LO1 fluence range for the
measurements presented in Chapters 5 and 6.

Furthermore, we illustrate how collecting the signal statistics in its vacuum
state (Figure 1.4) can be exploited to rescale the quadrature traces and eventu-
ally estimate from them the mean number of photons in the signal channel. We
conclude the chapter by presenting the analysis of correlation between succes-
sive pulses, which is a test useful to check whether we are performing repeated
measurements on the same quantum system.

4.1 Noise in unbalanced conditions

In Section 1.2.1 we have stated that measuring the homodyne response in
balanced condition is the fundamental requirement of quantum noise sensitivity.
In this section we preliminary study how classical fluctuations enter in the ho-
modyne response as a consequence of an unbalance between the detected beams.
Let us start with the ideal situation depicted in Figure 4.1 in which no dissipative
processes occur. Moreover, we will consider the signal in its vacuum state |0〉 and
study only how classical fluctuations from the local oscillator affect the differen-
tial current in unbalanced conditions. To achieve this purpose, let us recall the

Figure 4.1: Homodyne detection in variable balancing conditions. In this simplified
model, the balancing between the two channels is ruled by the BS param-
eters R and T.

variance of the differential current σ2
3−4 (Equation 1.31):

σ2
3−4 =

〈
(n̂3 − n̂4)2

〉
− 〈(n̂3 − n̂4)〉2

= (|R|2 − |T |2)2σ2
1 + 4|R|2|T |2〈n̂1〉

(4.1)

1Local oscillator
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and let us express it as a function of the mean homodyne current 〈n̂3−4〉 =
(|R|2 − |T |2)〈n̂1〉. We therefore get:

σ2
3−4 = σ2

1 − 〈n̂1〉
〈n̂1〉2

〈n̂3−4〉2 + 〈n̂1〉 (4.2)

The previous equation shows that classical fluctuations of the local oscillator enter
quadratically as a function of the unbalance 〈n̂3−4〉. Indeed, in the configuration
of Figure 4.1 the variance of the homodyne current as a function of the unbalance
is a parabola centred at the perfect balancing 〈n̂3−4〉 = 0. In this situation, the
local oscillator classical noise (σ2

3−4) is completely filtered out by the subtraction
and the detected noise σ2

3−4 is the minimum reachable one (shot-noise):

σ2
3−4 = 〈n̂1〉 (4.3)

By looking at Equation 4.2, we note that if the local oscillator has a poissonian
statistics (i.e. no classical field fluctuations σ2

1 affect its statistics) the shot-noise
condition is fulfilled for any detector unbalance 〈n̂3−4〉.

Conversely, if local oscillator has a statistics affected by classical noise (for ex-
ample a super-poissonian statistics with σ2

1 > 〈n̂1〉) working in balanced condition
is crucial to reach the shot-noise limit.

From the experimental point of view, the beam splitter before the detection
system (Figure 3.3) can have a response that is not 50:50. The balanced configu-
ration is therefore experimentally reached by introducing in the output channels
of the BS dissipative optical elements whose response has to be taken into account
when modelling the homodyne current variance (Section 4.2). The adopted set-
up after the last beam splitter is presented in Figure 4.2. The balancing between
the two detected beams is reached by changing the relative orientation of the λ/2
and the polarizer.

Figure 4.2: Experimental set-up adopted to balance the two outputs of the beam split-
ter. We balance the two detected beams by blocking the signal input beam
and changing the relative orientation of the λ/2 and the polarizer.

4.2 Characterizing the set-up noise: the "Beam
Splitter Model"

In the previous section we have pointed out the experimental necessity of
introducing optical dissipative elements in beam splitter outputs in order to com-
pensate the BS unbalance and eventually ensure a balanced detection. We expect
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the presence of these optical elements to affect not only the mean value of the
homodyne current, but also its variance. Therefore, in order to characterize the
detected quadrature noise, we need a theoretical model in which optical dissipa-
tion is included. A suitable quantum model for this purpose is the one presented
in [19] and goes under the name of "Beam Splitter Model".

The model is based on the hypothesis that any optical dissipative process
can be described as a beam splitter which splits with a defined ratio a beam in
two. This ratio is represented by the riflectivity/transmittance of the theoretical
beam splitter and can be experimentally obtained by measuring the light intensity
before and and after the dissipative optical element we want to model. Treating
the optical dissipators as beam splitters is useful, since a beam splitter optical
response can be easily studied in a quantum framework (Section 1.2.1).

In this theoretical framework, the set-up illustrated in Figure 4.2 can be rep-
resented trough the "Beam Splitter Model" as in Figure 4.3. We underline that,
since we are working in a quantum framework, the theoretical beam splitters
have always two entries, even if there is only one physical beam impinging on the
modelled optical element [19]. In this case, the other theoretical BS input beam
is represented by the photon vacuum state |0〉. Exploiting the BS formalism pre-

Figure 4.3: Modelization of our set-up (upper panel) by mean of the "Beam splitter
model" (lower panel). In the upper panel the first beam-splitter (BS) cor-
respond to the real beam-splitter, while BS1 and BS2 model two dissipative
optical elements present in our set-up. BS1 models the mirror, while BS2
the couple λ/2-polarizer used to balance the two channels of the interfer-
ometer. The signal (n̂2) is supposed to be in its vacuum state |0〉.

sented in Section 1.2.1, we can evaluate for the set-up of Figure 4.3 the detected
quantities in the homodyne measurement: the mean homodyne current 〈n̂5−6〉
and its variance σ2

5−6. The first turns out to be:

〈n̂5−6〉 = |T2|2|R|2〈n̂1〉 − |T1|2|T |2〈n̂1〉 (4.4)
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while the latter reads:

σ2
5−6 =

〈
(n̂5 − n̂6)2

〉
− 〈(n̂5 − n̂6)〉2

=
(
|T2|2|R|2 − |T1|2|T |2)2σ2

1+
+ (|T2|4|R|4|T |2 + |T2|2|R2|2|R|2 + |T1|4|T |2|R|2

+ |T1|4|R1|2|T |2 + 2|T1|2|T2|2|R|2|T |2
)
〈n̂1〉

(4.5)

The previous equations clarify the necessity of working in balanced conditions in
order to eliminate the local oscillator classical fluctuations. Indeed, we notice that
by setting 〈n̂5−6〉 = 0 the contribution to homodyne current noise proportional
to σ2

1 is cancelled.
Before going trough the detailed characterization of the homodyne current

noise of our set-up, let us underline some peculiar features that the presence of
optical dissipators introduces in the homodyne noise response. We will do it by
mean of the "Beam splitter model" presented in Figure 4.3.

Classical noise characterization Let us exploit the model to preliminary
predict how the variance of the differential current changes as a function of the
unbalance 〈n̂5−6〉 (Figure 4.4). In the absence of optical dissipations (Figure 4.1),
we have seen that the minimum noise level is reached at perfect balancing between
the two channels (Equation 4.2).

Conversely, if optical dissipators are inserted in order to compensate the first
BS unbalance, Figure 4.4 suggests that this is not true anymore. Indeed, the vari-

Figure 4.4: Variance of the differential current as a function of the unbalance predicted
with the ideal set-up presented in Figure 4.3 ("3 Beam splitter model"). In
the present plot the local oscillator has an intensity of 7.8× 106 ph/pulse.
For this example, the BS parameters inside the simulation are the same of
Figure 4.8.

ance of the differential current exhibits a quasi-quadratic trend whose minimum
noise level is not reached at perfect balancing (i.e. at 〈n̂5−6〉 = 0). We will de-
note with 〈n̂5−6〉min the mean homodyne current corresponding to the minimum
detected noise.
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Moreover, the "Beam splitter model" (Figure 4.3) predicts that, in presence
of optical dissipators, the minimum noise position is sensitive to classical fluctu-
ations of the local oscillator σ2

1 (Figure 4.5). In particular, if the local oscillator
classical noise increases, 〈n̂5−6〉min decreases, although it does not change sign
(Figure 4.5). This effect is related to the presence of dissipators in the two

Figure 4.5: Variance of the differential current σ2
5−6 as a function of the photon number

unbalance 〈n̂5−6〉 for different noise conditions of the local oscillator. The
LO input noise is expressed as its variance-to-mean ratio (σ2

1/〈n̂1〉), where
〈n̂1〉 is hold constant to 7.8× 106 ph/pulse. The BS parameters inside the
simulation are the same of Figure 4.8.

channels, since in the ideal single beam splitter case (Figure 4.1) the minimum
noise level is reached at perfect balancing for any local oscillator noise condition
(Equation 4.2).

Shot-noise Let us now predict through the "Beam Splitter Model" how the
presence of the dissipators is mapped into the shot-noise test. Combining Equa-
tions 4.4 and 4.5, we see that if the detected beams are perfectly balanced
(〈n̂5−6〉 = 0) the variance of the homodyne current (σ2

5−6) scales linearly with
the local oscillator intensity. More important, its contributions proportional to
local oscillator classical noise (σ2

1) are null. Indeed, by setting 〈n̂5−6〉 = 0, we get:

σ2
5−6 =(|T1|4|R|4|T |2 + |T1|2|R1|2|R|2 + |T2|4|T |2|R|2

+ |T2|4|R2|2|T |2 + 2|T2|2|T1|2|R|2|T |2
)
〈n̂1〉

(4.6)

which is independent on σ2
1.

In Figure 4.6 we exploit the "3 Beam splitter model" (Figure 4.3) to illustrate
how the shot-noise trend is influenced by the presence of optical dissipators.
Figure 4.6 shows that the variance of the homodyne current is linear with the
local oscillator intensity, but its slope is less than the one corresponding to the
case in which no optical dissipations are present (grey line of Figure 4.6 ). This
singular feature predicted by the model is a consequence of the photon number
loss caused by the optical dissipators. In shot-noise conditions, a photon loss is
indeed mapped into a decrease of the homodyne current variance proportional

66



Figure 4.6: Shot-noise test: Variance of the homodyne current as a function of the LO
intensity predicted in the case of the ideal set-up presented in Figure 4.3 ("3
Beam splitter model"). For this example, the employed BS parameters are
the same of Figure 4.9. In grey, the noise trend predicted in the absence of
optical dissipators (i.e. only with a single 50:50 balanced beam splitter as
in Figure 4.10). In the presented plot the variance of the homodyne current
is not null when the local oscillator is in a vacuum state only because there
is the electronic noise contribution of the detection system (Section 4.2.1).

to the loss itself (cfr Equation 4.6). In the "3 Beam splitter" framework we can
exploit Equation 4.6 to quantify it:

r = σ2
5−6
〈n̂1〉

=(|T1|4|R|4|T |2 + |T1|2|R1|2|R|2 + |T2|4|T |2|R|2

+ |T2|4|R2|2|T |2 + 2|T2|2|T1|2|R|2|T |2
) (4.7)

In the previous equation, r represents the poissonian noise loss of the local oscil-
lator due to optical inefficiencies.

After these preliminary considerations, we will exploit the "Beam splitter
model" for quantitative prediction of the homodyne current noise detected in our
set-up. We will do it either in the low (∼ 106 ph/pulse) and in the high (∼ 108

ph/pulse) fluence regime of the local oscillator. This is crucial to study how de-
tector non-linear response affects the detected noise and to consequently select
a suitable local oscillator intensity regime. For both the LO fluences regime we
measure either the variance of the differential current as a function of the unbal-
ance and the shot-noise test in the balanced configuration. In both the situations
the signal is blocked and therefore it is in its vacuum state.

4.2.1 Local oscillator low fluence regime
In this section the quantitative noise characterization in the low fluence regime

of the local oscillator (i.e. up to 8.2 × 106 ph/pulse) is presented. The detected
differential variance is compared with the theoretical response (Equation 4.6) ob-
tained with the "3 Beam splitter model" in the configuration of Figure 4.3. For
the quantitative comparison we need to know the transmittances parameters of
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the model beam splitters. The latter can be experimentally retrieved by measur-
ing the ratio between the intensity of the outgoing and incoming beam from the
optical element we want to represent as a BS (i.e. the initial BS, the mirror and
the couple λ/2-polarizer (Figure 4.3)).

Moreover, by looking at Equation 4.6, a parameter required for the theoretical
estimation of the differential current noise is the variance σ2

1 of the incoming local
oscillator. The latter can be evaluated by measuring the variance of the integrals
of a pulse train (typically 800 pulses) on a single diode of the detector. In order
to filter out classical slow noises, the variance has not been calculated over the
full train pulse. We have decided indeed to evaluate it by averaging the variances
calculated over smaller pulse subsets of 10 pulses each. In this way, noises slower
then the duration of a train of 10 pulses (50 µs at 200 kHz) can be filtered. All the
experimental variances presented in the following paragraphs have been obtained
through this filtering procedure. At a local oscillator fluence of 7.8×106 ph/pulse
we have measured:

σ2
1 = 3.0× 107(ph/pulse)2 (4.8)

Therefore, at this intensity the local oscillator variance-to-mean ratio reads:

σ2
1
〈n̂1〉

= 3.8 (4.9)

unveiling the super-poissonian nature of its statistics.

Electronic noise We stress that until now we have not taken into account the
contribution to the homodyne current variance due to the electronic noise of the
detection system. This noise is independent on local oscillator intensity and is
due to any non-desirable ambient noise, dark current noise from the diodes and
to the intrinsic noise of the charge amplifier. Electronic noise can be estimated by
measuring the variance of the differential current with the two channels blocked,
which corresponds to the detected noise before the arrival of each pulse (Figure
4.7). The effect of electronic noise is to add a random quantity δ to each homodyne

Figure 4.7: Digitized differential current of a train of 800 pulses with indicated the
electronic noise background at negative times (i.e. before the pulse arrival).
The presented pulses are digitized with a dynamical range of 500 mV.

current measure [30]:
Imeasφj

= Iφj + δ (4.10)
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Since the electronic noise is independent on fluctuations of the local oscillator, we
can take δ as a stochastic gaussian variable [35] whose statistics is independent
on the local oscillator one. For this reason, photon-dependent fluctuations and
electronic ones can be added. Therefore, electronic fluctuations enter as a costant
background noise in the homodyne current statistics. They can hence be added
to the variance predicted by the "3 Beam Splitter model" (Equation 4.5) in order
to compare it with the experimental results.

In the following we present the noise characterizations of the homodyne pho-
tocurrent in the low intensity regime of the local oscillator.

Classical noise characterization In Figure 4.8 we present the measured vari-
ance as a function of the unbalance for a local oscillator of 7.8 × 106 ph/pulse
and the comparison with the "3 Beam splitter model" (Equation 4.5) with the
experimental transmittances of the ideal beam splitters of Figure 4.8(c). The
unbalance between the two channels is achieved by changing the relative orienta-
tion of the λ/2 and the polarizer. In the theoretical "3 Beam splitter model" this
correspond to change the transmittance |T2|2 of BS2 (Figure 4.8(c)). As previu-
osly anticipated, we notice that the minimum noise level is not reached at perfect
balancing.

(a) (b)

(c)

Figure 4.8: Variance of the homodyne current as a function of the unbalance in the LO
low fluence regime (7.8× 106 ph/pulse). In (a) the unbalance is measured
as the differential number of photons/pulse, while in (b) as the differen-
tial current. In red the "3 BS model" prediction shifted by the electronic
noise background (black line) and evaluated with the ideal beam splitter
parameters measured from the set-up (c)
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Shot-noise test In Figure 4.9 we present the shot-noise test performed on
our set-up in balanced conditions and the comparison with the "3 Beam splitter
model" (Equation 4.6). We have adopted the balanced configuration, since the
model predicts that this is the only situation in which the homodyne current vari-
ance has no contribution from the local oscillator classical fluctuations (Equation
4.6). The increase of the local oscillator intensity (〈n̂1〉) has been performed by
tuning the efficiency of the LC-Spatial Light Modulator (Section 3.2.1). Figure

(a) (b)

(c)

Figure 4.9: Shot-noise test for our homodyne set-up in the LO low fluence regime (3.9×
104−8.2×106 ph/pulse) and comparison with the "3 BS model" trend (red)
shifted by the electronic noise level (black). In (a) the variance measured
as function of LO number of photons per pulse, in (b) as a function of the
voltage peak as measured by a single diode. In (c) the 3 BS transmittances
measured in our set-up. In (a) and (b) the grey line represents the shot-
noise trend in the ideal case (|T |2 = 0.5, |T1|2 = |T2|2 = 1) in which no
optical dissipations occur (configuration of Figure 4.10).

4.9 shows that the measured variance trend increases linearly with the LO inten-
sity, but with a slower rate with respect to the case of a single 50:50 balanced BS
(grey line) (Figure 4.10). The "3 Beam splitter model" confirms the experimental
trend, proving the fact that the lower experimental slope is related to the pres-
ence of optical dissipators (i.e. BS1 and BS2 of Figure 4.9). These dissipators
cause a decrease of the shot-to-noise ratio at any local oscillator intensity.
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4.2.2 Local oscillator high fluence regime
In the ideal homodyne measurement (Figure 4.10) we can work in the local

oscillator shot-noise regime whatever is its intensity. This is true because in
the ideal framework we are neglecting any photon-dependent noise contribution
introduced by the detection system.

In this section we characterize this additional detector noise contribution. We
perform this analysis with the aim of selecting an operative local oscillator in-
tensity that minimize this detection noise and simultaneously maximize the shot-
to-electronic-noise ratio. We will consider as high fluence regime, local oscillator

Figure 4.10: Ideal homodyne experiment with a signal in vacuum state.

intensities up to 7.9× 108 ph/pulse. In Figure 4.11 we present the characteriza-
tion of the detected differential variance for the set-up in Figure 4.3 in the case of
a local oscillator with an intensity of 7.9 × 108 ph/pulse. Furthermore, we com-
pare it with the "3 Beam splitter model" with the measured BS transmittances
of Figure4.11(c), supposing that also in this fluence regime the variance-to-mean
ratio of the incoming local oscillator is the same of the low fluence case (i.e.
σ2

1/〈n̂1〉 = 3.8).
We note that the experimental variance trend as a function of the unbalance

is flat in the non-saturating range of the detector2 and it is positive-shifted with
respect to the "3 Beam splitter model" prevision3. We underline that the extra
noise is intrinsic of the detection apparatus and not due to an increase of the
variance-to-mean ratio of the incoming local oscillator (σ1/〈n̂1〉) caused by a
non-linear increment of the LO classical fluctuations. Indeed, as shown in Figure
4.5, the leading effect of an increase of the classical fluctuations of the local
oscillator is a change of the concavity of the variance trend and not its rigid shift.
The presence of this photon-dependent detector noise also affects the shot-noise
measurement (Figure 4.12). Indeed, it causes a non-linear deviation from the
theoretical variance trend predicted by the "3 Beam splitter model".

We want now to retrieve in the "3 Beam splitter model" framework (Figure
4.3) the experimental variances trends shown in Figure 4.11 and 4.12. The lat-

2The variance has a flat trend only because the high LO intensity allows to work only in a
limited range of the unbalancing parameter |T2|2 without saturating the detector. The sudden
variance decrease is to be attributed to detector saturation.

3The theoretical variance prevision has been shifted by the photon-independent electronic
noise background. However, since the latter is 1000 times smaller than the detected variance,
its level is not visible in Figure 4.11
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(a) (b)

(c)

Figure 4.11: Variance of the homodyne current as a function of the unbalance in the LO
high fluence regime (7.9× 108 ph/pulse). In red the noise trend predicted
by the ideal "3 BS model" with the measured transmittances presented in
(c). For the comparison, the variance-to-mean ratio of the incoming local
oscillator is supposed to be the same of the low fluence case (σ2

1/〈n̂1〉 =
3.8).

ter are both affected by the photon-dependent detection noise that we will add
numerically. With reference to the ideal "3 BS" set-up of Figure 4.3 we model
the number of photons inside the ith pulse of the incoming LO as a stochastic
variable of the form:

ni1 = niPoisson + g〈n1〉xiGauss (4.11)

In the previous expression niPoisson is a poissonian variable whit expectation value
〈n̂1〉, while xiGauss is a random variable with a normal gaussian distribution. The
parameter g is tuned in order to have a variance-to-mean ratio of the LO compara-
ble with that obtained from the single channel measure (Equation 4.9). Moreover,
we simulate each ideal beam splitter (Figure 4.3) as a random divider object that
splits the incoming ni photons in two parts. The random division follows a pois-
sonian statistics ruled by the transmission (|T |2) and reflection (|R|2 = 1− |T |2)
beam splitter probabilities. We numerically introduce the detector noise inside
the statistics of the two detected beams (n5 and n6 of Figure 4.3) in the following
way:

ni5, det = ni5 + k〈n5〉xiGauss
ni6, det = ni6 + k〈n6〉xiGauss

(4.12)

where xiGauss is a stochastic variable with a normal gaussian distribution. We
therefore suppose that the effect of the detector noise is to add a random re-
sponse of each diode proportional to the mean number of photons impinging on
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(a) (b)

(c)

Figure 4.12: Shot-noise test in the LO high fluence regime (up to 7.9×108 ph/pulse). In
red the noise trend predicted by the ideal "3 BS model" with the measured
transmittances presented in (c). For the comparison, the variance-to-mean
ratio of the incoming local oscillator is supposed to be the same of the low
fluence case (σ2

1/〈n̂1〉 = 3.8).

it. The parameter k inside the simulated response of each channel (n5 and n6)
represents the strength of this multiplicative noise. By setting k = 5 × 10−5 we
can qualitatively retrieve either the variance dynamics in function of the unbal-
ance (Figure 4.13) and the shot-noise test trend (Figure 4.14) in the high fluence
regime of the local oscillator.
For the measurements presented in Chapter 5 and 6 we adopt a local oscillator
intensity of approximatively 1.0 × 107 ph/pulse. For this fluence we are still in
the linear variance range with a shot-to-electronic-noise ratio of 7 dB.
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(a) (b)

(c)

Figure 4.13: Noise trend as a function of the unbalance in the LO high fluence regime
(7.9×108 ph/pulse). In red the noise trend predicted by the "3 BS model".
In green the simulated noise trend, supposing the presence of a multiplica-
tive noise introduced by both the diodes (Equation 4.12).

(a) (b)

(c)

Figure 4.14: Shot-noise test for our homodyne set-up in the LO low fluence regime
(3.5 × 106 − 7.4 × 108 ph/pulse) and comparison with the "3 BS model"
trend (red). In green the simulated noise trend, supposing the presence of
a multiplicative noise introduced by both the diodes (Equation 4.12).
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4.3 Defining quadrature units: vacuum noise
calibration

In the present section we see how we can exploit the measurement of the statis-
tics of the signal vacuum state to calibrate the homodyne current and eventually
retrieve from it the signal quadrature Xφj . This is crucial since the measured
quadrature encodes amplitude and phase statistics of the signal electric field
(Equation 1.10). We have already proved (Equation 1.18) that the measured
differential current4 Imeasφj

at a fixed LO phase φj is proportional to the signal
quadrature field. We can express this proportionality as:

Imeasφj
= γXφj (4.13)

Since our purpose is to retrieve the proportionality factor γ, we need a reference
data whose quadrature statistics is known a priori. This is the case of the signal
quadrature vacuum state whose variance σ2

0 is phase-independent and equal to
1/2:

σ2
0 ≡ σ2[X̂φj ]|0〉 = 〈X̂2

φj
〉|0〉 − 〈X̂φj〉2|0〉 = Tr[X̂2

φj
|0〉〈0|] = 〈0|

â†j âj

2 |0〉 = 1
2 (4.14)

The latter is proportional to the observable homodyne current variance (σmeas0 )2

which, exploiting Equation 4.13, reads:

(σmeas0 )2 = γ2σ2
0 = γ2

2 (4.15)

(σmeas0 )2 can be experimentally retrieved by measuring the variance of the differ-
ential current with the signal channel blocked. Indeed, through homodyne we are
able to map the vacuum fluctuations of the signal field onto the partition noise
of the local oscillator (Figure 1.4). Once measured (σmeas0 )2, we can subsequently
evaluate the homodyne trace scaling factor γ (Equation 4.13):

γ =
√

2(σmeas0 )2 (4.16)

In the previous treatment we have not taken into account the electronic noise
contribution to homodyne photocurrent variance (Figure 4.7). Following [3], the
latter can be treated as an optical loss channel with an equivalent transmission
efficiency given by:

η = A

A+B
=
(
γ2

γ′2

)
(4.17)

In the previous equation A and B represent respectively the shot and electronic
noise contribution to homodyne photocurrent variance (Figure 4.15), while γ′ is
the rescaling quadrature factor which includes the electronic noise loss. Actually,
inside η we have also to consider photodiodes inefficiencies. The latter are quan-
tified by their nominal quantum efficiency: ηpd = 0.94 [7]. Contempleting also
this loss channel, we get:

ηeq = ηηpd (4.18)
4Only the jth mode of the local oscillator is considered.
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Figure 4.15: Shot-noise and electronic noise contribution to homodyne current variance.

For a local oscillator in low intensity regime (7.8× 106 ph/pulse), we have mea-
sured ηeq = 0.68. Consequently, the rescaled signal quadrature trace in terms of
the observable differential current Imeasφj

reads:

Xφj =
Imeasφj

γ′
= √ηeq

Imeasφj

γ
= √ηeq

Imeasφj√
2(σmeas0 )2

(4.19)

In Figure 4.16 we present the rescaled homodyne traces in the case of a signal
in vacuum state (a) and in a coherent state (b). In both the cases the local
oscillator is frequency-shaped (Figure 3.3) and therefore the homodyne traces
are representative of a single mode of the signal electric field. We stress that,
by mean of the rescaling procedure, both the vacuum and that coherent signal
state have a variance 1/2, as theoretically expected [30]. Indeed, any classical
noise fluctuations is filtered out through the homodyne acquisition. Conversely,
the unavoidable electronic noise will entry as a loss channel, thus reducing the
amplitude of the quadrature oscillations (Equation 4.19). The rescaled homodyne

(a) (b)

Figure 4.16: Rescaled quadrature traces. In (a) the quadrature corresponding to the
signal vacuum state. In (b) the rescaled quadrature of a signal in a co-
herent state. In black the mean value quadratures, while in red their
statistical distribution, resulting from the independent integration of 800
pulses at each local oscillator phase.

traces can be exploited to evaluate the mean number of photons of the signal field
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(〈n̂〉). Supposing the signal to be in a coherent state |α〉, the quadrature of its
jth mode reads (Equation 1.22):

〈X̂φj〉 = Tr[X̂φj |α〉〈α|] = 〈α|
âje
−iφj + â†je

iφj

√
2

|α〉 =
√

2|α| cos(φj) (4.20)

Therefore, if we now fit the rescaled quadrature (Equation 4.19) with a sinusoidal
function of the form:

f(t) = A0 + A′ cos(ωjt+ φ0) (4.21)

and we compare the amplitude parameter A′ with the coherent state quadrature
(Equation 4.20) we can estimate 〈n̂〉 as follows:

〈n̂〉 = |α|2 = A′2

2 = √ηeq
|Imeasφj

|max

2γ = √ηeq
|Imeasφj

|max

2
√

2(σmeas0 )2
(4.22)

In the previous equation we have denoted with |Imeasφj
|max the maximum extent

of the homodyne current oscillations experimentally measured. In Table 4.1 we
report the estimations of the number of photons in the signal channel (〈n̂〉) for
different local oscillators intensity. In the table, the estimation of 〈n̂〉 from the
homodyne trace is compared with that obtained by measuring the photocurrent
on a single diode of the detector. In the absence of any electronic noise, we
expect the two photon estimations to coincide. However, from Table 4.1 we note
that the ratio between the number of photons estimated from the single diode
(〈n̂〉(Diode)) and the one evaluated from the homodyne trace (〈n̂〉(Homodyne))
increases at higher local oscillator intensities. This trend is due to the presence of
the photon-dependent detection noise pointed out in Section 4.2.2 which enters as
an inefficiency in the rescaled homodyne trace Xφj (Equation 4.19). Indeed, by
looking at Equation 4.19, an extra detection noise causes an increment of (σmeas0 )2

and hence a decrease of the rescaled signal quadrature amplitude Xφj .
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Local oscillator 〈n̂〉 〈n̂〉 (〈n̂〉 (Diode))/
ph/pulse (Single diode) (Homodyne trace) (〈n̂〉 (Homodyne))

1.6× 104 6.8× 102 23
1.3 × 108 6.6× 103 2.8× 102 24

1.7× 103 6.6× 101 26

6.5× 103 3.2× 102 20
5.5 × 107 6.6× 103 2.8× 102 24

7.0× 102 3.2× 102 20

4.0× 102 6.6× 101 6.0
3.4 × 106 1.7× 102 2.7× 101 6.3

4.4× 101 5.9× 100 6.7

Table 4.1: Comparison between the number of photons estimated from the rescaled
homodyne traces and the one measured on a single channel of the detec-
tor. The estimation has been performed at three different local oscillator
intensities.
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4.4 Correlation between successive pulses
We conclude the noise characterization of the set-up by presenting the study

of the correlation between successive laser pulses at a repetition rate of 200 kHz.
This test is useful to verify whether we are measuring independent copies of
the same state, so that each pulse yields only one quadrature value. In Figure
4.17(a) we present a correlation 2D plot in which the integral of the n + 1th
pulse is plotted against the integral of the nth for a total number of 2000 pulses.
The lack of correlation is qualitatively proved, since the nth and the n + 1th
have a radial distribution. This means that there is no significant impact on the
measured integral of the n+1th pulse from that of the nth pulse. This analysis can
be made quantitatively by evaluating the Pearson correlation coefficient between
pulse integrals as a function of their distance. Between the ith and the jth integral
pulse the latter reads:

ρ(IiIj) = 〈IiIj〉 − 〈Ii〉〈Ij〉
σ(Ii)σ(Ij)

(4.23)

and it is ±1 in the case of perfect correlation/anti-correlation between Ii and
Ij, while it is 0 if the measures of the integral of the two pulses is completely
uncorrelated. The Pearson correlator as a function of the pulse distance is pre-
sented in Figure 4.17(b). The correlator between the pulses at a fixed distance
has been calculated on a subset of 100 pulses from the full 2000 pulses train.
The correlator ρ(IiIj) oscillates around 0 as a function of the pulse distance, thus
confirming the potentiality of our set-up to measure equally prepared copies of
the same quantum light system produced at the laser repetition rate (200 kHz).

(a) (b)

Figure 4.17: Test of the correlation between successive pulses. In (a) the plot of the
integral of a pulse with respect to the integral of the successive one for a
local oscillator with 5.3 × 107 ph/pulse and for 2000 total pulses. In (b)
the Pearson correlator as a function of the pulse distance.
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Chapter 5

Mean value time-resolved
measurements

In Chapter 3 we have shown the potentiality of our set-up to retrieve in a
frequency-resolved scheme the full structure of an optical pulse, in both its phase
and amplitude features.

In this chapter we want to exploit this peculiar feature to address the coherent
evolution of lattice vibrations in solid state systems. The typical approach in this
sense is the pump-probe one that consists in injecting in the system a large number
of vibrational excitations within a femtosecond time window and subsequently
monitor the system optical response by mean of a second ultrafast pulse (probe) at
a variable delay. The modification of the probe spectral features as function of the
delay from the sudden excitation will carry information on the evolution dynamics
of the excited mode. Since the time resolution of the pump-probe experiment is
shorter than the intrinsic phonon period, such a technique is phase-resolved for
what concerns atomic coherent oscillations.

While in standard pump-probe spectroscopy the optical observable is the
probe intensity, with our innovative set-up we are able to selectively address each
probe mode response in both its phase and amplitude and therefore reconstruct
the full emitted field resulting from photon-phonon interaction.

In Chapter 1 and 4 we have proved that, thanks to the possibility of performing
single pulse integration, we can even go deeper and have access to the full statistics
of the emitted field. However, in this chapter we will only focus on probe phase
and amplitude mean value dynamics. The latter are obtained by averaging the
variation of our optical observable (the homodyne current) resulting from the
interaction of many subsequent pulses on an equally prepared phononic system.
By mean of this mean value approach, we will experimentally prove through
Fourier analysis that the emitted probe field encodes the structure of the phonon
field. Therefore, our approach enables to simultaneously track amplitude and
phase of coherent phonons.

After having presented the general features of a time-resolved multimode ho-
modyne measurement, we will present the results on quartz and Copper Ger-
manate (CuGeO3) obtained with the set-up described in Figure 3.3. In particular
we will simultaneously make use of amplitude and phase dynamics of the detected
probe to unveil the photon-phonon interaction processes presented in Chapter 2:
Impulsive Stimulated Raman Scattering (ISRS) and Linear Refractive Modula-
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tion (LRM).
Moreover, we will quantitatively exploit the quantum model presented in

Chapter 2 to retrieve from amplitude and phase trends the Raman cross-sections
of the detected phonons.

5.1 Time-resolved experimental response
In this section we present the general features of a pump-probe multimode

homodyne measurement, which are common to all the configurations we will
examine. In particular, we will show how the raw data are generally treated
and how we obtain from them the phonon-dependent features encoded inside the
detected probe.

The basic datasets are shown in Figure 5.1(a)(b) and consist of two dimen-
sional maps representing the dynamical evolution of the probe quadrature. In-
deed, a vertical cut in those maps represents the mean probe quadrature cal-
culated at a fixed pump-probe delay. The latter, for each pump-probe delay, is
measured by varying the relative phase between the probe and the local oscillator.
Each quadrature value (i.e. a point in the map) results from the average of 2000
pulses at a repetition rate of 200 kHz. In these maps the resolution along the
x-axis is determined by the pump translation stage step (approximatively 10 fs),
while that on the y-axis by the piezo step (1.2×10−4 fs). Since the pump pulse is
chopped at a frequency of 400 Hz, for each delay both the pumped and the equi-
librium quadrature can be measured. By subtracting the pumped response to the
unpumped (Figure 5.1) we are able to single out the purely dynamical features
imprinted on the equilibrium quadrature at each delay, i.e. its amplitude and
phase shifts (Figure 5.1(c)). The latter are obtained by separately fitting for each
delay the pumped and equilibrium quadrature and by subsequently subtracting
the pumped amplitude and phase fitted parameters to the unpumped ones (Fig-
ure 5.1(c)). The acquisition of the equilibrium quadrature at each pump-probe
delay is also crucial to filter out the piezo phase-drift. The piezo drift correction
is performed by fitting with a sinusoidal function all pumped and equilibrium
quadratures and by subsequently rescaling their phase to that of an arbitrarily
selected unpumped quadrature.

In integrated pump-probe homodyne [7] the time-resolved quadrature maps
(Figure 5.1) are integrated in frequency, since a short local oscillator broad in
its frequency content is employed. In this case, the quadrature does not map
the electric field of a single mode, but instead the coherent superposition of all
the probe modes within the local oscillator bandwidth. With our set-up we can
overcome this limitation, since a frequency-shaped local oscillator is employed
(Chapter 3). Indeed, by tuning the local oscillator frequency we are able to
independently monitor the pump-probe evolution of each probe mode quadrature
and experimentally get the 2D maps of Figure 5.1 for each probe frequency.

Therefore, by controlling the spectral content and the phase of the local oscil-
lator, we are able to monitor phase and amplitude quadrature shifts not only for
each delay, but also for each probe frequency. By performing a fit of the ampli-
tude and phase of each spectral component we can obtain the maps presented in
Figure 5.2 representing the time evolution of amplitude and phase of each spec-
tral component of the probe pulses. An horizontal cut in these maps represents
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(a)

(b)

(c)

Figure 5.1: Time-resolved multimode homodyne measurement for a fixed local oscil-
lator frequency. In (a) the equilibrium quadrature. In (b) the pumped
one. In (c) the differential map between the previous two, mapping pump-
dependent dynamics, i.e. phase and amplitude quadrature shifts.

the amplitude/phase evolution of a single probe mode. Conversely, a vertical cut
describes the spectral dependence of amplitude/phase at a fixed delay.

Amplitude and phase shifts pump-probe dynamics encode the phonon-dependent
contribution to the pumped quadrature. This can be shown by performing the
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(a)

(b)

Figure 5.2: Frequency-resolved amplitude (a) and phase (b) shifts of the emitted field
quadrature measured in our experiment.

Fourier transform along the delay axis of Figure 5.2(a)(b). The resulting FT maps
are presented in Figure 5.3, where the vertical lines represent the detected phonon
frequencies. Since we are considering only the modulus of the Fourier transform,
every probe frequency carries the same information to the Fourier spectra and so,
in order to retrieve it, we can safely average along probe frequency axis. These
frequency spectra are illustrated in Figure 5.3(c) and Figure 5.3(d) for phase and
amplitude respectively with indicated the detected phonon frequencies.

84



(a) (b)

(c) (d)

Figure 5.3: In (a) and (b) the frequency-resolved Fourier transforms of the amplitude
and phase dynamical shifts obtained performing the FT along the delay axis
of Figure 5.2. In (c) and (d) the Fourier spectra of phase and amplitude
obtained averaging (a) and (b) along the probe frequency axis (y-axis).

5.2 Time-resolved measurements on α-quartz

In this section the time-resolved measurement on α-quartz are presented. This
material represents a benchmark system to test multimode homodyne detection
for tracking phase and amplitude mean dynamics of coherent phonons in solids.
Quartz is indeed characterize by an high transparency within the probe spectral
range (∼ 400 THz) and exhibits strong Raman lines [14].

We will investigate the low temperature phase of quartz which is dubbed α-
quartz. The latter has a trigonal crystalline structure with a D3 symmetry and
N = 9 atoms per unit cell (Figure 5.4(a)). Group theory calculations [17] show
that the 3 × N = 3 × 9 = 27 vibrational degrees of freedom are divided into 2
acoustic vibrations of A2+E symmetry and 16 optical vibrations of 4A1+4A2+8E
symmetry. Among them, the Raman active modes are 4 totally symmetric of
species A1 and 8 doubly degenerate of species E.

In our experiment we employ a 0.2 mm tick α-quartz sample oriented in order
to have the principal symmetry axis (c-axis) parallel to the probe propagation
direction. In this configuration, the accessible vibrational modes are only those
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Figure 5.4: Arrangement of Si an O atoms in α-quartz. In (a) the 3D structure, while
in (b) its projection on a plane perpendicular to the c-axis [27].

with C3 rotational symmetry around the c-axis. These modes correspond to
that of a triatomic molecule with the atoms collocated at the corners of an equi-
lateral triangle and consist of an A total symmetric mode and two degenerate
E-symmetry modes (Figure 5.5). Assuming that also the pump propagates along

Figure 5.5: Normal vibrational modes for a system with C3 symmetry. A total sym-
metric A-mode and a doubly-degenerate E-mode are allowed [20]. These
modes corresponds to the ones allowed for α-quartz excited along the c-axis.

c-axis (Figure 5.6) we can limit our analysis in the xy plane. In this configuration
the Raman tensors χ(1)

µλ = (δχ/δq)µλ|q=0 for the three allowed modes read [22]:

A =
(
a 0
0 a

)
EL =

(
cL 0
0 −cL

)
ET =

(
0 −cT
−cT 0

)
(5.1)

From the previous ones we can subsequently calculate the four rank non-linear
susceptibility tensor χ(3)

µλmn. The latter encodes the information about the sym-
metry of the excited phonon-modes and rules the probe optical response after the
ISRS-driven pump excitation. For our C3-symmetric system it turns out to be:

χ
(3)
µλmn = AµλAmn + EL

µλE
L
mn + ET

µλE
T
mn =

=


(
a2 + c2

L 0
0 a2 − c2

L

) (
0 c2

T

c2
T 0

)
(

0 c2
T

c2
T 0

) (
a2 − c2

L 0
0 a2 + c2

L

)


(5.2)

The four rank susceptibility tensor encodes both the pump-phonon and probe-
phonon coupling. Indeed, its inner indices (µλ) are relative to the probe polar-
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Figure 5.6: Geometry adopted for the pump-probe experiment on α-quartz. Pump
and probe propagate collinearly along the c-axis of the crystal. The x
direction is the one corresponding to the probe polarization. The relative
polarization between the two fields is denoted with Θ. The analyzer is
a polarizer allowing the selection of the emitted probe field polarization
component.

Probe-analyzer Pump-probe Detected Tensor
angle polarization angle (Θ) phonons element

90◦ 0 X 0
90◦ ±45◦ ET c2

T

90◦ ±90◦ X 0
0◦ 0◦ A+ EL a2 + c2

L

0◦ ±45◦ A a2

0◦ ±90◦ A+ EL a2 − c2
L

Table 5.1: Summary of the α-quartz detected phonons as a function of the probe-
analyzer and the relative pump-probe polarization angle Θ. The phonon
selection is ruled by the symmetry of the non-linear susceptibility tensor
χ

(3)
µλmn (Equation 5.2).

ization components, while the external (mn) account for the pump ones with
respect to the reference system depicted in Figure 5.6.

We will see in the following that by varying the pump-probe polarization
angle and by properly choosing the polarization of the emitted probe field we are
able to select the optical response of specific elements of χ(3)

µλmn and eventually
discriminate phonons with different symmetry. On the base of χ(3)

µλmn symmetries,
we summarize the detected phonons in different exciting and probing geometries
in Table 5.1.

Furthermore, the polarization selection opens the possibility to single out the
two main probing effects described in Chapter 2: Linear Refractive Modulation
(LRM) and Impulsive Stimulated Raman Scattering (ISRS). Indeed, we expect
the refractive modulation to be the only responsible for the photon exchange be-
tween the different polarizations. This opportunity will allow us to monitor phase
and amplitude dynamics of each probe mode in the two cases and subsequently
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distinguish the different phonon field temporal structure encoded in the probe
pulse.

Since we have stated that polarization selection of the emitted field plays a
crucial role in determining the probing features, let us start by exploring this
possibility and see what the experimental evidence suggest. In particular, we will
report the results in two different probe-analyzer configurations:

• The parallel configuration, in which the analyzer selects the same polar-
ization of the probe;

• The cross (extinction) configuration, in which the detected emitted field
polarization is perpendicular to the probe one.

5.2.1 Parallel configuration
In this paragraph the measures in parallel geometry are presented. In par-

ticular, we are interested in exploiting phase and amplitude dynamical trends
to unveil the probing processes in this configuration. We report the experimen-
tal results in this geometry in Figure 5.7. In the presented measurements the
pump-probe polarization angle Θ is set to +45◦.

The measured trends show that the emitted field in parallel polarization en-
codes two different effects. The amplitude exhibits a frequency-dependent re-
sponse, while the phase does not show any spectral-dependent feature. This
implies that the amplitude maps a multimode probe-phonon interaction, while
the phase a probe-phonon interaction in which no frequency mixing occurs. In
our framework, the first is the Impulsive Stimulated Raman scattering, while the
latter the Linear Refractive Modulation.

Moreover, as shown in Figure 5.8, the frequency mixing is time-dependent.
This is due to the fact that through ISRS we can, depending on the probing
time, force (Stokes process) or dump (Anti-Stokes) the phonon oscillations. Fig-
ure 5.7(c) clarify the different nature of the two processes. As a matter of fact,
amplitude and phase evolve both at the frequency of the excited phonon (Figure
5.9), but with a phase-difference which is π/2, independently of the probe fre-
quency. Phase follows the instantaneous atomic displacement, while amplitude
the phonon velocity, thus proving the stimulated nature of ISRS.

To sum up, the experimental evidence shows that the emitted field in parallel
geometry encodes both the two probing effects. Its amplitude modification en-
codes the multimode interaction with the phonon, while its phase shifts the linear
modulation of the refractive properties due to the atomic periodic displacement.

We will now move to the cross geometry and see if, through polarization, we
can isolate the two probing processes.
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(a) (b)

(c)

Figure 5.7: Parallel geometry: amplitude (a) and phase (b) temporal dynamics of each
mode of the emitted probe field. Phase and amplitude are π/2-shifted (c)
since they are ruled by two separate probing effects. Amplitude modulation
is driven by ISRS and follows the phonon momentum (yellow line). Phase
modulation is instead determined by the phonon-dependent refractive prop-
erties and follows the instantaneous atomic oscillations whose maxima are
in correspondence of the blue line. The maximum spectral weight shift oc-
curs when phonon exhibits its maximum momentum (yellow line). Probe
power = 3.8× 106 ph/pulse; Pump power =4.8× 1012 ph/pulse; LO power
(single mode with σ = 0.1 THz) = 1.0× 107 ph/pulse.
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(a) (b)

Figure 5.8: Parallel geometry. Probe spectral weight shifts at two different delays (a)
resulting from Stokes and Anti-Stokes probe-phonon interaction (b).

(a) (b)

(c) (d)

Figure 5.9: Parallel geometry: Fourier analysis. In (a) and (c) phase and amplitude
frequency-resolved FT maps calculated from each probe mode amplitude
and phase temporal dynamics. In (b) and (d) the mean FT obtained aver-
aging over the frequency axis of maps (a) and (c) in a spectral window of
10 THz around the probe central mode. Since the pump-probe polarization
angle Θ is set to 45◦, 6.2 THz and 14 THz A-modes are detected (Table
5.1).
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5.2.2 Cross configuration
In this paragraph the multimode homodyne measurements in cross geometry

are presented. The evolution of phase and amplitude parameters in this config-
uration is shown in Figure 5.10. The pump-probe polarization angle Θ adopted
for the presented measures is 45◦. Indeed, in this configuration the phonon-
dependent dynamics can be retrieved in the optical response with the maximum
efficiency, since the photon-phonon cross-section is maximized (Table 5.1).

The pump-dependent amplitude and phase shifts evolve at the frequency of
the detected phonon (the ET -one at 4 THz), but they do not exhibit any spectral-
dependent feature. We indeed interpret the phase response at high frequency of
Figure 5.10(b) as originating from a non-extinguished probe component with
parallel polarization. This consideration is supported by the fact that, as shown
in Figure 5.11, its phonon-dependent modulation is 10 times higher than the low
frequency one.

In this case, no multimode probe-photon processes are mapped into amplitude
and phase dynamics of the probe pulse. Therefore, the emitted photons in cross-
polarization have not experienced ISRS interaction with the excited phonon. This
experimental evidence is supported by the stimulated nature the of Raman inter-
action. Photons emitted in a stimulated process are indeed likely to be created in
a mode state which is already occupied. The cross-polarization geometry hence
allows to filter out ISRS signatures. This statement is strongly confirmed by the
comparison between the temporal evolution of phase and amplitude of each probe
mode. As a matter of fact, in this configuration both amplitude and phase evolve
in phase with the phonon periodic displacement (Figure 5.10(c)), thus mapping
a refractive modulation. Also for this comparison only the low frequency phase
response has been considered, as a consequence of a residual parallel component
on the high frequency side (Figure 5.11).
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(a) (b)

(c)

Figure 5.10: Cross geometry: amplitude (a) and phase (b) temporal dynamics of each
mode of the emitted probe field. Setting the analyzer in probe extinction
regime allows to filter out the ISRS features. Indeed, no spectral weight
shift occurs among probe modes (a) and amplitude and phase oscillate
with the same phase (c). We have considered only the phase response of
the lower part of the pulse, since that of the upper one originates from
a non-extinguished parallel polarization component (Figure 5.11.) Probe
power = 3.8×106 ph/pulse; Pump power = 4.8×1012 ph/pulse; LO power
(single mode with σ = 0.5 THz) = 1.6× 107 ph/pulse.
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Figure 5.11: Comparison between the phase trend of the lower (391 THz) and upper
(401 THz) part of the emitted probe pulse in the case of cross geom-
etry. The phase response at higher frequency is dominated by a non-
extinguished emitted field whose polarization is parallel to the that of the
incoming probe.

(a) (b)

(c) (d)

Figure 5.12: Cross geometry: Fourier analysis. In (a) and (c) phase and amplitude
frequency-resolved FT maps calculated from each probe mode amplitude
and phase temporal dynamics. In (b) and (d) the mean FT obtained
averaging over the frequency axis of maps (a) and (c) in a spectral window
of 10 THz around the probe central mode. For a pump-probe polarization
angle Θ = 45◦, 4 THz ET -mode is detected in extinction geometry.
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5.2.3 Pump-probe polarization angle dependence
In the previous section we have considered how the selection of the polarization

of the emitted probe field enables to single out the two probing effects. The
results indeed show that the multimode photon-phonon interaction (ISRS) is
only encoded inside the emitted field with the same polarization of the incident
one. Until now we have not explored how the excitation geometry (i.e. the
pump-probe polarization angle Θ) affects phonon evolution.

In this section we will focus on this issue and exploit multimode homodyne
detection to track A-phonon and E-phonon evolution as a function of the pump-
probe polarization angle. By looking at the selection rules presented in Table
5.1, we point out that a suitable angle to perform this comparison is |Θ| = 45◦.
Indeed, if |Θ| = 45◦, A and E-phonons responses can be singled out by switching
the probe-analyzer configuration from the parallel to the cross one. Since our
purpose is to independently study the A and E-phonon response as function of
pump polarization, the cases Θ = ±45◦ have been studied.

Let us start with the E-symmetry phonon. As previously stated, the latter
can be isolated in cross-polarization geometry. Phase and amplitude trends for
Θ = ±45◦ resulting from the probe interaction with the E-phonon are presented
in Figure 5.13. The experimental results show that by exciting the E-mode with
a pump polarization at 45◦ with respect to the probe or at −45◦, a π-shift in
both amplitude and phase temporal trends occurs (Figure 5.14).

The same π-shift does not occur when the probe interacts with the A-mode
(Figures 5.15, 5.16). This is evident in Figure 5.16 where we compare the A-
phonon amplitude and phase response in the two excitation geometries (Θ =
±45◦). Since the A-phonon is detected in parallel geometry, amplitude exhibit
the Raman behaviour (Figure 5.15). For this reason, we have compared the
amplitude trends in the two pump configurations (Θ = ±45◦) for either the
upper and lower part of the pulse (Figure 5.16(a)(b)).
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(a) Θ = +45◦ (b) Θ = +45◦

(c) Θ = −45◦ (d) Θ = −45◦

Figure 5.13: Cross geometry (ET -phonon response): pump-probe polarization angle
dependence (Θ = ±45◦) of phase and amplitude frequency-resolved dy-
namics. Probe power = 3.8 × 106 ph/pulse; Pump power = 4.8 × 1012

ph/pulse; LO power (single mode with σ = 0.5 THz) = 1.6×107 ph/pulse.

(a) (b)

Figure 5.14: Cross geometry (ET -phonon response): pump-probe polarization angle
dependence (Θ = ±45◦) for a representative probe mode at 391 THz
(Figure 5.10). Phase and amplitude of the emitted probe field are both
π-shifted in the two excitation configurations.
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(a) Θ = +45◦ (b) Θ = +45◦

(c) Θ = −45◦ (d) Θ = −45◦

Figure 5.15: Parallel geometry (A-phonon response): pump-probe polarization angle
dependence (Θ = ±45◦) of phase and amplitude frequency-resolved dy-
namics. Probe power = 5.7 × 106 ph/pulse; Pump power = 4.8 × 1012

ph/pulse; LO power (single mode) = 1.6× 107 ph/pulse.
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(a) 384 THz (b) 398 THz

(c) 394 THz

Figure 5.16: Parallel geometry (A-phonon response): pump-probe polarization angle
dependence (Θ = ±45◦). In (a) and (b) amplitude dynamics in both ge-
ometries for modes at opposite side of the central one (384 e 398 THz)
(Figure 5.15). In (c) phase temporal evolution in the two excitation ge-
ometries for a representative mode at 394 THz (Figure 5.15). Amplitude
and phase oscillations are no sensitive to the excitation geometry (i.e. they
do not change their phase).
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5.2.4 Comparison with the model
In the previous section we have presented the time-resolved measurements

on α-quartz and shown that the selection of the emitted probe field allows to
distinguish the two main probing effects resulting from probe-phonon interaction:
LRM and ISRS. Moreover, by changing the pump polarization we have exploited
homodyne detection to retrieve the symmetry properties of the detected phonons.

In this section we want to interpret the mean value phase and amplitude
dynamics in the adopted configurations on the basis of the model presented in
Chapter 2. Moreover, we will quantitatively make use of amplitude and phase
shifts in both parallel and extinction geometry to estimate the Raman cross-
section of the probing interaction.

Since in our set-up the two main probing effects are mapped onto amplitude
and phase dynamics of the frequency-resolved homodyne current, let us starting
by recalling its expression (Chapter 2) in the case of refractive and ISRS probe-
phonon interaction. The latter has a pumped and an equilibrium contribution
and in the two cases reads:

〈ÎRefµj ,φj
(∆t)〉eq = |zµj||αµj| cos(φj) + |zµj |

2τVsωj
V

sin(φj)
∑
λ

|αλj|χ(0)
µλ

〈ÎRefµj ,φj
(∆t)〉pump = |zµj |

2τVsωj
V

sin(φj)
∑
λ

|αλj|χ(1)
µλ

R

mΩ sin(Ω∆t)
(5.3)

〈ÎRamanµj ,φj
(∆t)〉eq = |zµj||αµj| cos(φj)

〈ÎRamanµj ,φj
(∆t)〉pump = |zµj |

τVsωj
2V

∑
λ

χ
(1)
µλ

(
cos(φj)

(
|αλj+ Ω

δ
| − |αλj−Ω

δ
|
) R cos(∆t)

mΩ +

+ sin(φj)
(
|αλj+ Ω

δ
|+ |αλj−Ω

δ
|
) R sin(Ω∆t)

mΩ

)
(5.4)

In the previous expression the dependence of the pumped current on phonon
momentum and position is hidden inside the time-dependent terms. We can
make it explicit by recalling Equation 2.66:

〈q̂Ω(∆t)〉 = R

mΩ sin(Ω∆t)

〈p̂Ω(∆t)〉 = R cos(Ω∆t)
(5.5)

R represents the momentum shift imparted by the pump to the phonon initially
at rest. This will be a crucial parameter in the following analysis, since it deter-
mines the entity of photon-phonon coupling and its dependence on the excitation
geometry (i.e. on pump-probe polarization angle Θ). By looking at the structure
of the previous equations, we can point out that phase and amplitude shifts re-
sulting from probing interaction are both ruled by the non-linear susceptibility
χ̃

(1)
µλ defined in Equation 2.74:

χ̃
(1)
µλ = R

mΩχ
(1)
µλ = τ

2V mΩ
∑
j

∑
mn

χ
(3)
µλmn|α

pump
mj ||α

pump

nj+ Ω
δ

|ωj (5.6)

The latter represents the phonon-dependent correction to the linear susceptibility
χ(0) and we will dub it as the Raman cross-section of probe-phonon interaction.
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In order to clarify its definition we recall Equation 2.36 in the case of a single
vibrational mode and subsequently write the susceptibility expansion as:

χµλ = χ
(0)
µλ + χ

(1)
µλq ≡ χ

(0)
µλ + χ̃

(1)
µλ (5.7)

Therefore, as stated in Chapter 2, the phonon-dependent probe response in both
its amplitude and phase features is determined by the symmetry properties of the
excited phonon through the four-rank susceptibility χ(3)

µλmn and by the amplitude
of the phonon-coupled pump modes.

Conversely, the phonon-independent optical response is ruled by χ(0). χ(0) is
the equilibrium susceptibility describing static refractive effects like polarization
rotation and birefringence and we model it as an hermitian tensor [4] of the form:1

χ
(0)
µλ =

(
1 |w|eiα

|w|e−iα 1

)
(5.8)

In the previous tensor |w| and α model two different static refractive effects in-
duced on a linearly polarized state. |w| accounts for the polarization rotation,
while α for the static birefringence, modelling the ellipticity of the outgoing po-
larization state. We stress that for quartz is crucial taking α 6= 0 since it is
experimentally proved that out of the c-axis the polarization state is elliptical.
Indeed, by increasing the thickness of the sample and by orienting the analyzer
in cross configuration, the degree of non-extinguished light increases. Therefore,
referring to the geometry of Figure 5.6, birefringence will cause a de-phasing be-
tween the emitted fields in x and y directions, i.e. the directions perpendicular
to the propagation direction.

After these preliminary considerations, let us now exploit the model to re-
produced the effects of the detected phonons on amplitude and phase probing
responses. We will work under the hypothesis of no coupling among phonons of
different frequencies and hence we will add their relative homodyne response in-
dependently [4]. As previously pointed out, the symmetry of the excited phonon
in our model is encoded inside the radial parameter R which represents the pump-
driven phonon momentum shift and contains all the information about the ex-
citation geometry. For the three quartz Raman modes allowed in our geometry
(i.e. pump and probe collinear along c-axis), the latter read:

RA = aηpumpΩA
REL = cL cos(2Θ)ηpumpΩE
RET = −cT sin(2Θ)ηpumpΩE

(5.9)

In the previous expression we have denoted with ηpumpΩ the contribution to the
momentum shift R depending on the amplitude of the phonon-coupled pump
modes:

ηpumpΩ = τ

2V
∑
j

ωj|αpumpj ||αpump
j+ Ω

δ

| (5.10)

From Equation 5.9 we can immediately recognize a peculiar difference between A
and E-modes. Indeed, while the momentum imparted by the pump at the first is

1We set to 1 the diagonal terms since, unless we record the response without the sample, we
are not sensitive to them.
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no sensitive to the polarization Θ, the momentum shift of E-modes can change
in different pump excitation geometries.

In our model, this different phonon dynamics is linked to the optical one by
the Raman cross-section χ̃(1)

µλ which rules both amplitude and phase response. Its
non-null elements for the three phonon symmetry-classes read2:

ã = RA

mΩA

a =
ηpumpΩA
mΩA

a2

c̃L cos(2Θ) = REL

mΩA

cL =
ηpumpΩE
mΩE

c2
L cos(2Θ)

c̃T sin(2Θ) = RET

mΩE

cT =
ηpumpΩE
mΩE

c2
T sin(2Θ)

(5.11)

These cross-sections clearly depend on pump intensity but, if we set it con-
stant, their measure can be exploited to unveil the relative coupling strength be-
tween electronic and nuclear displacement of different phonon modes, i.e. χ(1)

µλ =
(δχ/δq)µλ|q=0. We will achieve this purpose by looking at the extent of phase and
amplitude shifts of the frequency-resolved homodyne current, which encode that
of each probe mode.

Until now we have treated ISRS and the refractive modulation as separated
processes. Actually, in the real experiment the two effects occur simultaneously
in the probing process. In the model we treat the combined action of ISRS and
LRM at first order. In our quantum language, this means that the action of the
overall Hamiltonian (Ĥprobe) describing the probe-phonon interaction is simply
the action of the sum of the two Hamiltonians ruling the two separate effects:

Ĥprobe = ĤRef + ĤRaman (5.12)

Therefore the overall frequency resolved homodyne current reads:

〈Îµj ,φj(∆t)〉 = 〈ÎRefµj ,φj
(∆t)〉+ 〈ÎRamanµj ,φj

(∆t)〉 (5.13)

We clarify that some probing effects are hidden through this first order approx-
imation. For istance, we are neglecting the modification of the phonon selection
rules due to the static polarization rotation of the sample.

Although ISRS and LRM occur simultaneously, measurements suggest (Figure
5.7 and Figure 5.10) that through polarization selection of the emitted field we
are able to wash out ISRS features. Let us therefore go through the modelization
of the homodyne response in parallel and cross geometry.

Parallel configuration Referring to coordinate system of Figure 5.6, in par-
allel configuration the analyzer selects the polarization along the x-component
(µ = x). In this case the leading contribution to the optical response are zero-
order in the polarization rotation. This implies that the equilibrium response
does not depend on χ(0). Moreover, by selecting µ = x the symmetry of the χ(1)

µλ

Raman tensors (Equation 5.1) implies that the only contribution to the pumped
2Since for each phonon R

mΩ represents the pump-driven atomic displacement and the Raman
tensor elements χ(1)

µλ have the dimension of the inverse of a length, the so defined cross-sections
are adimensional.
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response originates from the A and EL-phonons. In parallel geometry we there-
fore get:

〈Îxj ,φj(∆t)〉eq = |zxj ||αxj | cos(φj)

〈Îxj ,φj(∆t)〉pump = ã
|zxj|τVsωj

2V

 cos(φj)
(
|α
xj+ ΩA

δ

| − |α
xj−ΩA

δ

|
)

cos(ΩA∆t)+

+ sin(φj)
(
|α
xj+ ΩA

δ

|+ |α
xj−ΩA

δ

|+ 4|αxj|
)

sin(ΩA∆t)
+

+c̃L cos(2θ) |zxj|τVsωj2V

 cos(φj)
(
|α
xj+ ΩE

δ

| − |α
xj−ΩE

δ

|
)

cos(ΩE∆t)+

+ sin(φj)
(
|α
xj+ ΩE

δ

|+ |α
xj−ΩE

δ

|+ 4|αxj|
)

sin(ΩE∆t)


(5.14)

The previous equation qualitatively clarifies the phase and amplitude observed
features (Figure 5.7).

Amplitude is dominated by the only term inside the pumped response in phase
with the equilibrium one (i.e. ∝ cos(φj)). This is proportional to the phonon
momentum (cos(Ω∆t)) and exhibits the predicted Raman shifts (Figure 2.7). It
is indeed proportional to the difference of the amplitude of the phonon-coupled
probe modes. Even if refractive contribution is included inside the parallel re-
sponse, it does not influence the amplitude dynamics. As a matter of fact, it is
proportional to sin(φj) and hence null when the Raman response is maximum.
Therefore, even if the refractive modulation is always present, its amplitude-
driven modulation are hidden by the Raman-driven ones.

Conversely, the LRM contributions originate from the term proportional to
sin(φj). This term is π/2-shifted with respect to the unpumped current and
drives phase modulation with a periodicity that follows the atomic oscillations
(sin(Ω∆t)). A qualitatively plot of phase and amplitude trends of the homodyne
response in parallel geometry is presented in Figure 5.17.

Cross configuration Let us now move to the qualitatively description of the
extinction case (Figure 5.10). Since ISRS is a stimulated process we expect that
the photons produced in a Raman process are likely to be created in mode states
initially occupied [21]. For this reason we expect the photons emitted in the
orthogonal polarization to have not undergone the Raman process. Consequently,
as suggested by the experimental evidences (Figure 5.10), the extinction geometry
is suitable to filter out the ISRS signatures.

In this case, both static polarization and birefringence have to be taken into
account. Moreover we have to introduce in the model a further Hamiltonian
describing polarization selection. The latter has the features of a static refractive
Hamiltonian but with the off-diagonal terms which are real and have the opposite
sign of that of χ(0) (Equation 5.8) in order to model polarization rotation. We
take an analyzer Hamiltonian Ĥan of the form:

Ĥan = − Vs
2V

∑
λλ′,j

ωjχ
(0) an
λλ′

(
â†λj âλ′j + âλj â

†
λ′j

)
(5.15)
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Figure 5.17: Parallel configuration: qualitative phase and amplitude temporal features.
ISRS and LRM jointly contribute to the optical response of each probe
mode. ISRS dominates amplitude dynamics, while LRM the phase one.

Here χ(0) an is a real tensor whose off-diagonal terms rule the polarization selection
of the emitted field:

χ
(0) an
λλ′ =

(
1 −|w|
−|w| 1

)
(5.16)

Therefore, the frequency-resolved homodyne current in this case results from the
action of the combined Hamiltonian:

Ĥprobe = ĤRef + Ĥan (5.17)

on the initial probe state polarized along x. We stress once again that at first
order no modification of Raman selection rules due to static probe polarization
rotation occurs. Therefore we can set the y-direction as the analyzer direction
(i.e. µ = y). In this configuration the only phonon-dependent response is the
LRM one and originates from the ET -mode. The frequency-resolved homodyne
current therefore reads:

〈Îyj ,φj(∆t)〉eq = |zyj ||αxj | cos(φj) + |w|(cos(α)− 1)2τ |zyj|Vsωj
V

|αyj| sin(φj)

〈Îyj ,φj(∆t)〉pump = c̃T sin(2θ) |zyj|τVsωj2V 4|αyj| sin(ΩE∆t) sin(φj)
(5.18)

A qualitative plot of phase and amplitude shifts resulting from the extinction
response is presented in Figure 5.18. The trends qualitatively confirm the ex-
perimental response (Figure 5.10). Indeed, amplitude exhibits no ISRS-driven
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spectral weight shifts and it is instead ruled, as well as as the phase, by the
periodic atomic displacement (∝ sin(Ω∆t)).

We underline that in the simulation it is crucial to take into account the static
birefringence of the sample α in order to retrieve the measured amplitude trend.
Indeed, if α = 0 Equation 5.18 shows that the pumped response will be π/2-
shifted with respect to the equilibrium one. Therefore no significant amplitude
modulation will occur and this is in contrast with what we experimentally observe
(Figure 5.10).

Figure 5.18: Cross configuration: qualitative phase and amplitude temporal features.
ISRS features are filtered through polarization selection. LRM determines
both amplitude and phase dynamics.

In Table 5.2 we summarize the predictions of the model for α-quartz. In
particular, we present the detected phonons in parallel and extinction geometry
for specific pump-probe polarization angles and the corresponding leading probing
interaction.

Phonon cross-sections estimation Until now we have just conducted a qual-
itative analysis of amplitude and phase trends. We want now to go deeper and
exploit the model to estimate the Raman cross-sections χ̃(1)

µλ of probe-phonons
interaction. The latter are indeed encoded inside the experimental quadrature
shifts.

We observe that in parallel geometry no dependence of the homodyne current
on static susceptibility occurs at first order (Equation 5.14). We can therefore
exploit this configuration to retrieve the Raman cross-sections of the phonons
detected in this geometry. Since phase shifts, unlike amplitude ones, do not
depend on the probe intensity, we decide to employ them for the estimation.
They are clearly sensitive to pump intensity but this has been taken constant
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Probe-analyzer Pump-probe Detected Probing
angle angle (Θ) phonons process

90◦ 0 X LRMeq

90◦ ±45◦ ET LRMphon + LRMeq

90◦ ±90◦ X LRMeq

0◦ 0◦ A+ EL ISRS + LRMphon + LRMeq

0◦ ±45◦ A ISRS + LRMphon + LRMeq

0◦ ±90◦ A+ EL ISRS + LRMphon + LRMeq

Table 5.2: Summary of the α-quartz detected phonons as a function of the probe-
analyzer and pump-probe polarization angle. For each configuration, we
report the leading probing processes predicted by the quantum model.
LRMphon represents the phonon-dependent modulation of the sample refrac-
tive properties modelled through χ(1), while LRMeq the equilibrium response
ruled by χ(0).

among all the measurements. An experimental prove of this issue is presented
in Figure 5.19 where we compare phase and amplitude trends in two fluence
regimes of the probe (104 ph/pulse and 106 ph/pulse) at constant pump fluence
(1012 ph/pulse).

In parallel geometry and with a pump polarized at Θ = 45◦, Fourier analysis
(Figure 5.9) shows that the leading contributions to phase and amplitude shifts
originate from the 6.2 THz total symmetric A-phonon3. The parallel measure
(Figure 5.7) is therefore suitable for evaluating its Raman cross-section. Since
this estimation passes through the determination of the phase shifts, we need a
systematic way to evaluate them from the measurements. In particular, we note
that in the real experiment there is a dissipative dynamics that causes an ex-
ponential decay of phonon oscillations and eventually of the phase shifts. Phase
shifts scale indeed as R/mΩ which is the extent of the atomic displacement whose
dumping is due to the phonon finite lifetime. However, the model does not include
any dissipation dynamics of the excited phonon. For this reason, in order to com-
pare the experimental phase shifts with the simulated one we have to normalize
the phase dynamics to an exponential decay function which is characteristic of
each phonon. The latter has been obtained by fitting the phase decay maxima in
order to extract the coherent phonon lifetime (Figure 5.20(a)). The experimental
phase trend has been subsequently rescaled with this exponential decay. Once
rescaled, the phase trend has been fitted with a sinusoidal function to extract the
amplitude of the oscillations. Once estimated the extent of phase oscillations, we
have tuned the value of the Raman cross-section of the 6.2 THz A-phonon:

ã = RA

mΩA

a =
ηpumpΩA
mΩA

a2 (5.19)

in order to numerically obtain from the pumped contribution of Equation 5.144

a phase shift comparable with the experimental one within a 10% error band.
3Phase shifts contribution due to the 14 THz A-phonon are neglected.
4The pumped response of Equation 5.14 contains also the response from the EL-phonon but
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(a) 392 THz (b) 403 THz

(c) 401 THz

Figure 5.19: Dependence of the amplitude and phase shifts on the intensity on the
incident probe. In (a) and (b) the amplitude dynamics for two opposite
side of the pulse (392 THz and 403 THz (Figure (5.7)) in the case of an
incoming probe with 104 photons/pulse and 106 photons/pulse. In (c) the
phase dynamics at the two previous fluences for the probe mode at 401
THz (Figure 5.7). In all the previous measurements the pump intensity is
constant and equal to 1012 photons/pulse. LO power (single mode with
σ = 0.1 THz) = 1.0 × 107. The detected intensity is the same in both
fluence regimes and equal to 2.0× 104 ph/pulse.

The incoming probe has been simulated as a broad normalized gaussian pulse
with σ = 10 THz and the local oscillator intensity scaled with respect to the
probe one. Moreover we have set the photon-phonon interaction time τ as the
probe duration (50 fs) and approximate Vs/V ' 1 (Equation 5.14). In this way,
the only unknown parameter ruling phonon-dependent dynamics is indeed the A-
phonon cross-section ã (Equation 5.14). The plot of the comparison between the
experimental phase trend in parallel geometry and the simulated one is presented
in Figure 5.20(b). The obtained cross-section of the 6.2 THz A-phonon reads:

ã = RA

mΩA

a = (1.45± 0.09)× 10−4 (5.20)

we have neglect it since the pump-probe polarization angle in the presented parallel configura-
tion is 45◦. This is confirmed by the Fourier analysis of Figure 5.9.
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(a) (b)

Figure 5.20: Parallel geometry: phase dynamics ruled by the 6.2 THz A-mode. In (a)
the experimental trend with the fit of the exponential dissipative decay
(τA (6.2 THz) = 0.5 ps). Since the phase evolution exhibits no spectral de-
pendence, the presented trend has been obtained by averaging the phase
response of probe modes in a frequency window of 10 THz around the
pulse center (Figure 5.7(b)). In (b) the experimental phase trend normal-
ized with the decay function and the simulated phase dynamics used to
estimate the Raman cross-section for A-phonon (ã).

Therefore, the correction to the linear susceptibility resulting from the non-linear
interaction with the A-phonon is approximatively 10−4 (Equation 5.7).

In Figure 5.21 we compare the experimental and simulated phase and am-
plitude trends for the parallel case (Figure 5.7) with the A-phonon cross-section
estimated as before and the with local oscillator and probe intensity as in Figure
5.7. In the presented plots simulated trends have been rescaled by the lifetime
decay of the 6.2 THz A-phonon (0.5 ps).

We can now exploit the estimation of the A-mode cross-section to retrieve the
cross-section of the doubly degenerate E-modes. Selection rules (Table 5.2) imply
that when pump, probe and detected field are all co-polarized, A and E-phonons
5 can be simultaneously detected with the maximum cross-section. Since phase
shifts scale linearly with the photon-phonon cross-section, the cross-section of the
E-mode can be unveiled by looking at ratio between the Fourier components at 4
THz and 6.2 THz of phase trend in co-polarized geometry (Figure 5.22). In this
way we can retrieve the Raman cross-section of the EL-mode which reads:

c̃L = REL

mΩE

cL = (1.13± 0.09)× 10−4 (5.21)

This cross-section is the same of that of the degenerate ET -phonon detected in
the extinction geometry:

c̃T = Rmax
ET

mΩE

cT = (1.13± 0.09)× 10−4 (5.22)

In Table 5.3 we summarize the Raman cross-sections of the detected phonons in
α-quartz. Since these cross-sections have been all evaluated at constant pump

5Actually, in the co-polarized geometry the detected phonon is the EL which has a different
symmetry with respect to the EL one. However, they share the same Raman cross-section.
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(a) Measure (b) Measure

(c) Simulation (d) Simulation

Figure 5.21: Parallel geometry: quantitative comparison between experimental and
simulated amplitude and phase trends. Phase and amplitude shifts
are ruled by the 6.2 THz A-phonon cross-section estimated to be ã =
(1.45± 0.09)× 10−4. This is the only phonon detected with the pump po-
larization at Θ = 45◦ (Figure 5.12). In simulated trends the finite lifetime
of 6.2 THz A-mode (0.5 ps) is included.

fluence (4.8×1012 ph/pulse) their relative values are representative of their relative
photon coupling strength.

Detected phonon Frequency Cross-section

A 6.2 THz (1.45± 0.09)× 10−4

EL 4.0 THz (1.13± 0.09)× 10−4

ET 4.0 THz (1.13± 0.09)× 10−4

Table 5.3: Raman cross-sections of the α-quartz phonons at a constant pump intensity
of 4.8× 1012 ph/pulse.

Static birefringence estimation Until now we have shown how we can quan-
titatively exploit phonon-dependent phase shifts for the estimation of Raman
cross-sections. In the following, we will exploit the time-resolved measurement to
retrieve an equilibrium property of quartz: the static birefringence.
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Figure 5.22: Phase dynamics FT spectrum in the of co-polarized probe, pump and
detected field. In this configuration the Raman cross-section of the 4 THz
EL-mode is maximum.

The model suggests that the suitable geometry to do this is the extinction
one. Indeed, at first order, static birefringence (α) comes out only in the optical
response of the emitted field component whose polarization is normal to the
incident one (Equation 5.18). The information due to static birefringence encoded
in amplitude and phase shifts are not redundant. Equation 5.18 indeed shows
that we can get phase shifts even in the absence of amplitude shifts (i.e. when
α = 0). Since in this formalism we are encoding a static property into dynamical
ones, to retrieve the static birefringence from the time-dependent amplitude and
phase shifts is essential to know the Raman cross-section of the detected phonon.
In this geometry and with a pump-probe polarization angle Θ = 45◦, the only
detected phonon is the ET -symmetry one (Figure 5.12) whose cross-section has
been estimated in the previous paragraph and reads:

c̃T = Rmax
ET

mΩE

cT = (1.13± 0.09)× 10−4 (5.23)

Once retrieved the cross-section of the phonon detected in cross-polarization
(ET ), we can now exploit Equation 5.18 to estimate the static birefringence α.
The equilibrium response (Equation 5.18) depends not only on α, but also on
the static polarization rotation whose value is required to estimate birefringence.
Since our 0.2 mm-tick sample rotates the incoming x-polarization of about β = 4◦
we set:

|w| = |αyj|
|αxj|

= tan(β) = 0.07 (5.24)

Therefore, once known c̃T and the polarization rotation |w|, the only free param-
eter in Equation 5.18 is α. We can hence tune it in order to numerically obtain a
homodyne response whose amplitude and phase dynamics simultaneously fit the
experimental ones within a 15% error window (Figure 5.23). The representative
probe mode used for the estimation is the same of Figure 5.10 (391 THz). Since
the model does not predict any amplitude and phase decay due to phonon finite
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lifetime, the representative trends have been normalized to the decay trend of 4
THz ET -phonon whose lifetime has been estimated to be τET (4 THz) = 3.0 ps.
Moreover, for the comparison with theoretical model predictions the amplitude
dynamics has been normalized to the unpumped amplitude response in order to
let it to be independent on probe incident intensity. Within an error of 15% in

(a) (b)

Figure 5.23: Cross geometry: phase and amplitude dynamics of a representative emit-
ted probe mode at 391 THz (Figure 5.10). In (a) the experimental trends
with the fit of the exponential dissipative decay of ET -phonon (τET = 3.0
ps). In (b) the experimental amplitude and phase trends normalized with
the decay function and simulated dynamics used to estimate quartz bire-
fringence.

both phase and amplitude estimations, the static birefringence for our 0.2 mm
tick α-quartz sample reads:

α = (24.8± 0.6)◦ (5.25)

This is the phase-mismatch between the two orthogonal polarization com-
ponents of the incident probe. This de-phasing is responsible for the elliptical
polarization of the outgoing probe (Figure 5.24).

Figure 5.24: Static probing effects resulting from equilibrium refractive properties of
α-quartz. Due to the combined action of polarization rotation and bire-
fringence the outgoing probe polarization state is elliptical.

We stress that this is a static effect and hence ruled by χ(0). The phonon-
dependent contribution will entry as a modulation of amplitude and phase of
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the two orthogonal polarization components. However, the model predicts that
phonon-induced phase modulations of the two orthogonal components are both in
phase with the nuclear oscillations. This implies that at first order no de-phasing
due to phonon contribution occurs. Hence, phonon-dependent birefringence will
be an higher order effect.

In Figure 5.25 we summarize the theoretical predictions in extinction geometry
obtained from the previously derived Raman cross-section c̃T and static birefrin-
gence α. We note that the simulated phase trend in this geometry reproduces
only the low-frequency response. As pointed out in Figure 5.11 the strongest
phase shifts at higher frequencies are likely to derive from a non-extinguished
emitted field whose polarization is parallel to the incoming one.

(a) Measure (b) Measure

(c) Simulation (d) Simulation

Figure 5.25: Cross geometry: quantitative comparison between experimental and sim-
ulated amplitude and phase trends. Phase and amplitude shifts are ruled
by the 4 THz ET -phonon cross-section estimated to be ã = (1.13 ±
0.09) × 10−4, by static polarization rotation (β = 4◦) and birefringence
(α = (24.8 ± 0.6)◦). In simulated trends the finite lifetime of 4 THz ET -
mode (3.0 ps) is included. Simulated phase trends reproduce only the low
frequency phase response, since the upper is supposed to derive from a
non-extinguished parallel polarized emitted field (Figure 5.11.

Pump-probe polarization angle dependence Finally, we move to the anal-
ysis of the dependence of amplitude and phase trends on the pump-probe polar-
ization angle (Θ). In particular, we will compare with the model the predictions
of the measurements at Θ = ±45◦ in extinction and parallel geometry. As shown
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in Table 5.1, this is a suitable geometry to separately address the coherent dy-
namics of phonons belonging to different symmetry groups. Indeed, if the pump is
polarized at 45◦ with respect to the probe we can isolate the response of A-mode
and E-mode by selecting the polarization of the emitted field. As presented in
Figures 5.14 5.16 we expect the symmetry of the detected phonon to be mapped
onto phase and amplitude temporal structure of the probe. In particular, the
experimental evidence shows that by probing the E-mode after an excitation at
Θ = +45◦ or at Θ = −45◦ a π-shift of amplitude and phase temporal dynamics
occurs (Figure 5.14).

This effect can be retrieved from the model exploiting the expression of the
mean homodyne current in extinction geometry (Equation 5.18). This is indeed
the only configuration in which the optical response of an E-mode can be isolated
(i.e. the ET one). The crucial issue for the explanation of this π-shift is noting
that the pumped homodyne current is proportional to the momentum R imparted
by the pump to the phonon initially at rest. For the E-symmetry mode this
momentum shift is sensitive to pump polarization Θ and reads (Equation 5.9):

RET = −cT sin(2Θ) (5.26)

The previous expression clarifies the observed amplitude and phase dynamics. By
switching the pump polarization angle from −45◦ to 45◦, the pump imparts to the
E-phonon a momentum which has opposite sign. Consequently, the atomic oscil-
lations induced by the pump are in anti-phase in the two excitation geometries
(Figure 5.26).

Figure 5.26: Effect of pump angle on ET -phonon phase oscillation. At the top the case
Θ = +45◦, at the bottom the case Θ = −45◦. Coherent oscillations are
π-shifted in the two cases.

Now, since the excited phonon is probed in extinction geometry, the leading
probing effect is LRM which encodes the instantaneous atomic displacement into
both phase and amplitude dynamics of the outgoing probe. Since E-phonon
oscillations are π-shifted in the two excitation geometries, amplitude and phase of
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each emitted field mode will be likewise in anti-phase. This theoretical evidences
are presented in Figure 5.27 where we compare the simulated amplitude and
phase dynamics resulting from the detected ET -mode.

(a) Θ = +45◦ (b) Θ = +45◦

(c) Θ = −45◦ (d) Θ = −45◦

Figure 5.27: Cross geometry: simulated dependence on pump-probe polarization angle
(Θ = ±45◦) for the detected ET -phonon. Model confirms experimental
trends (Figure 5.13): phase and amplitude response are π-shifted when
the detected ET -phonon is excited at Θ = +45◦ and at Θ = −45◦.

The simulation agrees with the experimental results: phase and amplitude
response of each mode are in anti-phase when the ET -phonon is excited with a
pump polarized at Θ = +45◦ or Θ = −45◦.

On the other hand, this pump angle dependence does not subsist in parallel
geometry. In this case (Θ = ±45◦), the only detected phonon is indeed the total
symmetric one whose pump-induced momentum shift is not sensitive to pump
polarization. Consequently, no dependence on Θ is present in the pumped contri-
bution to frequency-resolved homodyne current. This explain the experimental
evidence presented in Figure 5.16: amplitude and phase response of the emitted
field resulting from the interaction of the probe with A-phonon is not sensitive
to pump polarization.
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5.3 Beyond non-absorbing materials:
time-resolved homodyne on CuGeO3

In the previous section we have exploited the feasibility of our technique to
track the mean phononic field evolution in transparent materials, such as quartz.
In those materials no electronic transitions are permitted within probe bandwidth
and light-matter interaction is dominated by ISRS. We want now to apply multi-
mode homodyne detection to more complex systems and address coherent phonon
dynamics in resonance with electronic transitions. This is particularly interesting
in systems where low energy modes are able to drive orbital excitations, such as
Copper-Germanate (CuGeO3).

Copper Germanate is an insulating crystal belonging to the family of cuprates.
Its room temperature structure is schematized in Figure 5.28 and takes the name
of "normal" or "undistorted" phase, in order to distinguish it from the distorted
phase present below 14 K. Phase transition between the undistorted and distorted
crystal structure is a spin-Peierls transition, in which the lattice distortion is
accompanied by the formation of a spin-singlet ground state and the creation of
a energy gap in the spectrum of magnetic excitations [28]. The room temperature
structure is orthorombic: the Cu ions are at the center of edge-sharing octahedra
CuO6 whereas the Ge ions are at the centre of corner-sharing tetrahedra GeO4.
CuGeO3 represents a playground system for the study of the interplay between

Figure 5.28: Room temperature CuGeO3 structure with indicated the chain of edge-
sharing CuO6 octahedra (Adapted from [28]).

orbital excitations and phonon modes in Cu-O planes. This interplay plays a
crucial role in the physics of cuprates, where various evidences [31] point towards
a preferential channel for mapping the low energy physics of Cu-O vibrational
modes to high energy electronic responses, such as d-d transitions. This coupling
between vibrational and orbital excitations is easier to understand in CuGeO3
since d-d and charge transfer transition are clearly separated in energy (Figure
5.29).

In our experiment we excite through ISRS a coherent lattice oscillation and
probe the so excited system at 1.6 eV in resonance with d-d electronic transitions.
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The objective of this kind of experiment is to see whether signatures of an ISRS
probing process can be retrieved also in resonance with an orbital excitation
and eventually retrieve the coupling strength between electronic and vibrational
degrees of freedom.

Homodyne detection is well suited to study weak transmitted beams out of
an absorptive material. Its low intensity sensitivity originates from the fact that
the emitted field amplification is driven by an external local oscillator. Stan-
dard non-linear spectroscopies employ indeed self-heterodyne detection which is
intrinsically limitated by equilibrium absorption. In the self-heterodyne scheme
the local oscillator is not an external field, but is instead one of the transmitted
probe which drives the emitted field amplification6. Clearly, if the transmitted
intensity is attenuated due to static absorption the amplification effect is strongly
reduced. With our set-up this limitation is overcome.
In our experiment we employ a geometry in which pump and probe are collinear

Figure 5.29: Left: absorption spectra of CuGeO3 at 300 K. In our experiment the sys-
tem is probed in the region of the d-d phonon-assisted transitions. Right:
Cu-O octahedra and representation of the energy levels of the d-d transi-
tions that are splitted by the effect of crystal field (Adapted from [28]).

along c-axis and only the parallel polarization component of the emitted field is
detected. In this configuration we are able to detect only a total symmetric mode
of Ag symmetry at 5.6 THz. This mode originates from in-phase vibration of
Ge and O atoms of GeO3 chains along the c-axis (Figure 5.30). Using the same

Figure 5.30: Total symmetric Ag-mode detected in our configuration.

6Also in our configuration the emitted field is self-heterodyned by the probe. However,
the leading amplification process is driven by the external local oscillator, whose intensity is
typically 100 times greater than the transmitted probe one.
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notation adopted for quartz, its Raman tensor reads:

Ag =
(
a 0
0 a

)
(5.27)

and its pump-dependent cross-section ruling the probing process is:

ã = RA

mΩA

a =
ηpumpΩA
mΩA

a2 (5.28)

Multimode homodyne response (Figure 5.31) shows that also in resonance
with an electronic transition we are able to encode inside the high energy probe
field the low energy vibrational excitation. In particular, the amplitude shifts
of each probe mode map the energy transfer between the high energy field com-
ponents and the vibrational ones, while the amplitude shifts map the periodic
lattice displacement. The first are ruled by ISRS, while the latter originate from
the refractive modulation.

Let us now apply the quantum model presented in Chapter 2 to reproduce am-
plitude and phase dynamics and eventually estimate the Ag-mode Raman cross-
section. The latter will give information about the coupling strength between the
d electrons and the low energy mode. Since we are detecting the emitted field
whose polarization is parallel to the probe one, the contributions to frequency-
resolved homodyne response originate from both ISRS and LRM. By using the
same notation adopted for α-quartz, the latter reads:

〈Îxj ,φj(∆t)〉eq = µ|zxj ||αxj | cos(φj)

〈Îxj ,φj(∆t)〉pump = µã
|zxj|τVsωj

2V

 cos(φj)
(
|α
xj+ ΩA

δ

| − |α
xj−ΩA

δ

|
)

cos(ΩA∆t)+

+ sin(φj)
(
|α
xj+ ΩA

δ

|+ |α
xj−ΩA

δ

|+ 4|αxj|
)

sin(ΩA∆t)


(5.29)

where we have denoted with µ the static field absorption. For our sample we have
measured µ = 0.12. As for quartz, we can exploit the measured phase shift to
obtain the Raman cross-section of the detected Ag phonon. We make use of them,
rather then the amplitude ones, since they are independent on probe absorption.
By following the same procedure (Figure 5.32) adopted for quartz phonons we get,
within an error of 10% between simulated and experimental phase oscillations, a
cross-section equal to:

ã = RAg

mΩAg

a = (8.3± 0.6)× 10−5 (5.30)

The latter quantifies the pump-driven cross-section between the Ag mode and
the d electrons at a pump intensity equal to that of the experiment on quartz
(4.8×1012 ph/pulse). For this reason we can directly compare them. In Table 5.4
we summarize the cross-sections calculated for the detected phonons in quartz and
CuGeO3. Finally, we stress that in our set-up the vibrational mode excitation
has been induced through ISRS by a near-infrared (NIR) pump. As a future
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(a) (b)

(c)

(d) (e)

Figure 5.31: CuGeO3 excited along c-axis: amplitude (a) and phase (b) temporal dy-
namics of each mode of the emitted probe field. ISRS features are visible
in amplitude dynamics also with a probe at 1.6 eV in resonance with d-d
transitions. Conversely, phase trend encodes LRM effects and is therefore
π/2-shifted with respect to amplitude (c). Amplitude (d) and phase (e)
FT unveil the detected mode: 5.6 THz Ag-mode. Probe power = 1.3×107

ph/pulse; Pump power = 4.8×1012 ph/pulse; LO power (single mode with
σ = 0.2 THz) = 1.2× 107 ph/pulse.

perspective, we will explore the possibility of pumping the phonon resonantly to
its characteristic energy and map also in this case the high energy response. This
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(a) (b)

Figure 5.32: Phase dynamics ruled by the detected Ag-mode. In (a) the experimen-
tal trend with the fit of the exponential dissipative decay (τAg = 1.8 ps).
Since the phase evolution exhibits no spectral dependence, the presented
trend has been obtained by averaging the phase response of probe modes
in a frequency window of 10 THz around the pulse center (Figure 5.7(b))
Moreover the trend has been shifted by the constant phase response at
negative times (Figure 5.31). In (b) the experimental phase trend normal-
ized with the decay function and the simulated phase dynamics used to
estimate the Raman cross-section of the Ag-phonon (ã).

Detected phonon Frequency Cross-section

α-quartz A 6.2 THz (1.45± 0.09)× 10−4

α-quartz EL 4.0 THz (1.13± 0.09)× 10−4

α-quartz ET 4.0 THz (1.13± 0.09)× 10−4

CuGeO3 Ag 5.6 THz (8.30± 0.60)× 10−5

Table 5.4: Raman cross-sections of the detected phonons in α-quartz and CuGeO3 at
a constant pump intensity of 4.8× 1012 ph/pulse.

idea is driven by the fact that in this case an excess of thermal incoherent induced
by the NIR-pump excitation will be avoided.
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Chapter 6

Towards statistical analysis

Time-resolved techniques monitor the modification of the optical properties
of a sample after a sudden excitation. In the standard pump-probe approach this
purpose is reached by measuring the variation of the mean number of photons
transmitted or reflected by the sample at a variable time from the pump-induced
excitation. With this detection system we are able to obtain clean optical re-
sponses in which the noise is considerably reduced through the average of many
pulses. The strong limit of this approach resides in the fact that the many pulses
integration cuts off not only the environmental noise, but also the intrinsic quan-
tum fluctuations of the detected signal which can be unveiled with our set-up
(Chapter 4).

With our innovative approach (Figure 3.3) we are sensitive not only to inten-
sity fluctuations of quantum origin. Indeed, our optical observable (frequency-
resolved homodyne photocurrent) maps both the amplitude and the phase of
each detected field mode. The time-resolved multimode homodyne approach al-
lows therefore to track phase-dependent modifications of each probe statistics and
to study how these quantum noise modifications evolve after the pump excitation.

Furthermore, the possibility of isolating through local oscillator shaping the
homodyne response of only a subsets of the full probe modes (for example two
mode response) and retrieve their statistics (Figure 1.6) opens the perspective of
unveiling multimode quantum correlations imprinted on photon modes by their
non-linear interaction with the sample. In the systems studied in this thesis
(α-quartz and CuGeO3) the leading non linear-interaction is ISRS which cou-
ples probe modes whose frequency difference matches the phonon one (Chapter
2). In a more formal language, the single probe modes fluctuations allows to
reconstruct the diagonal terms of the covariance matrix of the probe state (cfr
Equation 1.37), while the multimode ones permit to retrieve the off-diagonal ones,
related to the correlations between different optical modes. The detection of the
two previous observables will eventually open the possibility to reconstruct the
multimode probe quantum state (through its covariance matrix) and monitor its
time-dependent variation.

In this chapter, we present the preliminary single mode and multimode time-
resolved fluctuations measurements on the two samples studied in this thesis:
α-quartz and CuGeO3. For the multimode case, we will limit our preliminary
measurements to the two modes case (Figure 1.6) and hence study multimode
quantum correlations imprinted by ISRS only on the two phonon-coupled modes.
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6.1 Single mode statistical measurements
In this section we present the results of time-resolved single probe mode fluc-

tuations on CuGeO3 and α-quartz measured by mean of the set-up illustrated in
Figure 3.3. We remark that in all the presented measures we will work with a
local oscillator intensity suitable to ensure the detection in shot-noise conditions
(Chapter 4). In this regime, the detected homodyne current noise, once filtered of
photon-independent contributions, maps the quantum fluctuations of the probe
electric field.

We will start by illustrating how the measured data are treated in order to
filter out these slow noise contributions and then move to a preliminary analysis
of the filtered noise trends.

6.1.1 Variance data analysis
In Figure 6.1(a) we show a representative measurement of the probe quadra-

ture variance dynamics detected with our set-up. In the presented plot the re-
sponse of a single probe mode is isolated, since a single frequency local oscillator
is employed (Figure 3.3). A vertical cut in the map represents the phase-resolved
quadrature variance obtained by changing the local oscillator phase. Conversely,
an horizontal cut describes how quadrature variance at fixed phase evolves after
the pump excitation. For each point of the 2D map, the variance is calculated on
a pulse train of 2000 pulses at the laser repetition rate (200 kHz).

We note (Figure 6.1) that, by calculating the variance with this method, slow
noise contribution are not filtered out. This can be understood by looking at the
variance response at negative times, which exhibits a phase-dependent dynamics.
In fact, before the phonon excitation, we expect the probe to be in a coherent
state whose variance is phase-independent and equal to 1/2. In order to filter
out these slow noise contribution, we have decided to evaluate the variance of the
full digitized train of pulses by averaging the variances calculated over smaller
pulse subsets of 10 pulses each. Through this data treatment, noises slower than
the duration of a 10 pulses train (50 µs) are cancelled. In Figure 6.1(b) we
present the filtered variance map. The effectiveness of the filtering is proved by
the elimination of the slow periodic noise at negative times.

(a) Raw variance (b) Filtered variance

Figure 6.1: Single mode quadrature variance. In (a) the variance calculated on the
full pulses train (2000 pulses). In (b) the variance evaluated by taking the
average variance of 200 smaller pulse subsets (10 pulses each) in order to
filter classical slow noises.
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As for mean value measurements (Chapter 5) pumped and unpumped maps
can be acquired at the chopping rate at each delay. The latter are presented in
Figure 6.2 together with the differential one resulting from the subtraction of the
previous two.

(a) (b)

(c)

Figure 6.2: Single mode quadrature variance datasets. In (a) and (b) the pumped and
the unpumped variance measured at the chopping rate (400 Hz). In (c) the
difference between (a) and (b).

6.1.2 Measurements on CuGeO3

In this section the preliminary statistical measures on CuGeO3 are shown.
Sample phonons are excited trough ISRS by the pump and the induced optical
response is probed in resonance with d-d transitions. The objective of these
measurements is to see whether exists a phase-dependent modification of probe
statistics due to an absorptive process. The adopted configuration is the same as
the one described in Section 5.3: the sample is excited along the c-axis (Figure
5.29) and the detected probe polarization is parallel with respect to the incident
one.

In Figure 6.3(a) we present the time-resolved pumped variance response of a
single probe mode. We notice that the pump induces at the overlap (time = 0)
a phase-dependent modification of the probe statistics. In particular, we notice
(Figure 6.3(b)) that this variance modulation evolves at the same frequency of
the equilibrium probe quadrature and has its maxima in correspondence with the
zeros of the mean probe field (blue curve in Figure 6.3(b)).

As shown in Figure 6.4, the pump excitation induces a phase-dependent mod-
ulation also of the unpumped variances measured at the chopper rate. This
modulation is in anti-phase with respect to the pumped variance.

Both the modulation of the pumped and the unpumped noise are triggered
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(a) (b)

Figure 6.3: CuGeO3: pump-probe dynamics of a single probe mode quadrature vari-
ance (395 THz). In (a) the pumped variance response as a function of the
pump-probe delay. In (b) the phase-dependent modulation of the equilib-
rium variance induced by the pump at the overlap (red line). Probe power
= 1.2×107 ph/pulse; Pump power = 4.7×1012 ph/pulse; LO power (single
mode with σ = 0.2 THz) = 1.2× 107 ph/pulse.

(a) (b)

(c)

Figure 6.4: CuGeO3: pump-probe dynamics of a single probe mode quadrature vari-
ance (395 THz). In (a) the dynamical pumped variance response, in (b) the
unpumped one measured at the chopping rate (400 Hz). At the overlap,
the pump induces a phase-dependent modulation also in the unpumped
statistics (c) with an opposite phase.

only at a certain chopper frequency (Figure 6.5). This means that, if the pump
beam is not chopped, no modification of probe statistics can be retrieved.

The phase-dependent variance as a function of the chopper rate helps to clarify
the origin of the detected noise. Indeed, since no variance modulation occurs
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(a)

(b)

Figure 6.5: CuGeO3: phase-resolved variance as a function of the chopping time. The
variance is evaluated at the pump-probe overlap. In (a) the pumped vari-
ance response, while in (b) the unpumped one measured at the chopping
rate at positive times. They are both evaluated at an increasing chopping
period (x-axis).

when the sample is constantly1 pumped, the detected noise trend is related to a
pump-dependent transition between two states that last more than the temporal
separation between two subsequent pulses. These two states can be:

• A thermal ground state in which the system stays in the absence of the
pump.

• An excited thermal state in which the system is driven by the pump at the
overlap.

Phase-dependent quadrature fluctuations do not occur when the system is in one
of the two states. Indeed, by looking at Figure 6.5, in the limit of no chopping
(i.e. high chopper blade times) the variance is flat at the overlap. Therefore,
these fluctuations originate only from the transitions between these two thermal
states triggered by pump chopping (Figure 6.5). In this scenario, phase-dependent
quadrature noise of the probe encodes the thermal fluctuation induced by the
pump at the overlap.

1Without being chopped at a frequency much lower than the laser repetition rate.
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6.1.3 Measurements on α-quartz
In this section the preliminary statistical measurements on α-quartz are shown.

In particular, we will present the single probe mode variance dynamics both in
parallel (Section 5.2.1) and cross (Section 5.2.2) configuration.

Parallel configuration

In this section the statistical measurements in parallel configuration are pre-
sented. As shown in Figure 6.6, at the overlap we detect a phase-dependent
modulation of the probe statistics whose maxima occur at the zeros of the equi-
librium probe quadrature. As in CuGeO3, thermal noise fluctuations induced by
the pump at the overlap are mapped both in the pumped and the unpumped
variance acquired at the chopping rate. The two phase-resolved fluctuations are
π-shifted.

(a)

(b) Pumped and unpumped variance at overlap (c) Differential variance at overlap

Figure 6.6: Quartz, parallel configuration. In (a) the experimental differential variance
mapping pump-induced variance modulations. In (b) the phase-resolved
variance dynamics of the pumped and unpumped quadrature sets evaluated
at the pump-probe overlap (black line of plot (a)). In (c) the differential
variance at temporal overlap whose maxima occur in correspondence with
the zeros of the equilibrium quadrature (blue line). Probe power = 3.8×104

ph/pulse; Pump power = 4.7×1012 ph/pulse; LO power (single mode with
σ = 0.3 THz) = 1.2× 107 ph/pulse.

124



Cross configuration

In Figure 6.7 we present the pumped variance response of a single emitted
probe field in cross polarization. A strong pump-induced variance response is
detected at the pump-probe overlap (Figure 6.7). In contrast to the parallel
case, the pump modulates equilibrium probe statistics in phase with equilibrium
quadrature. Therefore, the modulation of the emitted field in cross polarization
follows the fluctuations of the number of photons scattered by the sample in
orthogonal polarization.

(a) (b)

Figure 6.7: Quartz, extinction configuration: pump-probe dynamics of a single probe
mode quadrature variance (392 THz). In (a) the pumped variance response
as a function of the pump-probe delay. In (b) the phase-dependent modu-
lation of the equilibrium variance induced by the pump at the overlap (red
line). The modulation is in phase with the equilibrium quadrature (blue
trend in (b)). Probe power = 3.8×104 ph/pulse; Pump power = 4.7×1012

ph/pulse; LO power (single mode with σ = 0.7 THz) = 2.3× 107 ph/pulse.

At the overlap, also the unpumped variance acquired at the chopper rate (400
Hz) is influenced by the pump excitation (Figure 6.8). Indeed, it modulates in
anti-phase with respect to the pumped one.

In this polarization geometry, the variance modulation induced by the pump is
also visible at the maxima of the phonon oscillations2. We illustrate this feature in
Figure 6.9 where we present the noise dynamics at the first maximum amplitude
of the nuclear displacement. Also at this delay (Figure 6.9(b, d)), the phase-
dependent noise evolution follows the equilibrium quadrature (Figure 6.9(d)).

2The detected phonon in this geometry (analyzer and probe in cross configuration and pump
polarized at Θ = 45◦) is the 4 THz one with symmetry ET .
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(a) (b)

(c)

Figure 6.8: Quartz, extinction configuration: pump-probe dynamics of a single probe
mode quadrature variance (392 THz). In (a) the dynamical pumped vari-
ance response, in (b) the unpumped one. For each pump-probe delay the
latter are acquired at the chopping rate (400 Hz). At the overlap the pump
induces a phase-dependent modulation also of the unpumped statistics with
opposite sign with respect to the pumped one (c).
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(a) (b)

(c) Overlap modulation (d) First oscillation modulation

Figure 6.9: Quartz, extinction configuration: differential variance pump-probe dynam-
ics (a, b) ruled by the phonon amplitude oscillations (black line). In (c)
and (d) the phase-resolved variance dynamics evaluated at the overlap (c)
and at the first phonon oscillation maxima (d). They are both in phase
with the equilibrium quadrature (blue trend in (c) and (d)).
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6.2 Perspectives: measuring multimode quan-
tum correlations

In the previous section we have focused our attention on single mode variance
dynamics. This approach is useful to track the phase-dependent modification of
the probe field statistics.

However, every multimode response resulting from non-linear probe-sample
interaction is hidden through this approach. With our set-up we are able to
overcome this limitation and have access to a multiplicity of quantum correlations
structures. These are encoded inside the measure of the statistics of the homodyne
current with a multiple-shaped local oscillator (Figure 1.6). By multiple-shaping
the local oscillator we are indeed able to tailor the measurement basis of the
multimode probe state by reconstructing its covariance matrix. The covariance
matrix encodes both single mode statistical predictions and intrinsic multimode
quantum correlations [1]. In particular, the latter are related to its off-diagonal
terms (Equation 1.39).

Multimode correlations we are looking for in our experiments are introduced
among probe modes by their ISRS interaction with the excited phononic state.
In order to clarify the origin of these phonon-induced correlations let us examine
the following ideal situation. Let us consider a gaussian pulse in which a narrow
fluctuation localized at a specific frequency ω has been introduced. The ISRS
process will induce similar fluctuations also at frequencies ω ±Ω, where Ω is the
phonon frequency. If we repeat the measurement many times introducing for each
repetition a different unique fluctuation, the Raman process will imprint on the
probe pulse correlations among the phonon-coupled modes3.

Since we are working in shot-noise conditions (Chapter 4), these uncorrelated
localized fluctuations introduced at each repetition are caused by the poissonian
quantum noise of the probe field. Therefore, we can potentially detect ISRS-
driven correlations of purely quantum origin.

In this section we will limit our analysis to two-modes-correlations, thus ne-
glecting higher order correlations introduced by ISRS. In this framework, the
phonon-related correlations are encoded inside the off-diagonal terms of the two-
modes-covariance matrix. Recalling Equation 1.39, the latter reads4

Cij(ωi, ωj)(φ) =
(

σ2(X̂i(ωi))(φ) 〈X̂i(ωi)X̂j(ωj)〉(φ)
〈X̂j(ωj)x̂i(ωi)〉(φ) σ2(X̂j(ωj))(φ)

)
(6.1)

Its off-diagonal terms ruling two modes quantum correlations can be conveniently
expressed as follows (Equation 1.44):

〈X̂i(ωi)X̂j(ωj)〉(φ) = σ2(X̂i(ωi) + X̂j(ωj))(φ)− σ2(X̂i(ωi))(φ)− σ2(X̂j(ωj))(φ)
(6.2)

In the previous equation σ2(X̂i(ωi) and σ2(X̂j(ωj) represent the phase-dependent
single mode quadrature variance obtained through the homodyne measurement

3These correlations have been already measured in the classical regime [33], i.e. in the
case in which stochastic classical fluctuations are manually introduced at each repetition, thus
emulating classical thermal noise.

4In the present expression we are neglecting the frequency-dependence of the local oscillator
phase shift.
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with a single LO frequency (Figure 1.5). Conversely, σ2(X̂i(ωi) + X̂j(ωj))(φ) is
the homodyne current variance measured in the case of a two mode-shaped local
oscillator (Figure 1.6). In the following, we will make use of the phase-dependent
correlator presented in Equation 6.2 as an estimator of the two modes ISRS-driven
quantum correlation. In particular, we will see whether correlation features can
be retrieved when ωj − ωi equals the phonon frequency. The adopted system for
this study is CuGeO3.

We have studied the ISRS-driven correlations for two different photon-phonon
interactions:

• Interaction of the probe photons with a thermal phononic ground state, in
which the system lives before the pump arrival.

• Interaction of the probe photons with a displaced phononic state, in which
the system is driven by the pump excitation.

We expect the cross-section of the latter process to be resonantly enhanced by
the pump excitation (Chapter 2).

In Figure 6.10 we present the phase-resolved correlator 〈X̂i(ωi)X̂j(ωj)〉(φ)
(Equation 6.2) evaluated at negative pump-probe times (i.e. on a phonon thermal
ground state). We notice that no clearly features can be seen in the correlator
in correspondence to a frequency difference matching the detected phonon one5

(5.6 THz).

Figure 6.10: CuGeO3: Phase-resolved two-modes-correlator (〈X̂i(ωi)X̂j(ωj)〉(φ)) cal-
culated at negative pump-probe times and by scanning the local oscillator
phase φ. No clearly features can be seen in correspondence to the 5.6 THz
phonon (black line).

5Total symmetric Ag phonon (Section 5.3)
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In Figure 6.11 we present the phase-resolved correlator 〈X̂i(ωi)X̂j(ωj)〉(φ)
(Equation 6.2) evaluated in correspondence to the first maxima of the phonon
oscillations. At this delay, the probe interacts with a displaced phonon. In this
situation, we can notice a possible phonon-related correlation peak arising at a
frequency difference of 5.6 THz.

Figure 6.11: CuGeO3: Phase-resolved two-modes-correlator (〈X̂i(ωi)X̂j(ωj)〉(φ)) cal-
culated at a pump-probe time corresponding to the first maximum of
phonon oscillations. A possible phonon-related peak at 5.6 THz arises.

The comparison between the two previous interactions becomes more clear
by integrating the maps presented in Figure 6.10 and Figure 6.11 along the local
oscillator phase axis. The phase-integrated correlators are presented in Figure
6.12. As previously anticipated, a possible phonon-related correlation peak is
retrieved only when ISRS features are imprinted on the probe pulse through the
interaction with a displaced phonon. This is consistent with the increase of the
probe-phonon cross section driven by the pump excitation.
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Figure 6.12: In (a) and (b) the phase-resolved and phase-integrated two-modes-
correlator calculated at negative times (Figure 6.10). In (b) the same
plots evaluated at the first phonon oscillation maxima (Figure 6.11). The
phase-integrated correlator in (d) shows a possible phonon-related corre-
lation peak at 5.6 THz.
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Conclusions

The coherent motion of atoms in solids is typically addressed by mean of
pump-probe spectroscopies. In this widely used approach an intense pump laser
pulse drives a collective atomic excitation in the crystal (phonon) and a less in-
tense probe ultrashort pulse interacts with the system out-of-equilibrium. The
vast majority of pump-probe techniques measures the intensity of the output
probe, providing real-time information about the average of the atomic positions
during the collective excitation. However, in this kind of experiments one is dis-
carding all the information present in higher order statistical degrees of freedom
of probe photons distribution. The latter encode quantum fluctuations of the
atomic positions around their average. Moreover, an integrated detection ap-
proach does not permit to track how the photon-phonon interaction is mapped
into the phase response of the probe.

In this thesis we have overcome the limitations of the integrated approach
by mean of an interferometric technique named Balanced Homodyne Detection
(BHD) which has been coupled to the standard pump-probe set-up. Balanced
Homodyne Detection is a powerful method to measure phase-sensitive properties
of an optical field and to retrieve its amplitude and phase statistics. In a BHD
scheme, the optical field under investigation (signal) is mixed in a 50:50 beam
splitter (whence the attribute balanced) with a strong classical field (local oscil-
lator) whose phase is tunable. Mean value and statistical properties of the signal
are retrieved by studying how the differential intensity of the two BS outputs (ho-
modyne current) evolve by tuning the local oscillator phase. The phase-dependent
homodyne current is indeed a representative observable of the signal field at all
orders. The differential acquisition in balanced conditions permits to work in
shot-noise conditions. For this reason, the detected signal fluctuations pertain to
the intrinsic quantum nature of light.

The novelty implemented during this thesis project resides in the fact that
BHD has been performed in a multimode scheme. With this innovative ap-
proach, we can selectively have access to amplitude and phase statistics of each
probe mode and monitor their dynamical evolution after the phonon excitation.
This possibility has been accomplished by modulating the frequency content of
the local oscillator through an ultrafast pulse-shaper. Performing energy resolved
measurements is crucial for characterizing non-linear responses, where probe-
matter interaction is accompanied by an energy redistribution within the probe
bandwidth. In photon-phonon framework, the leading non-linear interaction is
Impulsive Stimulated Raman Scattering (ISRS) which couples all the probe modes
differing by the excited phonon frequency.

In this thesis we have exploited multimode homodyne detection to study how
photon-phonon coupling is mapped on mean values and fluctuations of amplitude
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and phase of each probe mode. The experimental results have been compared
with the theoretical previsions of the quantum model presented in [4], which has
been tailored to describe also phase dynamics. Exploiting phonon-induced am-
plitude and phase modulations, we have eventually estimated the probe-phonon
cross sections.

Multimode homodyne approach has been firstly apply to α-quartz, which
represents a model system for the study of ISRS in non absorbing materials.
Amplitude and phase exhibit two different frequency-dependent responses as a
function of the pump-probe time.

• The phase of all the probe modes oscillates at the frequency of the excited
phonon. This phase trend is due to a linear modulation of the refractive
index ruled by the phonon oscillations.

• The amplitude oscillations exhibit a frequency-dependent phase, that re-
sults in a time-dependent spectral shift. These spectral shifts are imprinted
on the probe spectrum by ISRS and can be filtered out trough the polar-
ization selection of the emitted field. This evidence proves the stimulated
nature of ISRS.

Similar amplitude and phase features have been detected also in more complex
systems, where phonon excitations are supposed to drive electronic transitions.
This evidence proves the feasibility of the technique of tracking low intensity fields
out of absorptive materials. We have adopted CuGeO3 probed in resonance with
d-d transitions for this study.

In the last part of the thesis, we have exploited the unique potentiality of our
system to track single mode and multimode statistics under shot-noise conditions.
This possibility is guaranteed by the differential acquisition of the BHD scheme.
The quantum sensitivity of our detection system has been tested and confirmed
by mean of a theoretical model [19]. In particular, we have proved that the
inevitable presence of optical dissipators preserves quantum noise sensitivity.

The aim of the statistical analysis was to see whether exists an out-of equilib-
rium modification of the probe quantum statistics. With our innovative set-up,
this statistical modulation can be addressed in a frequency-resolved scheme. In
this sense, we have explored the statistics variation of a single probe mode and
the modification of the jointly statistics of phonon-coupled modes. We expect
the latter to encode the information about the noise correlations imprinted on
the probe pulse trough ISRS. These multimode correlations are of purely quan-
tum nature, since detected in shot-noise-limited conditions. Possible signatures
of two-modes correlations induced by ISRS have been measured on CuGeO3 only
when the photon interacts with a displaced phonon (i.e. not in its thermal ground
state).

The innovative approach presented in this thesis can be in principle generalized
to the study of any collective excitation in complex systems. In particular, it
can be exploited to unveil transient complex dynamics linked to the quantum
fluctuations of the atoms around their mean positions. In this perspective, the
addition of a second pump pulse will be implemented in the set-up. The idea is to
configure the second pump in order to drive a collective atomic excitation in anti-
phase with respect to the first pump-excitation. This will in principle suppress the
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average atomic oscillations, enabling the study of the intrinsic atomic fluctuations
without the contribution of the average displacement.
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Appendix A

Multimode homodyne current

In Section 1.3 we have stated that the homodyne current resulting from a
multimode signal and a multimode local oscillator can be written as the sum of
single mode homodyne currents (Equation 1.40). This means that the interfer-
ence occurs only between modes of the same frequency within signal and local
oscillator bandwidth. In this appendix, we will prove this statement in a classical
framework, i.e. considering the signal and the local oscillator as classical coherent
fields.

Figure A.1: Classical homodyne with signal and local oscillator in multimode states.
The observable quantity is the differential photocurrent between the two
outputs of the BS.

With reference to Figure A.1, let us take the signal as a classical phase-
matched field of the form1:

Esig(t) =
∑
i

|αi|eiωit ≡
∑
i

αi(t) (A.1)

As well as the signal, the local oscillator is a classical multimode field. Since the
phase of the local oscillator can be tuned, its field expression reads:

ELO(t) =
∑
j

|βj|eiωjteiφj ≡
∑
j

βj(t)eiφj (A.2)

1Since the pulse is phase-matched, we have set to 0 the phase of each frequency.
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Exploiting now the 50:50 BS action ruled by the unitary matrix described in
Equation 1.12, we can get the instantaneous current measured on each diode at
time t:

c∗(t)c(t) =
∑
i

(
α∗i (t) + β∗i (t))e−iφi

)
×
∑
i

(
αj(t) + βj(t))eiφj

)
d∗(t)d(t) =

∑
i

(
α∗i (t)− β∗i (t)e−iφi)

)
×
∑
i

(
αj(t)− βj(t)eiφj)

) (A.3)

The two instantaneous photocurrents are then integrated over a time T ∼ 100 ns
and the difference between the two integrals (homodyne current) is measured:

I = 1
T

∫ T

0
dt
(
c∗(t)c(t)− d∗(t)d(t)

)
= 1
T

∫ T

0
dt
∑
i,j

(
α∗j (t)βi(t)eiφi + βj(t)αi(t)e−iφj

) (A.4)

We want now to prove that the relevant contributions to the multimode current
derive from the frequency-matched modes. For this purpose, let us write Equation
A.4 in the case i 6= j:

Iij(i 6=j) = 1
T

∫ T

0
dt
(
βi(t)α∗j (t)eiφi + αj(t)β∗i (t)e−iφi

)
= |αj||βi|

1
T

∫ T

0
dt cos

(
(ωj − ωi)t+ φi

) (A.5)

Since the integration time T ∼ 100 ns is much more longer than the oscillation
period of the integral 2π/∆ωij ∼ 1 ps, Iij tends to 0 if i 6= j. Therefore, no inter-
ference can be detected between signal and LO modes with different frequency.
This result confirms the fact (Equation 1.40) that the multimode homodyne re-
sponse can be expressed as the sum of single mode contributions. Indeed, no
interference occurs between modes with different frequencies.
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Appendix B

Potentiality of the set-up:
multimode homodyne with
shaped signal

In the measurements presented in Chapter 5 and 6 we have only explored the
possibility of shaping the frequency content of the local oscillator to address the
corresponding probe amplitude and phase dynamics. In all those cases the probe
was in a multimode state.

Here we present the mean value measurements performed by frequency-shaping
also the probe. This approach is potentially suitable to study whether exist some
side-bands dynamics in the phase and the amplitude of the homodyne current
when the probe-LO differential frequency matches a phonon mode. The employed
set-up for this study is presented in Figure B.1. The differential current dynamics
is monitored at each pump-probe delay as a function of the frequency mismatch
(∆ω) between the probe and the local oscillator.

Figure B.1: Set-up employed for time-resolved homodyne with signal (probe) and local
oscillator shaped.

The present study has been performed on α-quartz excited along the c-axis
and probed in parallel geometry. Amplitude and phase pump-probe dynamics of
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the differential current as a function of ∆ω are presented in Figure B.2(a),(b). In
this configuration, amplitude and phase of the homodyne current evolve in time
with a frequency that depends on ∆ω. In particular, when the local oscillator
and the probe are frequency-matched (i.e. ∆ω = 0) their pump-probe frequency
evolution tends to zero (Figure B.2(c),(d)).

(a) (b)

(c) (d)

Figure B.2: Quartz, parallel geometry: time-resolved homodyne with probe and lo-
cal oscillator shaped (Figure B.1). In (a) and (b) the amplitude and phase
quadrature pump-probe trends as a function of the frequency difference be-
tween signal and local oscillator (∆ω). In (c) and (d) the Fourier transforms
of the homodyne current as a function of LO-probe frequency difference
(∆ω).
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Riassunto

Lo sviluppo di tecnologie laser ultraveloci ha permesso di ampliare le prospet-
tive delle spettroscopie vibrazionali, permettendo di monitorare le dinamiche co-
erenti degli atomi su scale temporali che sono minori dei loro periodi di oscil-
lazione. L’approccio sperimentale tipico per questo scopo è la spettroscopia pump-
probe. In questa tecnica, un intenso impulso laser (pump) induce un’eccitazione
collettiva degli atomi del reticolo (fonone) la cui dinamica viene monitorata per
mezzo di un secondo impulso ultracorto (probe). La maggior parte delle tecniche
pump-probe misura l’intensità del probe per estrarre le informazioni sulla dinamica
transiente dell’eccitazione collettiva. Attraverso una misura di intensità integrata,
si possono estrarre informazioni sull’evoluzione delle posizioni medie degli atomi.
Tuttavia, in questa tipologia di esperimenti viene eliminata tutta l’informazione
presente nei gradi di libertà statisitci della radiazione di probe. Questi gradi di
libertà mappano le fluttuazioni degli atomi attorno alle loro posizioni reticolari
medie. Inoltre, questo approccio integrato non permette di monitorare come
l’interazione fotone-fonone influisce sulla risposta di fase del campo di probe.

In questa tesi, si è proposto un metodo capace di superare queste limitazioni
per mezzo di una tecnica interferometrica denominata Detezione omodina bilan-
ciata (BHD) che è stata accoppiata all’approccio pump-probe standard. Questa
tecnica è particolarmente efficace per studiare dinamiche di fase di un impulso
ottico e per ottenere le informazioni statistiche in esso contenute. Nello schema
ideale della BHD, l’impulso ottico che si vuole studiare viene fatto interagire in
un beam splitter bilanciato (50:50) con un campo classico denominato "oscillatore
locale", la cui fase è regolabile. Le proprietà medie e statistiche dell’impulso ottico
sono monitorate studiando come la differenza di intensità dei due campi uscenti
dal beam-splitter (corrente omodina) evolve in funzione della fase dell’oscillatore
locale. Questo perchè si può dimostrare che la corrente omodina è rappresenta-
tiva del campo ottico in indagine a tutti gli ordini. L’acquisizione in condizioni
bilanciate (attraverso un beam splitter 50:50) permette inoltre di essere sensibili
alle fluttuazioni intrinsiche del campo ottico in indagine (shot-noise), derivanti
dalla sua natura quantisitca.

La novità dell’approccio adottato in questa tesi risiede nel fatto che la de-
tezione omodina del campo di probe è stata relaizzata in uno schemamultimodo.
Con questo approccio innovativo, si è in grado di avere accesso in modo selettivo
alla statistica di fase e di ampiezza di ogni modo della radiazione di probe e di
monitorare la loro dinamica a seguito dell’eccitazione vibrazionale. Questa pos-
sibilità è stata sperimentalmente implementata modulando il contenuto spettrale
dell’oscillatore locale attraverso un modulatore ottico di impulsi ultracorti (pulse-
shaper). Misure risolte in energia sono fondamentali per caratterizzare risposte
non lineari, in cui l’interazione del probe con la materia causa una redistribuzione
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energetica all’interno della sua banda spettrale. Per ciò che concerne l’interazione
fotone-fonone, la principale interazione non lineare è lo "Scattering Raman Im-
pulsato e Stimolato" (ISRS) che accoppia i modi del probe che differiscono della
frequenza del fonone eccitato.

In questa tesi, la detezione omodina multimodo è stata applicata per studiare
come l’accoppiamento fotone-fonone modifica la dinamica media e la statistica
di ampiezza e fase di ogni modo del probe. I risultati sperimentali sono stati
comparati con le previsioni teoriche del modello presentato in [4], che è stato
adattato per descrivere anche dinamiche di fase. Inoltre, sfruttando le modu-
lazioni di ampiezza di fase indotte dal probe, si è stimata la sezione d’urto del
processo di interazione fotone-fonone.

L’omodina multimodo è stata preliminarmente testata sul quarzo, che rap-
presenta un sistema modello per lo studio di eccitazioni Raman in materiali
trasparenti. Ampiezza e fase mostrano due differenti risposte spettrali durante
la dinamica pump-probe. La fase di tutti i modi del probe oscilla alla frequenza
del fonone eccitato. Al contrario, le oscillazioni di ampiezza evolvono con una
fase che dipende dalla frequenza del probe. Quest’ultimo effetto causa uno shift
spettrale all’interno del probe che dipende dall’istante nel quale questo ha inter-
agito con il fonone. La modulazione di fase è dovuta ad una modulazione lineare
dell’indice di rifrazione determinata dalle oscillazioni del fonone. Al contrario, gli
shift di ampiezza spettrale sono dovuti all’interazione Raman del probe.

Dinamiche di fase e di ampiezza simili a quelle sopra indicate si sono rilevate
anche in sistemi più complessi, dove le eccitazioni vibrazionali di bassa energia
si accoppiano a transizioni orbitali. Questo accoppiamento è stato studiato nel
CuGeO3 regolando la frequenza del probe in modo che sia risonante con le ecci-
tazioni orbitali d-d. Il fatto che anche in questo caso le carateteristiche derivanti
dall’eccitazione fononica di bassa energia sono rilevabili nel campo di probe, di-
mostra l’adattabilità della tecnica allo studio di campi con pochi fotoni derivanti
da processi di assorbimento risonante.

Nell’ultima parte della tesi, è stata sfruttata la singolare potenzialità del nos-
tro set-up di monitorare in condizioni di shot-noise dinamiche statistiche di sin-
golo modo e multimodo. Questa possibilità è assicurata dall’acquisizione differen-
ziale dello schema della BHD. La sensibilità quantisitca del sistema di rivelazione
è stata testata attraverso un modello teorico [19] che permettesse di vedere come
effetti ottici dissipativi influenzano la rivelazione del rumore quantisitco. Si è
dimostrato che, anche in presenza di dissipatori ottici, la fluttuazioni classiche
possono essere eliminate ed il regime di shot-noise conseguentemente garantito.

L’obiettivo dell’analisi statistica è stato quello di monitorare modifiche della
statistica quantistica del probe fuori dall’equilibrio. Tramite il nostro set-up,
questa modulazione della statistica può essere risolta in frequenza. In questo
senso, si è studiata sia la variazione delle proprietà statistiche di un singolo modo,
che la modifica della distribuzione statistica congiunta dei modi del probe accop-
piati dal fonone. Ci si aspetta di ottenere da quest’ultima le informazioni rela-
tive alle correlazioni multimodo derivanti dal processo Raman. Tali correlazioni
derivano dal rumore quantisitco, visto che si lavora in condizioni di shot-noise.
Una possibile evidenza di correlazioni a due modi indotta dal processo Raman è
stata rilevata nel CuGeO3.

L’approccio innovativo presentato in questa tesi può essere in principio gen-
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eralizzato allo studio di qualsiasi eccitazione collettiva in sistemi complessi. In
particolare, può essere sfruttato per rivelare complesse dinamiche transienti cor-
relate alle fluttuazioni quantistiche degli atomi attorno alle loro posizioni. In
questa prospettiva, verrà implementata nel set-up la possibilità di lavorare con
due implusi di pompa. L’idea è quella di configurare la seconda pompa in modo
da indurre un’eccitazione atomica collettiva che sia in antifase rispetto a quella
indotta dalla prima pompa. In linea di principio, con questo approccio possi-
amo eliminare le informazioni contenute nelle oscillazioni medie ed avere accesso
unicamente alle fluttuazioni delle posizioni atomiche.
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