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Abstract

Coherent optical phonons in bulk solid systems play a crucial role in
understanding and designing light-matter interactions. Optical excita-
tion of coherent lattice vibration in transparent materials is commonly
described by impulsive stimulated Raman scattering (ISRS).
The central idea of the proposed Noise Correlation Spectroscopy (NCS)
is to use ISRS to imprint in ultrashort light pulses a statistical correla-
tion between different spectral components. A statistical analysis on a
repeated set of single shot measurements will provide the clear signature
of the light-matter interaction, while allowing to identify and discard cor-
relations intrinsic to the laser source. Spectral resolution is not limited
by the pulse bandwidth, but on the spectral profile of the introduced
noise. Temporal resolution of the experiment is solely determined by the
pulse duration.
This thesis is aimed at a proof of principle of the NCS performing mea-
surements on an α-quartz sample. A preliminary characterization of
the system properties is also achieved through pump&probe frequency-
resolved measurements and the development of theoretical models.

i





Contents

1 Introduction 1
Impulsive Stimulated Raman Scattering . . . . . . . . . 2
Noise Correlation Spectroscopy . . . . . . . . . . . . . . 3
Reading Guide . . . . . . . . . . . . . . . . . . . . . . . 4

2 Theory of Photon-Phonon Raman Interaction 7
2.1 Phonon-Photon Interaction

in the Classical Formalism . . . . . . . . . . . . . . . . . 8
2.1.1 Electric Field Driving Force . . . . . . . . . . . . 8
2.1.2 ISRS Pumping Process . . . . . . . . . . . . . . . 10
2.1.3 Polarizability Modulation Probing . . . . . . . . . 11
2.1.4 Phase-dependent ISRS of the Probe . . . . . . . . 14
2.1.5 Observable Spectral Effects . . . . . . . . . . . . 18

2.2 Quantum Formulation
of the Classical Model . . . . . . . . . . . . . . . . . . . 21
2.2.1 Quantization of the Interaction Energy . . . . . . 21
2.2.2 Interaction Effects on the

Quantum State of Radiation . . . . . . . . . . . . 23

3 Experimental Setup 27
3.1 Ultrashort Pulse Generation . . . . . . . . . . . . . . . . 28

3.1.1 Pulsed LASER Source . . . . . . . . . . . . . . . 28
3.1.2 Control and Characterisation

of Pulse Duration . . . . . . . . . . . . . . . . . . 29
3.2 Spectrometer . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Polarization Geometry Selectivity . . . . . . . . . . . . . 34

4 Mean-Value Pump&Probe Measurements on Quartz 35
4.1 Phonon Modes of Quartz . . . . . . . . . . . . . . . . . . 36
4.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Fourier Analysis . . . . . . . . . . . . . . . . . . . 42
4.2.2 Phonon-Lifetime Analysis . . . . . . . . . . . . . 44

4.3 Intensity Dependent Measurements . . . . . . . . . . . . 47

iii



4.4 Polarization Dependent Measurements . . . . . . . . . . 51
4.5 Chirp Dependent Measurements . . . . . . . . . . . . . . 55

5 Statistical Analysis of Correlation 61
5.1 Correlation coefficient 2-D map . . . . . . . . . . . . . . 62
5.2 Noise Analysis of the Reference Pulse . . . . . . . . . . . 64

5.2.1 Noise Simulation . . . . . . . . . . . . . . . . . . 64
5.2.2 Noise Measurements . . . . . . . . . . . . . . . . 67

5.3 Noise Correlation Spectroscopy . . . . . . . . . . . . . . 70
5.3.1 Simulation of ISRS Transmitted Intensity . . . . 71
5.3.2 Test Measurements on Quartz . . . . . . . . . . . 75

Conclusions 79

A Classical Impulsively Driven Oscillator 83

Riassunto 87

Bibliography 91

Ringraziamenti 95

iv







Chapter 1

Introduction

The development of femtosecond lasers brought entirely new possibili-
ties into the practice of time-resolved vibrational spectroscopy, enabling
to conduct observations on time scales that are not only shorter than
vibrational lifetimes or dephasing times, but shorter than individual vi-
brational oscillation periods.
The displacement of the atoms along the vibrational eigenmodes of a
crystal can be chaotic, due to thermal disorder, or can be characterized
by a precise correlation between all the atomic positions. When all the
atoms in a crystal oscillate in phase, they constitute a collective excita-
tion commonly dubbed coherent phonon.
The propagation of light pulses in solids is accompained by intense THz
lattice vibrations, showing a high degree of spatial and temporal co-
herence. It is therefore possible, in principle, to monitor materials and
molecules at various stages of vibrational distortion.

The most common experiment on coherent phonons is the pump&
probe one. It involves two ultrashort (femtoseconds/picoseconds long)
laser pulses. The stronger pump pulse creates a vibrational wave which
perturbs the weaker probe pulse that follows behind. The effects on the
probe as a function of the time-delay between the two pulses are mea-
sured. In this way the dependence on the phase of the vibration excited
by the pump is investigated.

Owing to the Heisenberg uncertainty principle, the ultrashort pulses
required for the pump&probe measurement are characterized by a broad
bandwidth. The wide spectrum of modes of the radiation is a funda-
mental requirement for the excitation to take place. In fact, the involved
process is the Impulsive Stimulated Raman Scattering, which results from
the coupling between two photons of different energy.
Moreover, the multimode nature of the pulses allows to improve the
pump&probe approach performing frequency resolved measurements [1].
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Impulsive Stimulated Raman Scattering

Impulsive Stimulated Raman Scattering (ISRS) is a process through
which excitation of coherent lattice or molecular vibrations take place
whenever a sufficiently short laser pulse passes through a Raman-active
solid or molecular liquid or gas. It is therefore a generally important
aspect of ultrashort-pulse interactions with matter.

A general Raman interaction is an inelastic scattering through which
a photon of frequency ω1 is annihilated and a new one is created at ω2

(fig. 1.1a). If ω2 − ω1 = Ω > 0 a phonon of frequency Ω is created and
the radiation loses energy (Stokes process). Conversely, if ω2 − ω1 = −Ω
a phonon is destroyed (Anti-Stokes process). Thus, Raman process con-
serves the photon number, but not their energy.

a)

𝜔1 𝜔2

} Ω

𝜔2 𝜔1

} Ω

Stokes Anti-Stokes

En
er
gy

b) 𝜔1𝜔2

Ω

𝜔

𝐼𝜔

Figure 1.1: Example of a pair of frequency components contributing to ISRS.
a) Relation between photon (ω1,ω2) and excitation (Ω) frequencies.
b) Distribution of the modes inside the pulse bandwidth.

The stimulated character of Raman processes pertains to the way the
resonance is created. The spontaneous (low-efficiency) case involves a
single off-resonance field. In the stimulated one, instead, the Raman
active mode is driven into resonance by two incident (off-resonance)
fields tuned such as their energy difference matches the vibrational one
(|ω2 − ω1| = Ω).
In the impulsive case, stimulated scattering occurs not through coupling
between two discrete frequencies, but among the continuous distribution
of Fourier components within the spectral bandwidth of the ultrashort
pulse. Since the pulse duration is less than the vibrational period, the
spectral bandwidth of the pulse necessarily exceeds the vibrational fre-
quency so that many frequency components are available to play the roles
of ω1 and ω2 (fig. 1.1b).

Due to the stimulated nature of ISRS, the scattered intensity of a sin-
gle mode ω is a function of the incident fields at ω±Ω. As a consequence
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of this, correlations between the frequencies differing by the vibrational
one are introduced. In this thesis we discuss the possibility to retrieve
spectroscopic information through the statistical analysis of these corre-
lations. Namely, we discuss the Noise Correlation Spectroscopy.

Noise Correlation Spectroscopy

Obtaining the Raman modes spectrum through a pump&probe mea-
surement requires a scan over the delay between the two pulses. The
probe transmittivity recorded is typically modulated at the vibrational
frequency, which is then Fourier transformed. A complete Raman spec-
trum can be collected at a fixed pump&probe delay performing a scan
in the energy difference between two distinct input fields (Coherent Ra-
man Scattering [2]). However, in this setting the energy resolution is
limited by their bandwidth. Consequently, this approach is unsuitable
for ultrafast time-resolved studies, because to the short pulse duration
correspond a broad bandwidth. In order to overcome this difficulty, we
propose to develop a Noise Correlation Spectroscopy (NCS). We do this
refering also to the work of other groups [3][4], which recently pursued a
very similar approach.
The ISRS introduces correlations between pairs of frequencies comprised
in the bandwidth of ultrashort light pulses. In particular, between those
whose energy difference resonate with a low-energy Raman mode. The
aim of NCS is to retrieve the information about the excitations of the
considered sample, performing a statistical analysis of these correlations.

The fundamental NCS data are sets of repeated single-shot frequency-
resolved intensity spectra. These are collected for the transmitted pulse
together with a copy of the relative incident one. The latter is particu-
larly useful to analyze the source correlations, so as to discriminate the
interaction features only.
For each couple of frequencies, the correlation coefficient is calculated
on the datasets. It quantifies how much the intensities of two modes are
dependent from each other, analyzing the consequences of a random fluc-
tuation on the considered mode onto the others. Actually, as highlighted
by the name, noise has a crucial role in NCS and it will be deeply dis-
cussed in this thesis. For the moment, we help the intuition reporting in
fig. 1.2 a schematic example of how a localized fluctuation in the incident
pulse allows to reveal the relative correlations in the transmitted one.

In this thesis we discuss the NCS from both theoretical and experi-
mental point of view. In order to describe the processes involved, in par-
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Figure 1.2: Working principle of Noise Correlation Spectroscopy.
A localized fluctuation in the incident pulse (grey) reflects in distinguishable
features at the frequencies correlated by the ISRS process in the transmitted
one (black). In particular in the present Stokes configuration, the positive
fluctuation stimulates depletion of the high frequency mode and emission in
the low frequency one.

ticular the ISRS, a classical and a quantum model of the photon-phonon
interaction is developed. Basing on the models numerical simulations of
the NCS results are implemented.
These are supported by experimental test measurements on α-quartz. A
preliminary characterization of the quartz sample is also performed with
pump&probe frequency-resolved measurements.

Reading Guide

The thesis is structured in the following way.

• In chapter 2 we model in a both classic and quantum formalism the
light-vibration excitation and interaction processes. The starting
point is the model of the driven harmonic oscillator. (A detailed
discussion of it is reported in appendix A)

• Chapter 3 is dedicated to the description of the experimental setup
specifically developed in the T-Rex laboratory at Elettra Sincrotrone
Trieste. It enables us to perform pump&probe frequency-resolved
single-shot measurements of both incident and transmitted pulse.

• The result of the characterization of the system through pump&probe
frequency-resolved measurements are presented in chapter 4.
In the first part, literature about the employed quartz sample is
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presented. Then, with reference to these informations, the exper-
imental results are reported and discussed. The Raman spectrum
of quartz is studied by means of Fourier Analysis. We focus on the
distinguishable spectral effects and to the symmetry properties of
the various observable modes. In the end, also a study as a function
of the pulse duration is performed.

• In chapter 5 we develop the NCS. Firstly, we define the statisti-
cal analysis employed. Then, numerical simulations of the NCS
results are implemented. Various typologies of intensity fluctua-
tions, including intrinsic source correlation, and the sample related
ISRS process are simulated. Results from the test measurements
on quartz are presented and compared to the simulations.

• In the end, we discuss the conclusions and the perspectives of this
novel method proposed.
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Chapter 2

Theory of Photon-Phonon
Raman Interaction

In our experiment ultrashort laser pulses interact with the phonons present
in an examined sample. The light pulses have a wide multimode fre-
quency spectrum. Two modes of the radiation can interact in the sample
if their energy difference matches one of the present phonons. Precisely,
this happens through Impulsive Stimulated Raman Scattering. It con-
sists in the distruction of a photon of frequency ω and the creation of one
of frequency ω±Ω, where Ω is the one of the distructed/created phonon.

Transmitted
Probe

Vibration
Free 

Evolution

System 
at G.S.

Pumping
Process

Probing
Process

Pump Incident
Probe

Time

Delay

tpump tprobe

Figure 2.1: Scheme of a standard pump&probe experiment in transmission
configuration.

We study the ISRS phonon-photon interaction perfoming a pump&
probe experiment (fig. 2.1). A first intense pulse, the pump, excites col-
lective atomic vibrations in the sample lattice, which initially were in the
ground state. The presence of these vibrational modes periodically mod-
ulates the sample structure and, consequently, also the effects relative
to light interaction. These are observed employing another (less intense)
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ultrashort pulse, the probe, which is measured in transmission. In par-
ticular, the time dependence is studied as a function of the controlled
delay between the pump and probe pulse.

In this chapter we build the theory useful to describe the interac-
tion of the ultrashort pulses with the phonons of the considered sample.
Firstly, we treat our system in a classical way. We describe the light-
matter interaction exploiting the driven harmonic oscillator formalism
and Maxwell equations.

In the end, we translate the discussion into a quantum language. It
is useful to understand the quantum nature of ISRS process.

2.1 Phonon-Photon Interaction
in the Classical Formalism

In this section, we describe our system by means of classical fields. The
vibrational modes are considered harmonic oscillators, which are driven
by the force exerted by the pulse electromagnetic waves. In 2.1.1, we
explain in detail the link between force and electric field.
The interaction of the electric field in the sample is described by the
polarization field. It is a function of the polarizability, which is modulated
by the vibration excited in the sample. Taking this into account in the
Maxwell formalism, we can finally evaluate the effects on the transmitted
pulses.

2.1.1 Electric Field Driving Force

The presence of the pulse electric field E induces a polarization field P
in the sample, which is ruled by the expression:

Pi = αijE
j (2.1)

where αij is the polarizability tensor.
The energy required to establish the polarization in the dipole approxi-
mation is

U int = −P · E = −αijE
jEi. (2.2)

The polarizability is a quantity sensitive to the presence of the phononic
excitations. We take account of this performing a perturbative expansion
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in the vibrational amplitude Q, around the equilibrium polarizability
α0ij. The resulting expression is

αij(Q
k) = α0ij +

( δα

δQk

)
|Qk=0

ij

Qk (2.3)

where only terms up to first order are considered.
The force is minus the spatial derivative of the potential energy.

Hence, using the two previous equation we write it as

Fk = −dU int

dQk
= (

δα

δQ
)0

ij,k

EiEj (2.4)

and so we obtain the force as a function of the generic electric field.
In our experiment, we employ ultrashort-multimode pulses. Their field
can be generally expressed as linear combination of plane waves. We
write a sum over the set of modes of the radiation of frequency ω

E(t, z) =
∑
ω

Eωe
−iω(t−n

c
z) + c.c. (2.5)

where a beam propagating along the z direction is considered. We sim-
plify the notation defining the variable t′ = t− n

c
z.

E(t′) =
∑
ω

Eωe
−iωt′ + c.c. (2.6)

Using the last relation, the force explicitly results

Fk(t
′) = (

δα

δQ
)0

ij,k

(
∑
ω

Ei
ωe

−iωt′ + c.c)(
∑
ω′

Ej
ω′e

−iω′t′ + c.c) (2.7)

Considering the driven harmonic oscillator, the most effective contribu-
tions are those resonant with the proper frequency. We take this in ac-
count posing the condition ω′ = ω±Ω, where Ω is the phonon frequency.
Applying it we are left with

Fk(t
′) = (

δα

δQ
)0

ij,k

∑
ω

(
Ei

ωE
j
ω−Ωe

−iΩt′ + Ei
ωE

j
ω+Ωe

+iΩt′ + c.c.
)

(2.8)

Considering real Fourier components for the electric field we can rewrite
the force.

Fk(t
′) = (

δα

δQ
)0

ij,k

(∑
ω

Ei
ω(E

j
ω−Ω + Ej

ω+Ω)
)
(e−iΩt′ + e+iΩt′)

= 2(
δα

δQ
)0

ij,k

(∑
ω

Ei
ω(E

j
ω−Ω + Ej

ω+Ω)
)
cos(Ωt′)

(2.9)
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From the last expression, we see that the resulting force is a sinusoidal
function. It has frequency Ω and we define its amplitude fk.

fk = 2(
δα

δQ
)0

ij,k

(∑
ω

Ei
ω(E

j
ω−Ω + Ej

ω+Ω)
)

(2.10)

2.1.2 ISRS Pumping Process

The ultrashort pulses employed have a wide spectrum of frequencies.
Among them, the electric fields, whose frequency difference matches the
phonon one, couple themselves and generate a force oscillating in reso-
nance with the vibrational mode. Namely, this is the ISRS process.
The pump process can be described as the effect on an harmonic oscilla-
tor, initially at rest, resonantly driven at the phonon frequency Ω by the
pump pulse.

The differential equation ruling the process is

Q̈(t′) + Ω2Q(t′) = F(t′) (2.11)

where we used the combined temporal and spatial variable t′ = t− n
c
z.

In Appendix A, we find the solution which describes our configuration.
We consider a system with proper frequency Ω and initial amplitude Q0.
A sinusoidal force (frequency Ω, amplitude f ) is applied for a short time
interval τ to it. The obtained expression for the oscillator amplitude
after the interaction is

Q(t′) =

√
(Q0 −

τf
2Ω

)2 +
Q0f τ
Ω

(
1− sin(∆ϕ)

)
cos

(
Ωt′ + Φ

)
(2.12)

where ∆ϕ is the phase difference between initial oscillation Q(t′) and
force F(t′), Φ is the new phase acquired by the phonon after the interac-
tion. Its explicit expression is reported in the appendix.
In our case, for the description of the pump-photon interactions the spe-
cific quantities are{

Q0k = 0

fpump
k = 2( δα

δQ
)0

ij,k

(∑
ω E

i
ω(E

j
ω−Ω + Ej

ω+Ω)
) (2.13)
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where we used the solution of eq. 2.10.
As a consequence of this, the effect of interaction on the phonon oscilla-
tion is

Qk(t
′) =

τfpump
k

2Ω
sin(Ωt′) (2.14)

and we underline that we set a sine function, because the instant of
maximum cosine force is the one when to the vibration, initially at rest,
is imparted the maximum momentum. Therefore, we can describe this
with the relation

∆ϕpump−vib = ϕpump − ϕvib = π/2. (2.15)

In order to describe the dynamical response of the system we turn
to eq. 2.3, which states the polarizability dependence on the vibrational
amplitude. Inserting there the expression obtained for Q, we get the
explicit modulation of polarizability after the pump process.

αij(t
′) = α0ij + (

δα

δQ
)0

ij,k

Qk(t′)

= α0ij + (
δα

δQ
)0

ij,k

τfk
pump

2Ω
sin(Ωt′)

(2.16)

We conclude that the excitation of a vibrational mode results in an os-
cillation of the polarizability around the equilibrium value α0, at the
phonon frequency Ω. Inserting the complete expression for the force am-
plitude, we can obtain explicitly the dependence on the pump electric
field components

αij(t
′) = α0ij +

τ

Ω
(
δα

δQ
)0

ij,k

(
δα

δQ
)0

k

lm,

(∑
ω

El
ω(E

m
ω−Ω + Em

ω+Ω)
)
sin(Ωt′)

= α0ij +
τ

Ω
(
δα

δQ
)20

ij,lm

(∑
ω

El
ω(E

m
ω−Ω + Em

ω+Ω)
)
sin(Ωt′)

(2.17)

where we use the pump electric field written as in eq. 2.6 and introduce
the notation ( δα

δQ
)20ij,lm

for the resulting fourth rank non-linear polariz-
ability tensor.

2.1.3 Polarizability Modulation Probing

In the previous discussion, we have formalized the pump process. We
have seen that vibrational modes are excited by the pump pulse.
The vibration displaces the ions in the lattice around their equilibrium
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position. Owing to this, a modulation in the polarizability is present.
We explicitly quantified its temporal and spatial dependence in eq. 2.16.
In a pump&probe experiment we test these properties of the perturbed
sample with another light-pulse, which impinges it at a controlled delay
with respect to the pump. We detect the traces of the interaction process
in the transmitted intensity spectrum.

In the following we analytically derive the spectral effects on the
probe, which are the result of the pulse propagation through our pumped
sample. We do it using Maxwell equations for dielectric materials. In
particular we explicit the polarization field dependence on the modulat-
ing polarizability.

We consider the first, third and fourth Maxwell’s equations:⎧⎪⎨⎪⎩
∇ · E = ρ

ϵ0
(I)

∇× E = −∂B
∂t

(III)
∇× B = µ0J + 1

c2
∂E
∂t

(IV)

(2.18)

where E, B are electric and magnetic field of the probe pulse, ρ, J charge
and current in the sample.
We perform the rotor of the third equation, insert the fourth and simplify
the laplacian considering the system neutral (ρ = 0).

∇×∇× E = ∇(∇ · E)−∇2E = − ∂

∂t
(∇× B) =

= −∇2E = −µ0
∂J
∂t

− 1

c2
∂2E
∂t2

(2.19)

The current is function of the polarization field P. Thus, we consider the
relations J = ∂P

∂t
and P = αE, where α is the polarizability.

∇2E = µ0
∂2P
∂t2

+
1

c2
∂2E
∂t2

=

= µ0
∂2αE
∂t2

+
1

c2
∂2E
∂t2

(2.20)

Keeping in mind the perturbative expansion of the polarizability
(eq. 2.3, for simplicity we consider only the scalar formulation),

α(Q) = α0 + (
δα

δQ
)0Q (2.21)

we obtain

∇2E = µ0α0
∂2E
∂t2

+
1

c2
∂2E
∂t2

+ µ0(
δα

δQ
)0
∂2QE
∂t2

. (2.22)
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We collect together the two terms with the second-order derivative of
the electric field. We rewrite the sum of their coefficients considering the
relations for polarizability α0 = ϵ0χ and refractive index n =

√
1 + χ,

where χ is the dielectric susceptibility.

1

c2
+ µ0α0 =

1

c2
(1 +

α0

ϵ0
) =

1

c2
(1 + χ) =

n2

c2
(2.23)

Taking this into account, we get the propagation equation in the form

∇2E(t′)− n2

c2
∂2E(t′)

∂t2
= µ0(

δα

δQ
)0
∂2Q(t′)E(t′)

∂t2
(2.24)

where the typical equation for linear dielectrics is corrected by the term
on the right, which introduces the non-linear effects.
In our specific case, E and Q are both functions of the variable t′ = t− n

c
z.

Moreover, the probe pulse impinges with variable delay with respect to
the starting time of the phonon oscillation. We consider this explicitly
adding the term ∆t = tprobe − tpump.

∇2E(t′)− n2

c2
∂2E(t′)

∂t2
= µ0(

δα

δQ
)0
∂2Q(t′ +∆t)E(t′)

∂t2
(2.25)

We now start to deeply analyze the last equation in order to under-
stand the effects it describes.
Firstly, we evaluate the second-order derivative on the right side.

∇2E − n2

c2
∂2E
∂t2

= µ0(
δα

δQ
)0

(
Q
∂2E
∂t2

+
∂Q

∂t

∂E
∂t

+ E
∂2Q

∂t2

)
(2.26)

Analogously as done before, we collect the terms with the second-order
derivative of the electric field. In this way we define a new refraction
index ñ:

ñ2(∆t) = n2 + c2µ0(
δα

δQ
)0Q(∆t) (2.27)

which oscillates in time around the equilibrium value, following the phonon
modulation. In the last expression, we assumed a reference frame in
which the pump excitation starts at t′ = 0.
The refraction index rules through Fresnel equations the transmittivity
and reflectivity of the material. In case of normal incidence, the trans-
mittivity t (ratio between transmitted and incident field) is:

t(∆t) =
⏐⏐⏐ET

EI

⏐⏐⏐ = 2

1 + ñ(∆t)
(2.28)
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Therefore, controlling the pump&probe delay ∆t, the probe pulse is sen-
sitive to different refractive conditions. The result is an oscillation of the
transmitted intensity in phase with the vibrational amplitude, around the
unperturbed value. We show it more clearly considering that ñ−n << n
and performing a Taylor expansion of the transmittivity around n.

|ET | = |EI | 2

1 + n

[
1− c2µ0

2n(1 + n)
(
δα

δQ
)0Q(∆t)

]
(2.29)

Hence, we see that a correction is introduced to the linear configuration.
In particular, if the equlibrium refractive index is regular in the pulse
spectral region, all the modes of the radiation behave in a similar way.
Furthermore, we insert the explicit expression for the amplitude in order
to show the power dependence on the probe and pump incident field.

|ET | = |EI | 2

1 + n

[
1− ∝

(∑
ω

Epump
ω (Epump

ω−Ω + Epump
ω+Ω )

)
sin(Ω∆t)

]
(2.30)

In the end, we collect all the constants in a factor γ and report the ex-
pression for the transmitted intensity IT at the pump-probe delay ∆t, as
a function of probe and pump field. We define the transmitted intensity
at equilibrium IT (0) and neglect the second order in γ.

IT (∆t) = IT (0)− γ|EI |2
(∑

ω

Epump
ω (Epump

ω−Ω + Epump
ω+Ω )

)
sin (Ω∆t) (2.31)

We observe that the transmitted intensity modulation is linear in both
the pump and probe intensity.

2.1.4 Phase-dependent ISRS of the Probe

The modulation in the refractive properties of the material is not the
only effect which modifies the trasmitted pulse intensity spectrum.
Developing the driven oscillator formalism, we obtained the solution for
the vibrational amplitude (eq. 2.12).

Q(t′) =

√
(Q0 −

τf
2Ω

)2 +
Q0f τ
Ω

(
1− sin(∆ϕ)

)
cos

(
Ωt′ + Φ

)
(2.32)

We described the pump process setting the condition of null initial am-
plitude Q0. Now, we can extend this approach to the probe case. We set
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as initial amplitude the one resulting from the pump excitation. Then,
we consider the force relative to the probe pulse.
In this configuration, the initial oscillation has a definite phase relation.
In addition, the force phase depends on the field one. Hence, varying the
delay between pump and probe permits to control the phase ∆ϕ between
pump phonon and probe force. As a function of ∆ϕ, the vibrational am-
plitude can be resonantly increased or dumped. The involved process is
again the ISRS, whose cross-section is resonanlty amplified by the pres-
ence of the excited phonon.
In particular, the process is most effective when |∆ϕ| = π/2. Actually,
this can be intuitively understood in this terms. When the force is in
phase with the velocity (∆ϕ = −π/2) the first is always applied in the di-
rection of motion and so the oscillation rises. Conversely, when in phase
opposition (∆ϕ = π/2) it dumps it. Between this two situations it has
no effect, because half the period pushes in the direction of motion and
half in the other one.

As regards the transmitted pulse, in this specific conditions we expect
it to change its spectral shape. In fact, when the vibration is amplified the
pulse leaves energy in the sample. Conversely, to the phonon dumping
corresponds an energy gain. Considering that the photons number is
constant, this should result in a red/blue-shift.
We give an analytical description of the resonant ISRS effects starting
again from eq. 2.25.

∇2E(t′)− n2

c2
∂2E(t′)

∂t2
= µ0(

δα

δQ
)0
∂2Q(t′ +∆t)E(t′)

∂t2
(2.33)

The dependence on the variable t′ and the pump-probe delay ∆t are
explicitly reported.
In the previous discussion, we have seen that evaluating the term on the
right hand side is useful to define an effective refractive index ñ, which
describes a phonon dependent transmittivity modulation.
Now, we solve the differential equation in order to describe the effects of
the propagation through the sample.
Considering the variable t′ = t − z n

c
, the following differential relations

are valid: {
∂f(t′)
∂t = ∂f(t′)

∂t′

∂2f(t′)
∂z2 = −n2

c2
∂2f(t′)
∂t2 = −n

c
∂2f(t′)
∂z∂t′

. (2.34)
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Properly substituting these in the propagation equation, we obtain

−2
n

c

∂2E(t′)

∂z∂t′
= µ0(

δα

δQ
)0
∂2Q(t′ +∆t)E(t′)

∂t′2
(2.35)

The result can be easily integrated in space, considering a sample with
thickness z. We use the initial conditions E(t′, z = 0) = EI(t′).

−2
n

c

(∂E(t′, z)

∂t′
− ∂EI(t′)

∂t′

)
= zµ0(

δα

δQ
)0
∂2Q(t′ +∆t)E(t′)

∂t′2
(2.36)

We now integrate over t′, which depends also on the spatial dimension
and accounts for the light propagation time through the sample. We
remind that the polarizability modulation with respect to the equilibrium
value (( δα

δQ
)0Q) is a small quantity. Therefore, we can consider a tiny

modification of the electric field and approximate it equal to the incident
one (EI) inside the r.h.s integral. In addition, we set the initial condition
E(t′ = 0) = EI(t′).

E(t′)− EI(t′) = −czµ0

2n
(
δα

δQ
)0
∂Q(t′ +∆t)EI(t′)

∂t′
(2.37)

In order to understand the field spectral effects due to the interaction,
we study its frequency components. Both the incident and transmitted
field can be expressed with a Fourier expansion.

E(t) =

∫
dωEωe

iωt (2.38)

We remind that the explicit dependence of the vibrational amplitude is
a sine function (eq. 2.14).

Q(t′ +∆t) = Q0 sin(Ω(t
′ +∆t)) (2.39)

We insert these and start to solve the derivative in the r.h.s. of eq. 2.37.

∂Q(t′ +∆t)EI(t′)

∂t′
=

= Q0

∫
dωEI

ω

(
sin(Ω(t′ +∆t))

∂eiωt
′

∂t′
+

∂ sin(Ω(t′ +∆t))

∂t′
eiωt

′
)
=

= Q0

∫
dωEI

ω

(
iω sin(Ω(t′ +∆t)) + Ω cos(Ω(t′ +∆t))

)
eiωt

′
=

=
Q0

2

∫
dωEI

ω

(
(ω + Ω)ei(ω+Ω)t′eiΩ∆t − (ω − Ω)ei(ω−Ω)t′e−iΩ∆t

)
(2.40)
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We can explicitly see the dependence on the ISRS matching frequencies
ω ± Ω. We can riformulate the last expression changing the integration
variable from ω to ω ± Ω.

∂Q(t′ +∆t)EI(t′)

∂t′
=

=
Q0

2

∫
dωω

(
EI

ω−Ωe
iΩ∆t − EI

ω+Ωe
−iΩ∆t

)
eiωt

′
(2.41)

In the end, Fourier expanding also the first and second term in eq. 2.37,
we obtain an equation for the frequency spectrum of the transmitted field.

Eω(∆t) = EI
ω +

czµ0

4n
(
δα

δQ
)0Q0ω

(
EI

ω+Ωe
−iΩ∆t − EI

ω−Ωe
iΩ∆t

)
(2.42)

We notice the dependence from the fields at ±Ω typical of ISRS. In
particular the contributions have opposite sign. This implies a shift in
the spectral distribution from the high frequencies to the low ones, and
vice versa.
From the last expression we can evaluate the measured intensity spec-
trum. We define the coupling constant kΩ = czµ0

2ñ
( δα
δQ
)0Q0ω and calculate

the squared modulus.

I(ω,∆t) = II(ω) + kΩ cos(Ω∆t)EI
ω[E

I
ω+Ω − EI

ω−Ω] (2.43)

We observe that the signal oscillates at the phonon frequency as a func-
tion of the pump&probe delay. The quantity Ω∆t, can also be considered
as the phase difference between the forces exerted respectively by probe
and pump, ∆ϕprobe−pump. Taking into account the vibration phase and
eq. 2.15, we can write

Ω∆t = ∆ϕprobe−pump = ϕprobe − ϕvib + ϕvib − ϕpump =

= ∆ϕprobe−vib −∆ϕpump−vib =

= −∆ϕvib−force − π/2 = −∆ϕ− π/2

(2.44)

where we use the notation ∆ϕvib−force = ∆ϕ in order to be consistent
with the one from eq. 2.32.
Consequently, in agreement with the driven oscillator model, the pulse is
red-shifted when the phase between vibration and force is ∆ϕ = −π/2,
and blue-shifted when ∆ϕ = π/2.

In the end, we observe the intensity modulation power dependence
on pump and probe field. In order to model it we explicit the pump
dependence inside Q0. All the constant factors are collected together in
the γ′ factor.

I(ω,∆t)− II(ω) =

+ γ′ cos(Ω∆t)
(∑

ω′

Epump
ω′ (Epump

ω′−Ω + Epump
ω′+Ω)

)
EI

ω[E
I
ω+Ω − EI

ω−Ω]
(2.45)
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We see that in both cases the intensity result from the second power of
the electric field, explaining the linear dependence on both pump and
probe intensity.

2.1.5 Observable Spectral Effects

In this part, we summarize the results suggested by the developed clas-
sical formalism. In particular, we focus on the features detectable in the
measured transmitted probe pulse.
We have seen that the pump pulse excites a coherent oscillation of the lat-
tice through ISRS. Although we do not detect it, the transmitted pump
pulse is red-shifted because of the energy lost in the sample1 .
The presence of the vibrational mode modulates, at its proper frequency,
the polarizability of the material. We test it with a probe pulse. It im-
pinges at a controlled delay with respect to the pump, in order to be
sensitive to the phase of the coherent phonon.

From the theory previously discussed, we expect two main effects.
The first (2.1.3) is a transmittivity modulation due to the oscillation
of the refractive index. Actually, it is a function of the polarizability.
As a consequence of this, the transmittivity changes. We report the final
expression for the transmitted intensity as a function of the pump&probe
delay.

IT (∆t) = IT (0)− γ|EI |2
(∑

ω

Epump
ω (Epump

ω−Ω + Epump
ω+Ω )

)
sin (Ω∆t) (2.46)

The transmitted intensity oscillates at the phonon frequency Ω, around
its equilibrium value IT (0). When in phase, Ω∆t = π/2, less light is
transmitted and more reflected. Conversely, when Ω∆t = −π/2 the
transmitted light increases. Furthermore, we underline the effect is the
same for the whole spectrum.
The modulation is linear in the incident probe and pump (approximately)
intensity.

The second probing process is characteristic of a multimode pulse,
because it is a result of the ISRS, which consists in the interaction be-
tween photons of different frequency. This typology of interaction of the
probe pulse can resonantly create or destroy phonons in the sample. This

1The spectral shifts of pump and probe pulses are both due to ISRS. However, we
underline that they are not exactely identical in nature. Actually, the pump acts on
the thermal ground state of the sample, the probe on a coherent excitation which has
a definite vibrational phase.
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results, respectively, in an energy loss or gain in the pulse. We report the
transmitted intensity spectrum depending on the pump&probe delay.

I(ω,∆t)− II(ω) =

+ γ′
(∑

ω′

Epump
ω′ (Epump

ω′−Ω + Epump
ω′+Ω)

)
EI

ω[E
I
ω+Ω − EI

ω−Ω] cos(Ω∆t) (2.47)

When Ω∆t = 0 the phonon velocity is in phase with the force resulting
from the probe field. The Stokes process is enhanced: phonons are cre-
ated and the probe pulse is red-shifted. Conversely, with Ω∆t = +π the
Anti-Stokes process prevails and the probe spectrum is blue-shifted.

Incident
pulses

Oscillation
Amplitude

Transmitted
pulses

Time

Pump Probe

Figure 2.2: Summary of the interaction effects in the transmitted pulses.
The pump pulse excites a coherent vibration (described as an harmonic oscil-
lator) and it is red-shifted. The probe pulse is sensitive to the phase of the
coherent phonon. It is sensitive to a modulation of the transmittivity. It can
also be red/blue-shifted if it changes the vibrational energy owing to the ISRS.

In fig. 2.2 we sum up the relevant configuration characterizing the pump&
probe measurement.
The relevant point to keep in mind is the fact that the refraction mod-
ulation and the resonant ISRS effect have different spectral feature and
are π/2 shifted one to another.

We underline that the fourth-rank polarizability tensor ( δα
δQ
)20ij,lm

, in-
cluded in the factors γ and γ′ can have peculiar symmetry properties.
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These are useful to distinguish between the two probing effects.
Indeed, the ISRS hardly changes the photon polarization. It is a stim-
ulated process, and so the new photons are not likely to be created in
modes initially not occupied. Conversely, due to the refractive effect,
the signal can be moved to the other polarization. This results from the
anisotropic modulation of polarizability, which follows from the symme-
try properties of the vibrational mode. In such a case, the refractive
effects can be selected working with polarizers and analyzers to control
the incident and output orientation.
We will discuss these issues in chapter 4, where we present the symmetry
properties relative to the employed α-quartz sample and perform polar-
ization selective measurements.
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2.2 Quantum Formulation
of the Classical Model

In this section, we riformulate the discussion previously developed, trans-
lating from the classical to a more fundamental quantum language. We
quantize the classical fields in terms of operators. The system Hamilto-
nian is defined and applied to the quantum states in order to describe
the interaction effects.
This quantum model is the result of a collaboration with the theoretical
group of prof. F. Benatti [29].

2.2.1 Quantization of the Interaction Energy

The starting point is the classical interaction energy U int as a function of
polarizability and electric field, resulting from eq. 2.2, 2.3. The explicit
polarizability dependence as a function of the vibrational displacement
Q is shown.

U int = −
(
α0ij +

( δα

δQk

)
|Qk=0

ij

Qk
)
EiEj (2.48)

We can summarize the translation into a quantum language as the
replacement of classical quantities with operators:

U int → Ĥint,

E → Ê,

Q → Q̂.

(2.49)

We want to obtain an expression for the interaction Hamiltonian Ĥint

as a function of the operators electric field, Ê, and phonon position, Q̂.
The quantization of radiation and vibration fields is performed in terms
of bosonic creation and annihilation operators.

The electromagnetic field is considered as a collection of harmonic
oscillators, each representing a mode of the radiation. A mode of fre-
quency ω and polarization λ, is described using the operators â†ω,λ and
âω,λ, respectively creation and destruction. They obey the following com-
mutation relation: [

âω,λ, â
†
ω′,λ′

]
= δω,ω′δλ,λ′ (2.50)

The number of photons present in a mode is N̂ω,λ = â†ω,λâω,λ.
The total energy of the radiation is Ĥ =

∑
λ

∑
ω ωâ

†
ω,λâω,λ.
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The expression for the electric field operator, propagating with k⃗ mo-
mentum in the λ polarization is

Êλ(t, z) = i
∑
ω

√
ω

2V ϵ0

(
âω,λe

−i(ωt−k⃗·r⃗) − â†ω,λe
i(ωt−k⃗·r⃗)), (2.51)

where V is the considered volume.

Analogously, we quantize also the vibrational field. The creation and
annhilation operators for phonons are b̂†Ω,u⃗ and b̂Ω,u⃗, where Ω is the fre-
quency and u⃗ is the normal mode coordinate. They follow the commu-
tation relation: [

b̂Ω,u⃗, b̂
†
Ω′,u⃗′

]
= δΩ,Ω′δu⃗,u⃗′ (2.52)

The number of quanta of excitation present in a mode is N̂Ω,u⃗ = b̂†Ω,u⃗b̂Ω,u⃗.
The vibrational energy of the mode is Ĥ = Ωb̂†Ω,u⃗b̂Ω,u⃗.
The expression for the vibration displacement operator is

Q̂(t, r⃗) =
1√

mΩVS

(
b̂Ω,u⃗e

−i(Ωt−u⃗·r⃗) + b̂†Ω,u⃗e
i(Ωt−u⃗·r⃗) ) (2.53)

while the momentum is defined as

P̂ (t, r⃗) = i

√
mΩ

VS

(
b̂†Ω,u⃗e

i(Ωt−u⃗·r⃗) − b̂Ω,u⃗e
−i(Ωt−u⃗·r⃗)) (2.54)

where VS is the sample volume and m the reduced mass of the mode. We
underline that to consider the whole sample volume is a good approxima-
tion for vibrational modes with a long correlation lenght, i.e. the quartz
we employ in the experimental measurements.

Replacing the above operators in eq. 2.48 we obtain the interaction
Hamiltonian.

Ĥint =

∫
VS

dr⃗
∑
λ,λ′

[
α0λλ′ +

( δα

δQ

)
|0

λλ′

1√
mΩVS

(
b̂Ω,u⃗e

−i(Ωt−u⃗·r⃗) + h.c.
)]
×

×
∑
ω,ω′

√
ωω′

2V ϵ0

(
âω,λe

−i(ωt−k⃗·r⃗) − h.c.
)(
âω′,λ′e−i(ω′t−k⃗′·r⃗) − h.c.

)
(2.55)

The resulting Hamiltonian can be separated in an equilibrium, Ĥ0, and
time-dependent Raman one, ĤR.
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Among the many resulting terms, we retain only the one that survive
integrated over many periods, namely we perform the “rotating wave ap-
proximation”. In particular, for the Raman term corresponds to consider
as relevant the ones oscillating at resonance with the vibration and insert
the condition δ(ω − ω′ ±Ω). For the momentum conservation we obtain
δ(k⃗− k⃗′ ± u⃗). However, in our configuration the vibrational frequency is
much smaller than the one of the involved electric fields, Ω << ω, so we
can set u⃗ ≃ 0 and hence δ(k⃗ − k⃗′).
Taking all this into account, we can write the Hamiltonian in the follow-
ing way.

Ĥint = Ĥ0 + ĤR

Ĥ0 = − VS

V ϵ0

∑
ω

∑
λ,λ′

α0λλ′ â†ω,λâω,λ′

ĤR = −
√
VS

V ϵ0
√
mΩ

∑
ω

∑
λ,λ′

( δα

δQ

)
|0

λλ′
â†ω,λâω+Ω,λ′ b̂†Ω,u⃗ + h.c.

(2.56)

The term Ĥ0 is responsible for the equilibrium refractive effects. For
instance, off-axis terms in the polarizability tensor are responsible for the
rotation of incident polarization: photons are moved from λ to λ′, or vice
versa.
In the Raman Hamiltonian we can clearly see the Stokes and Anti-Stokes
nature. Photons are destroyed by â at ω and created by â† at ω ± Ω,
together with the emission (b̂†)/annihilation (b̂) of a phonon, respectively.

2.2.2 Interaction Effects on the
Quantum State of Radiation

In the following, we describe the effects of the Raman interaction Hamil-
tonian in the measured transmitted probe pulse. In order to do it we
define the quantum state of the incident pulses. We then let the opera-
tors evolve in the interaction picture. In the end we apply them to the
states to evaluate the interaction outcome.

We employ the formalism of coherent states of the radiation. They
are eigenstates of the creation operator.

âω,λ |αω,λ⟩ := αω,λ |αω,λ⟩ (2.57)

The relative eigenvalue α is proportional to the mean value of the electric
field calculated on such a state.

⟨Êω,λ⟩ ∝ αω,λ (2.58)
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Therefore we can describe the total electric field of a multimode pulse
considering the set of coherent states and their eigenvalues.

The intensity of a single mode results from the evaluation of the op-
erator N̂ = â†ω,λâω,λ on the coherent state. To evaluate the modification
in the spectral shape due to the Raman process, we have to calculate
this quantity after the interaction.
We work in the interaction picture. This means that we let the opera-
tors evolve with the Raman interaction Hamiltonian, while the states are
mantained constant. The evoluted creation operator is:

Âω,λ := eiτĤR âω,λ e
−iτĤR . (2.59)

Considering that the portion of scattered photons is very small with
respect to the unperturbed ones (∼ 10−7), we can perform an expansion
of the exponential term up to first order. The new expression is:

Âω,λ = âω,λ − i τ
[
âω,λ , ĤR

]
(2.60)

Starting from the evoluted creation and destruction operators, we can
obtain the new number operators.

N̂ int
ω,λ = â†ω,λâλj − iτ â†ω,λ

[
âω,λ , ĤR

]
+ iτ

[
â†ω,λ , ĤR

]
âω,λ (2.61)

The explicit expression of the commutator is

[
âω,λ , ĤR

]
= −

√
VS

V ϵ0
√
mΩ

( δα

δQ

)
|0

λλ′

(
âω−Ω,λ′ b̂Ω,u⃗ + âω+Ω,λ′ b̂†Ω,u⃗

)
. (2.62)

Evaluating the number operators on the coherent states we get

⟨N̂ int
ω,λ⟩ = |αω,λ|2+

+
iτ
√
VS

V ϵ0
√
mΩ

( δα

δQ

)
|0

λλ′
αω,λ′

(
αω+Ω,λ′ − αω−Ω,λ′

)
⟨b̂†Ω,u⃗ − b̂Ω,u⃗⟩

= ⟨N̂ω,λ⟩+
τVS

V ϵ0mΩ

( δα

δQ

)
|0

λλ′
αω,λ′

(
αω+Ω,λ′ − αω−Ω,λ′

)
⟨P̂ ⟩ .

(2.63)

We see that the modulation in the photon number goes like the deriva-
tive of the incident pulse intensity and depends on the phonon momen-
tum. Therefore, it is modulated at the vibrational frequency and it is in
agreement with the driven oscillator model. When in phase with the mo-
mentum the vibrational amplitude is increased, otherwise, out of phase
it is dumped. This result in alterating red/blue-shift in the probe pulse,
corresponding respectively to Stokes and Anti-Stokes scattering.
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Despite the same involved ISRS process and similar resulting effects, we
remark that this formalism does not describe the pump excitation. Actu-
ally, while the probe couples to a coherent excitation which has a definite
vibrational phase and momentum, the pump acts on the thermal ground
state of the sample. A detailed tractation of this point is developed in
[29].

In conclusion, the present quantum model has been implemented in
order to describe interaction in the classical limit. With respect to a
purely classic model, it can be useful to predict or explain peculiar quan-
tum features.
Although, this Hamiltonian fails in describing the non resonant transmit-
tivity modulation in phase with the phonon position. Actually, this effect
is not relative to the dipole term considered. The part of Hamiltonian
describing quantistically a modification in the refractive index has not
been modeled by us yet. For the time being, we include it as a boundary
condition on the incident radiation.
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Chapter 3

Experimental Setup

The setup is designed to perform pump&probe single-shot frequency-
resolved measurements. These typology of experiment requires intense
ultrashort light pulses, which are generated by a chirped pulse amplifi-
cation laser system. The possibility to control the pulse duration and
polarization is also implemented.

Reference

Probe

Pump

Laser system
(5 kHz)

Transmission
gratings

Delay
line

SiO2

Photodiodes
arrays

Polarizer

Polarizer

Polarizer
(removable)

Figure 3.1: Scheme of the experimental setup.
A detailed description is reported in the text.

The scheme of the experimental setup is shown in fig. 3.1. The laser
output is splitted in order to obtain the pump and probe beams. The
first excites the sample, the latter, retarded by means of a delay line,
tests the target at a controlled time with respect to the first stimulation.
In this way, the transmitted probe signal carries informations on the
time-evolution of the system.

A peculiarity of our setting is the introduction of a reference pulse
copy of the probe, which is useful to distinguish in the transmitted signal
only the relevant information about the interaction processes with the
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sample.
Single-shot wavelenght-resolved spectra of both probe beams are mea-
sured through a transmission spectrometer. The spectrometer consists
of a grating which diffracts the beam on the detector, which is a linear
array provided with 256 photodiodes. A trigger properly regulates the
acquisition at the laser repetition rate.

The pulse duration that can be tuned exploiting the dispersive com-
pressor inside the laser system is measured by an intensity autocorrelator.

Half-waveplate and analyzer can be added to select the incident and
signal polarizations. Polarization dependent studies are important in
order to discriminate the symmetry properties of the phonon modes.

3.1 Ultrashort Pulse Generation
In this section, we present the instrumental apparatus used in our exper-
iment for the generation of the ultrashort laser pulses. The pulse length
can be tuned from less than few picoseconds, down to tens of femtosec-
onds.
They are initially produced by an oscillator and subsequently amplified.
A complete scheme of the laser system is presented in fig 3.2.
Furthemore, exploiting the possibility to regulate the spread in time
(chirp) of the different frequencies inside the multimode pulse, we can
control the pulse duration. As a consequence of this, a study of the pulse
lifetime dependence can be perfomed.

3.1.1 Pulsed LASER Source

The ultrashort laser pulses are produced by a Kerr-lens Mode-Locked
Ti:Sapphire oscillator (VITARA-T), pumped by a continuous diode laser
(VERDI). The oscillator frequency spectrum is approximately gaussian.
It is centered around 800 nm and has a width of about 50 nm. The
output power is 6 nJ/pulse and it is increased through a Chirped Pulse
Amplification scheme (LEGEND ELITE DUO).

The amplification takes place because of stimulated emission in a
Ti:Sa crystal. There, population inversion is obtained with a pulsed
pump laser (REVOLUTION). The pump repetition rate sets the one of
the output (5 kHz).
In order to avoid damages and non-linear effects due to the very high in-
tensity, the ultrashort seed pulse coming from the oscillator is temporally
stretched. After the amplification stage, the pulse duration is shortened
again. This is achieved passing through the dispersive compressor, which
works in a reversed way with respect to the stretcher.
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Pump
VERDI

Oscillator
VITARA-T

Pulsed Pump
REVOLUTION

Chirped Pulse Amplificator

LEGEND ELITE DUO

λ = 532 nm
Continuous
Power = 5 W

λ = 800 nm
80 MHz
Width = 50 nm
Energy/Pulse = 6 nJ

λ = 527 nm
5 kHz
Dur. = 200 ns
Power = 40 WOUTPUT PULSE:

λ = 800 nm
5 kHz
Width = 40 nm
Duration (min) = 40 fs
Energy/Pulse = 2.4 mJ

Seed pulse

Dispersive 
Stretcher

Amplifier

Dispersive 
Compressor

Figure 3.2: Scheme of the laser system.

The minimum pulse duration obtained with our laser system is 40 fs.
The output power is about 12 W. In performing our experiments only a
small part of this power is used. By means of a beam splitter, the 5%
of the total intensity (about 0.12 mJ/pulse) is reflected and employed in
the experiment.

3.1.2 Control and Characterisation
of Pulse Duration

The compressor at the end of the laser system is tunable and it allows
us to control the output pulse duration. In fact, it can regulate the time
distribution of each spectral component as a nearly linear function of the
wavelenght (chirp). In our experiment, we exploit this fact in order to
study the pump&probe process as a function of the pulse duration.
We quantify the pulse lifetime by means of an intensity autocorrelator.

In the following we describe how the compressor and the autocorre-
lator work.
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Figure 3.3: Scheme of the dispersive double grating compressor at the end of
the laser system. Owing to the reflection geometry, different frequencies travel
a different path and the relative timing between them is modified.

Chirp

In fig. 3.3 a scheme of the compressor is reported. Between a couple of
dispersive gratings each frequency is reflected at a different angle and so
travels a path of different lenght. Thus, each frequency takes a different
time to go through the device.
The role of the compressor is to reach the minimum pulse duration after
the chirped pulse amplification. However, it can be also used to increase
the pulse lenght in a controlled way.
Depending on the particular geometry, shorter wavelenghts can be de-

Temporal Spread Bandwidth

Minimum Pulse
Duration

Positive Chirp

Negative Chirp

Time Frequency

Figure 3.4: Pictorial representation of chirp. On the left, different temporal
distributions of the frequencies is shown. On the right, the Fourier constant is
not modified introducing a chirp.

layed with respect to the longer ones, or vice versa. A pulse prepared
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in this way is defined to be positively or negatively chirped, respectively
(3.4). In both cases, the overall pulse intensity is spread in a longer time
range. Therefore, the pulse duration increases with respect to the Fourier
Transform Limit, while the energy spectrum remains the same.

From another point of view, to introduce a chirp can be considered as
to modify the phase of the components as a function of frequency. Any-
way, we higlight that the refractive processes considered do not modify
the degree of coherence of the pulse.

Intensity Autocorrelator

An electronic apparatus (based on, e.g., a photodiode) would be too
slow for the measurement of the duration of ultrashort pulses with pi-
cosecond or femtosecond durations. Therefore optical autocorrelators are
employed.

In an intensity autocorrelator, as shown in Fig. 3.5, a beam splitter
divides an incoming pulse into two pulses, which are then focused into
a crystal with a second order nonlinearity. By means of a delay line the
relative timing of the pulses can be adjusted. If it is made small, so that
they meet in the non-linear crystal, the process of second harmonic gen-
eration occurs, leading to an output with a frequency that is twice the
incident one. This signal is measured by a slow photodiode detector.
If the relative time delay is increased, so that the overlap of the two pulses
in the crystal is reduced, the mixing product becomes weaker. Hence, the
signal dependence as a function of the delay reflects the pulse duration.

The intensity autocorrelation function A(τ) is defined as

A(τ) =

∫ ∞

−∞
I(t)I(t− τ)dt (3.1)

where I is the intensity measured by the detector at a time t and with a
delay τ between the two overlapping pulses.

The crystal produces a second order non-linear field, resulting from
the overlap of the two copies of the incident pulse

ENL = χ(2)(E(t) + E(t− τ))2. (3.2)

If the two pulse copies are not collinear the mixed term E(t)E(t −
τ) propagates in a different direction with respect to the incident ones.
Therefore, it can be detected alone. Its measured intensity is

Imeas(τ) =

∫ ∞

−∞
|χ(2)E(t)E(t− τ)|2dt

∝
∫ ∞

−∞
I(t)I(t− τ)dt = A(τ)

(3.3)
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Figure 3.5: Optomechanical scheme of the intensity autocorrelator.
BS: beam splitter; DL: delay line; PD: photodiode; FF: fundamental frequency;
SH: second harmonic [26].

which is an evaluation of the autocorrelation.
Precisely, a spectra as a function of τ is obtained. Its FWHM, ap-

plying the proper deconvolution factor (which for gaussian pulses is
√
2),

gives the duration of the pulse (sigma of the temporal gaussian profile).

3.2 Spectrometer
In our experiment, we perform single-shot frequency-resolved measure-
ments of both the interacting and reference probe pulse.

The laser beam is diffracted by transmission gratings, focused and
collected in a detector.
The gratings have a groove density G = 600 mm−1. For a beam centered
around λc = 800 nm, the first order is diffracted approximately at an
angle β = 29 ◦. Each wavelenght is collected in a different point on the
detector by means of a lens of focal lenght LF = 10 cm . The detector
consists of an array with 256 photodiodes. Each diode is a silicon pixel
with size Lpixel = 5 µm.

The effective resolution of the spectrometer can be estimated consid-
ering two factors: the optical and pixel resolution.
The first is related to the number of pixels covering the spectral range,
the latter to the image of the input slit on the detector.

The optical resolution of the spectrometer is determined by the input
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dprobe

G

Grating

Lens

Detector

LF

Figure 3.6: Scheme of the spectrometer.
The incident probe beam has a diameter dprobe. It incides on the transmission
grating, which has groove density G, and it is dispersed in wavelenght. A lens,
focal LF , focuses each wavelenght in a different point on the detector. It is a
linear array with 256 photodiodes.

beam size and the optics inside the spectrometer. The wider the beam,
the more grating lines (N = Gdprobe) the beam illuminates and, therefore,
the better the resolution. This is also referred to as the resolving power
of the grating. It is calculated as

∆λoptical =
λc

N
=

λc

Gdprobe
≈ 0.26 nm (3.4)

where a dprobe = 5 mm has been used.

The pixel resolution depends on the size of the pixels and on the
dispersion and focalization geometry. Considering a pulse with a wave-
lenght spectrum in the range λmin, λmax, the wavelenght step between
two adiacent pixels is roughly

∆λpixel =
(λmax − λmin)

LD

Lpixel (3.5)

where LD is the enlightened region on the array, given by

LD =
LF

G(λmax − λmin)
cos(β). (3.6)

In our case λmax − λmin = 70 nm, and inserting it we obtain

∆λpixel ≈ 0.30 nm. (3.7)
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From a practical point of view, our detectors are calibrated with re-
spect to another reference spectrometer.
We report that in the data analysis a conversion from nm to THz is per-
formed, in order to work with energy units. Doing this we take care of
the different intensity distribution between energy and wavelenght, ac-
cording to the relation I(E) = I(λ)

⏐⏐ dλ
dE

⏐⏐.
The above resolutions expressed in THz result:

∆λoptical ≈ 0.12 THz, ∆λpixel ≈ 0.14 THz. (3.8)

In addition to the frequency resolution, the other important charac-
teristic of the present spectrometer is the capability to acquire single-shot
measurements.
A trigger, synchronized with the laser repetition rate, activates all the
diodes whenever an ultrashort pulse is reaching the detector. They pro-
duce a signal relative to the whole intensity spectrum at once, which is
then read pixel by pixel. The information relative to a single diode is
read in 0.5 µs time and so the 256 pixels array is scanned in 128 µs,
which is compatible with the 5 kHz pulse rate.

3.3 Polarization Geometry Selectivity
Every phonon has its specific symmetry properties. As a consequence
of this, an excited vibrational mode assumes a definite orientation with
respect to the polarization of the pump pulse. The probing process, in
turn, depends on the phonon geometry. Hence, the polarization of the
transmitted field, depends on both pump and probe ones.

Taking into account this, we develop a polarization selective setup
suitable for symmetry analysis.
In particular, in case of linearly polarized pulses, the relevant parameter
is the angle between the two orientations1. In our setup, this is controlled
by an half-waveplate which rotates the pump polarization relatively to
the probe one. The latter is the one of the laser output, which is parallel
to the table plane.
Moreover, an analyzer after the sample can be added2 to select the po-
larization of the transmitted light.

1 When not interested in symmetry analysis, we usually set the pump crossed to
the probe in order to minimize the interference effects between the two.

2Performing the measurements for which the analyzer was not strictly necessary,
we removed it in order to obtain a pulse more similar to the reference one.
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Chapter 4

Mean-Value Pump&Probe
Measurements on Quartz

In this chapter, results from pump&probe measurements on an α-quartz
sample are presented. The aim of these is to set the basis for the statisti-
cal analysis of correlations. They are fundamental in order to characterize
the observable effects and verify the theory developed in chapter 2.

In our experiment, an ultrashort light pulse (the pump) impulsively
perturbs the lattice, exciting a coherent phonon mode. A second one (the
probe) interacts with the sample properly delayed in time with respect
to the pump.
The measured quantity is the trasmitted probe pulse spectrum. In par-
ticular, for a fixed pump-probe delay, the mean over a set of repeated
single shot acquisitions is calculated.
As a function of the delay, a response modulating at temporal frequencies
characteristic of the vibrational modes of the material is measured.

We underline that an energy resolved probe spectrum is detected.
This allow us to distinguish the phase of the oscillating signal relative to
each probe photon mode. In this way, we can discriminate modification
in the spectral shape of the pulse.

We list the points we are going to treat in the chapter. In the next
section, we report the properties of the α-quartz sample.
After that, we present the experimental data. We discuss the main fea-
tures of the distinct observable effects. We also make use of Fourier
analysis in order to obtain the phonon frequency spectrum of quartz.
Furthermore, we will verify the non-linear order and symmetry prop-
erties predicted by the theory, respectively via fluence dependence and
polarization selective studies.
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In the end, a phenomenological analysis of the effects of the pulse dura-
tion is presented.

4.1 Phonon Modes of Quartz
In our experiment, we work with an α-quartz sample. Firstly, it is ad-
equate for trasmission spectroscopy purposes because of its high trans-
parency and photoresistance. Furthermore, since our final goal is to
develop a new spectroscopic technique (Noise Correlation Spectroscopy),
we need to rely on a well known and simple system, characterized by
strong Raman lines.
Quartz can be considered as a benchmark material for the dynamic exci-
tation of phonons via stimulated Raman scattering and it represents our
ideal playground to test NCS.

Quartz undergoes a phase change at about 848 K. The low-temperature
phase, with trigonal symmetry, is called α-quartz. It has a trigonal crys-
tal structure with D3 symmetry and N = 9 atoms per unit cell. Group-
theory calculations show that the 3 × N = 27 degrees of freedom are
divided into 2 acoustic vibrations of A2 + E symmetry and 16 optical
vibrations of 4A1+4A2+8E symmetry. In particular, the quartz Raman-
active vibrational modes are 4 totally symmetric modes of species A1,
and 8 doubly degenerate modes of species E. In fig. 4.2 the Raman spectra
of alpha-quartz are reported.

Figure 4.1: Atomic arrangement in quartz [10]. a) Crystal structure of α-
quartz. b) its projection on the plane perpendicular to the c-axis.

In our experiment, the sample is a 1 mm thick α-quartz, oriented in
order to have the principal symmetry axis (c-axis) parallel to the probe
propagation direction. The pump direction is almost collinear with the
probe one. Assuming that all the involved optical fields propagate along
the z direction, we can limit our analysis to the xy plane. In this con-
figuration, the symmetry of the system is reduced to C3 rotational sym-
metry. So, the only excited vibrational modes are those of an equilateral
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Figure 4.2: Room-temperature Raman spectra of α-quartz, reproduced by
[11]. (a) A1 modes. (b) E modes. Polarization assignments (L =longitudinal,
T =transverse). The arrows indicate intense A1 modes being transmitted due
to imperfect alignment.
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triangle with equal masses and equal bond strengths. Such a model crys-
tal has three normal modes representing two types of symmetry: one
with A-symmetry known as the ‘breathing’ mode, and two degenerate
E-symmetry modes (fig 4.3). In this case the quartz polarizability tensor

Figure 4.3: Normal mode vibrations for a system with C3 symmetry. A sym-
metric A1 breathing vibrational mode and a doubly-degenerate E-symmetry
vibrational mode.

(expressed with the same notation as in chapter 2) has the form:

(
δα

δq
)0

ij

= Aij + EL
ij + ET

ij =

(
a+ c −c
−c a− c

)
(4.1)

where

Aij =

(
a 0
0 a

)
, EL

ij =

(
c 0
0 −c

)
, ET

ij =

(
0 −c
−c 0

)
(4.2)

are the polarizability tensors relative to the totalsymmetric A mode and
the longitudinal, EL, and transverse, ET , E symmetry modes.

From these the third order susceptibility tensor is calculated as:

(
δα

δq
)0

2

ijlm

= AijAlm + EL
ijE

L
lm + ET

ijE
T
lm =

=

⎛⎜⎜⎝
(
a2 + c2 0

0 a2 − c2

) (
0 c2

c2 0

)
(
0 c2

c2 0

) (
a2 − c2 0

0 a2 + c2

)
⎞⎟⎟⎠ (4.3)

where the external indices account for the probe polarization compo-
nents, while the inner for the pump ones, relatively to a reference system
defined by the 0◦ analyzer orientation [12].

In the following analysis of the experimental results we will repeatedly
refer to this section. Actually, we will use the spectra in fig. 4.2 to address
the observed phonon modes. Moreover, the discussion of the polarization
dependence will be based on the expression for the third order tensor.
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4.2 Data Analysis
In this section, we present the general features of a measurement, com-
mon to all the different configurations studied. We begin reporting how
the raw experimental data are treated.
Then, we focus on their analysis: we observe and classify the pump&probe
effects.
After that, we use Fouirer and Wavelet analysis in order to study the
energy and lifetime of the different phonon modes excited.

Spectral Intensity Modulation Measurement

Figure 4.4: Pump&probe Frequency-Resolved Measurement.

The fundamental pump&probe datasets consist of 2D maps, which
are energy-resolved measurements of the probe intensity, scanned as a
function of the pump-probe delay. We work with a 0.15 THz energy-
resolution and 6.7 fs delay-resolution.
The spectrum associated to a single time is the mean of many (1k-10k)
single pulse acquistions, at 5 KHz repetition rate.

In the experimental setup, the probe beam is splitted in two arms:
one interacts with the sample, the other one works as reference. So we
collect a map for both the sample and reference channel. The reference
pulse is a beam-splitted copy of the incident one. Therefore, subtracting
its spectrum to the transmitted one allows to cancel out the classical
fluctuations and obtain a less noisy measurement along the time-axis.

Another way to improve the results is to consider the trasmitted probe
interacting with the sample before the pump excitation, namely at nega-
tive delay times. In fact, subtracting to the trasmitted probe at positive
times the one at negative ones, permits to select the only changes of the
trasmittivity triggered by the pump pulses. In fig. 4.4 a standard 2D
pump&probe mean-value measurement is presented. The horizontal axis
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represents the delay, along the vertical axis there are the energies of the
spectral components of the probe pulse. The above described analysis
involving the reference pulse and the negative times has been carried on,
so the effects of the pump&probe process are selected. The colourscale
indicates an increase (white) or a decrease (dark blue) in the probe in-
tensity, with respect to the negative time signal.

Studying the spectral dependence as a function of the delay, we can
observe some repeating features. In the following, we will demonstrate
that this periodicity evolves at the phonon frequency. Moreover, the fact
that we perform an energy resolved measurement allow us to discern
distinct effects. Besides the complications due to phonons of different
frequency, we can notice the presence of periods consisting of four main
steps, reported in fig. 4.5.

a) b)

Figure 4.5: Spectral weight modulation at different delays.
a) Localization of the selected delays shown.
b) A) blue-shift, B) decreased trasmittivity, C) red-shift, D) increased trasmit-
tivity.

We can classify these features considering whether the modulation is
most effective in the side or central region of the pulse spectrum. As
described in chapter 2, this two different situations correspond to the
resonant ISRS of the probe and to the modulation of the refractive index,
respectively. The ISRS process modifies the shape of the probe pulse,
lessening the intensity on one side and rising it on the other. So the
pulse is red-shifted (4.5bC) or blue-shifted (4.5bA) depending on whether
it loses or gains energy interacting with the phonon. As a consequence of
this, fig. 4.6a shows clearly that the two different sides of the spectrum
oscillate in phase opposition.

Instead, the change in refractive index results in a global increasing
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(4.5bD) or decreasing (4.5bB) of the transmittivity in the middle of the
spectrum. The fact that this effect is evident only in the central region
is owing to the fact that the ISRS effects are minimum there. Indeed,
in fig. 4.16b we will show the refractive modulation spreads all over the
spectrum, presenting a peculiar measurement in which the ISRS effects
are hidden through polarization selection.

a)

b) c)

Figure 4.6: Dynamical response at selected pulse frequencies.
a) The two sides of the pulse spectrum are in phase opposition due to ISRS
effect. b) The central part of the pulse oscillates (green) only due to trasmit-
tivity modulation. Notice the π/2 phase difference with respect to the sides of
the pulse, reflecting the phase difference between the trasmittivity modulation
and ISRS effect. c) Localization of the shown frequencies in the pump&probe
map.

We underline another fundamental difference between the probe ISRS
and transmittivity modulation. Fig.4.5 suggests that their maxima are
a quarter of period shifted to one another. This is evident in fig.4.6b,
where the oscillation along the delay axis of the middle part of the pulse
spectrum has a π/2 phase difference with respect to the sides. This can
be easily seen noting that to the extremes of the central oscillation always
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correspond a zero amplitude point of the side ones.
Therefore, the π/2 dephasing between the two effects is in agreement

with the theory in chapter 2. As presented there, this phase-shift follows
from the fact that the transmittivity modulation is in phase with the
oscillation of the coherent phonon mode. Conversely, due to its resonant
nature, the probe ISRS is in phase with the phonon velocity.

4.2.1 Fourier Analysis

The considerations done above are relative to a single phonon mode con-
figuration. Actually, we are working with an α-quartz sample which has
multiple modes (sec. 4.1) with different frequencies. Anyway, in first ap-
proximation the phonons are independent from each other. Thus, the
preceeding discussion is still valid and can be easily generalized to a
multi-phonon configuration. The observed effects are just the superposi-
tion of oscillations at different frequencies.
In order to recognize the different phonon frequency we make use of
Fourier analysis.

From the pump&probe time-energy map(fig. 4.4), we calculate the
Fourier Transform along the delay axis, in the positive times range. In
particular, it is evaluated the FT modulus for each energy of the spec-
trum. The result is a 2D map (fig. 4.7): in the vertical axis is still
reported the pulse spectral range, while in the horizontal one there are
the frequencies of the Fourier domain.
The vertical stripes in this map correspond to specific frequencies, which
indicate the energies of the phonon modes measured.

Figure 4.7: Fourier Transform of the pump&probe map along the delay axis.
The vertical stripes indicate the frequencies of the detected phonon modes.

We underline that considering the modulus only we neglect the in-
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formation on the imaginary part. So we lose the phase properties that
characterize the different regions of the pulse spectrum. However, the
fact that each energy carries the same information, allow us to aver-
age along the vertical axis. In this way we obtain the averaged phonon
frequency spectrum in fig. 4.8.

Figure 4.8: Cumulative Fourier spectrum obtained summing the map in fig. 4.7
along the pulse energies.

From the Fourier spectrum three main peaks can be recognized, at
about 3.7, 6.1 and 13.9 THz. With the help of the reference phonon
spectrum of quartz (fig. 4.2), we can identify them: the first is an E-
symmetry mode, the second and third are A-symmetry modes.
Furthermore, due to the high quality of the measurement considered, we
notice two other minor features. At about 10.5 THz a low intensity A
mode is present. The shoulder at 14.6 THz and the small peak at 17.3
THz have no correspondence in the reference data. We guess they are the
footprint of sum-frequency of two mode: the 3.7 THz added respectively
to the 10.5 THz and 13.9 THz mode. This hypothesis is supported by
the results of the phonon lifetime analysis in the next section.

In the following table there is a summary of the observed phonons:
measured and reference frequencies are reported. The experimental error
is the Fourier domain resolution. In addition, the symmetry of the mode
is indicated.
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Peak Experiment [THz] Reference [THz] Symmetry

1 3.73± 0.34 3.84 E
2 6.11± 0.34 6.21 A
3 10.52± 0.34 10.64 A
4 13.91± 0.34 13.97 A
5 14.59± 0.34 14.48 mixed (1+3)
6 17.30± 0.34 17.81 mixed (1+4)

4.2.2 Phonon-Lifetime Analysis

In this section, we study the lifetime of the observed phonons. We ana-
lyze how the signal relative to each mode decays in time. As done before,
we calculate the Fourier spectrum along the delay axis, averaged over the
pulse energies. The key point of this analysis is to do it in a time depen-
dent range.
In order to do it, we select a reduced part of the pump&probe delay axis,
applying to the data a gaussian window 900 fs wide. Moving the window
along the time axis, we obtain the evolution of the phonon frequency
spectrum. The result is a 2D map, similar to what can be obtained with
wavelet analysis. On one axis there is the Fourier domain. On the other
one the time scale, where a point represents the delay time around which
the corresponding window is centered.

In fig. 4.9 the outcome of the analysis is shown. It is very clear that
the mode at 6 THz has a short lifetime compared to the others, which
have lifetimes comparable or larger than the range measured.

From the map we extract the temporal decay profile for each single
phonon mode. We do it integrating few time scans around the peak max-
imum. We normalize the signal of the first point, to better compare the
different trends. They are plotted together in fig. 4.10. We observe all
the modes to have an exponential decay. In order to estimate the time
constant we perform a fit. The results are shown in fig. 4.11.

In the previous section, we formulated the hypothesis that some ob-
served feature are sum-frequency signals. The fact that the 3.7, 10.5 and
13.9 THz phonons have similar slow decay reinforces this.
Indeed, the probability of such effects is quite low and long lasting phonon
excitations help to detected them. Furthermore, the 17.3 THz peak is
clearly observable in the decay map. It reasonably shows a long lifetime,
similar to that of the modes from which should be originated (3.7 and
13.9 THz).
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Figure 4.9: Phonon lifetime analysis.
On the horizontal axis the pump&probe delay is reported. On the vertical axis
there are the frequencies of the phonon spectrum. The faster decay of the 6
THz mode can be easily noticed.

Figure 4.10: The decay profile of each detected phonon is selected from the
frequency-delay map (fig 4.9). In order to distinguish the different trends the
signals at the initial time are normalized to 1.

Following this way of reasoning, it is likely that also a contribution from
the sum of 3.7 and 6.1 THz mode is present. In particular, it should
be close to the zero delay time, when the 6.1 THz phonon gives a very
strong signal. However, this is difficult to prove, because it would overlap
together with the peak of the 10.5 THz mode. Anyway, the decay curve
relative to it shows a different concavity in the first points of the curve.
This can be a clue of a rapidly decaying signal summed to a regular ex-
ponential.

45



a) b)

c) d)

Figure 4.11: Fit of the decay profile for each detected phonon.
The exponential time constant obtained from the fit is reported in the box.
a) 3.7 THz b) 6.1 THz c) 10.5 THz d) 13.9 THz.

Figure 4.12: Fit for the 10.5 THz phonon excluding the initial times, where
a sum-frequency contribution is believed to be summed to the exponential
profile.

Taking this into account, we repeat the relative fit excluding the initial
times. The result is reported in fig. 4.12.
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4.3 Intensity Dependent Measurements
In this section, we are intended to verify the order of the non linear
effects observed. The theory (chapter 2) predicts that both the probe
ISRS and transmittivity modulation are linear in the pump and the probe
fluence. In detail, we recall the expression for the pump&probe intensity
modulation, presented in eq. 2.46-2.47:

ITω (∆t) = ITω (0)−
∑
n

γn|EI
ω|2

(∑
ω
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ω (Epump
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(4.4)

where we sum the contributions of the N different phonon modes present.
Ωn is the phonon frequency, γn the relative third order polarizability ten-
sor and ∆t the delay between pump and probe.
Indeed, both effects are proportional to the square of the pump and probe
electric field. Thereby, the overall effect gives also a signal linear in in-
tensity.
In order to discriminate between the two effects, the phase Ωn∆t must
be taken into account. The π/2 shift implies that when one effect is
maximum, in modulus, the other does not contribute to the signal. So,
in order to test separately the processes, we will analyse the amplitude
of the spectral modulation at two properly distinct delays.

The fundamental parameter in this typology of analysis is the fluence
f . It is defined as a function of the beam power P , repetition rate r and
spot size d in the sample.

f [mJ/cm2] =
P [mW]

r[Hz] · d2[cm2]
(4.5)

We work with a 5 kHz pulse repetition rate. The pump spot size is
about 500 µm and the probe one is 200 µm. The studied power range
is 30-120 mW for the pump and 40 − 650 µW for the probe, which
correspond to fluences of about 0.2− 1.0 mJ/cm2 and 0.2− 3.3 µJ/cm2,
respectively.

Pump Intensity Dependence

The pump intensity dependence is studied in a fluence range of 0.24 −
0.96 mJ/cm2, with a constant probe fluence of 0.75 µJ/cm2.
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The overall linearity of the ISRS and transmittivity modulation ef-
fects is tested by means of Fourier analysis. We calculate the phonon
frequency spectrum for each pump fluence setting. They are reported in
fig. 4.13a. We compare the different amplitudes obtained and observe
that the signal increases with the pump fluence . We select the maxima
of the peaks in the spectra. We fit the maxima relative to each phonon,
as a function of fluence (fig. 4.13b). The linearity is verified.
We report that in the high fluence measurements the data has been
slightly modified. We subtracted the background, calculated in points
close to considered peak. In fact, it is always detected also a residual
pump signal. It is not present in the reference channel and so its fluc-
tuations cannot be properly balanced. Obviously, this becomes more
problematic the more intense is the pump beam.

a)

b)

Figure 4.13: Pump intensity dependent results.
a) Fourier trasforms b) Fit of the maxima.

In order to separately check the linearity properties of the two ef-
fects, we study the modulation of the pulse spectrum at two different
pump&probe delays. The first time (fig. 4.14a) correspond to a maxima
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of the transmittivity modulation, when the central region of the spec-
trum rises. The second one (fig.4.14b) to an ISRS induced blue-shift of
the pulse.
We select the maxima of the modulation, and fit them as a function of
fluence. In both cases the linearity is roughly verified.
In this case the data have not been corrected accounting for the residual
pump scattering. This could explain the deviation form fit of the high
fluence data.

a)

b)

Figure 4.14: Pump intensity dependent results.
Energy profiles of oscillation at fixed delay (left) and fit of the maxima (right).
a) Refractive effect (selected delay = 102 fs).
b) ISRS effect (selected delay = 62 fs).

Probe Intensity Dependence

The probe intensity dependence is studied in a fluence range of 0.20 −
3.25 µJ/cm2, with a constant pump fluence of 0.81 mJ/cm2.
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Analogously to the pump case, we analyze the modulation of the pulse
spectrum, as a function of the probe intensity. We select two different
pump&probe delays in order to distinguish between the transmittivity
and ISRS effect.
In the first case, (fig.4.15a) we fit the maximum amplitude in the central
part of the pulse. In the other one (fig.4.15a) we focus on the high-energy
side of the pulse.
As can be seen from the fits, the linear dependence of the signal on the
fluence is well demonstrated.

a)

b)

Figure 4.15: Probe intensity dependent results.
Energy profiles of oscillation at fixed delay (left) and fit of the maxima (right).
a) Refractive effect (selected delay = 163 fs).
b) ISRS effect (selected delay = 103 fs).
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4.4 Polarization Dependent Measurements
In this section, we focus on the symmetry properties of the system. We
exploit the selective polarization geometry of the experimental setup.
The degrees of freedom we are working with are the relative angle between
pump and probe incident polarization and the transmitted probe polar-
ization. Given a specific configuration of these, the third order suscepti-
bility tensor indicates whether a phonon mode of a definite symmetry is
observable or not. We remind that in the α-quartz sample considered we
have two different symmetries (A and E). The relative tensor is expressed
in eq. 4.3. As already repeatedly written, the pump&probe process re-

a)

b)

Figure 4.16: Polarization dependent measurements.
Results depending on the relative orientation between pump, probe and po-
larizer. The delay-frequency map of two different probe polarization config-
urations are presented. a) Parallel polarization b) Orthogonal polarization.

sults in two effects felt by the probe pulse. One is the modulation of
the refractive index of the sample. The other the resonant ISRS, which
consists in an energy exchange between probe pulse and phonon. The
latter effect involves a redistribution of the photons in the probe energy
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spectrum (red/blue-shift), but their polarization is unaltered. The first,
instead, changes the refraction properties. In case of non-totalsymmetric
phonon modes the polarization of the transmitted probe can be rotated.
Taking into account the theory of chapter 2 and the properties of quartz
susceptibility, we can predict the visible features. We do this for a set of
particular configurations, which are reported in table 4.1. As a function
of the angles between pump-probe and probe-analyzer, we specify the
symmetry of the observable modes. In addition, we indicate whether the
ISRS effects are present or not.

pump-probe angle [◦] probe-analyzer angle [◦] Tensor element ISRS

90 0 a2 − c2
√

90 90 0 ×
67.5 0 1

2
(a2 − c2)

√

67.5 90 1
2
c2 ×

45 0 a2
√

45 90 c2 ×
22.5 0 1

2
(a2 + c2)

√

22.5 90 1
2
c2 ×

0 0 a2 + c2
√

0 90 0 ×

Table 4.1: In table are reported the detectable features as a function of the
specific configuration: relative angle between pump-probe and probe-analyzer.
They are formulated with reference to the theory of chapter 2 and the data
relative to the quartz susceptibility.

As mentioned above, to set the analyzer in the probe extinction
regime is a good way to filter out the ISRS features. Furthermore, α-
quartz E symmetry modes are non total-symmetric and they cause a
polarization rotation. Then, this means that measuring the cross po-
larization in changing polarization configuration allows to detect only
refractive effects.
The peculiar condition to do so is with pump-probe angle 45◦, because
the considered mode results from the interaction between a parallel and
an orthogonal pump field.
In fig. 4.16, measurements in this setting are presented. The two maps
refer to analyzer parallel (a) or orthogonal (b) to the incident probe.
It is evident how the red/blue-shift modulation due to ISRS is reduced
in (b). In addition, we highlight that in (a) both A and E symmetry
phonons are visible, while in (b) only the E are selected.
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We complete the study of the characteristic configurations proving
the dependence in the pump-probe angle.
The total-symmetric A mode signal is constant, with no dependence on
the system geometry. The E symmetry, instead, is sensitive to it.
The E symmetry phonon detected in our measurements is the 4 THz one.

We collect data for different pump-probe angles, in both analyzer
settings. We calculate, as usual, the amplitude of the Fourier Transform
along the delay axis, averaged over all pulse energies. The obtained pho-
ton frequency spectra are shown in fig. 4.17. It is clear that the only
angle dependent signal is the one of the E phonon.

a)

b)

Figure 4.17: Pump-probe relative orientation dependence in the two probe
polarizations configurations.
The Fourier Spectrum obtained in each different configuration is presented.
a) Parallel polarization b) Perpendicular polarization.

For each pump-probe geometry, the maxima of the 4 THz E mode
and of the 6 THz A mode are identified. These data are fitted with an
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ideal squared sinuosoidal function. The measured points and the fits are
shown in fig. 4.18. They are presented in the form of polar plots to make
symmetry angular dependence clear.

Pump-Probe Relative Orientation Dependence

a) b)

c)

Figure 4.18: Polar plots representative of the different phonon symmetries are
presented for an analizer setted parallel (a,b) or ortogonal (c) to the probe
polarization (cross). Fit of the angular pump-probe dependence of the Fourier
module (line) and measurements (dots) are shown. a) A-mode 6 THz phonon,
b) E-mode 4 THz phonon; parallel polarization. c) E-mode 4THz phonon,
cross polarization.
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4.5 Chirp Dependent Measurements
The ISRS is the fundamental physical process in our experiment. It is
the responsible of the phonon excitation by the pump pulse. It also rules
the probe interaction with the sample.
The ISRS process is deeply related with the multimode nature of the
ultrashort laser pulses employed. Actually, it is due to the interaction
between couple of modes at an energy difference resonant to the phonon
one.
In an ideal tractation, the different energies of the pulse spectra are
treated as time coincident, or at least compressed up to the uncertainty
principle limit (Fourier Transform Limited). In the following, we go
beyond this approach and study the time domain response with pulses
with a controlled chirp. We observe what occurs in the measurements if
the frequency in the pump/probe spectral content are separated in time,
while maintaining their relative coherence. This is achieved exploiting
the compressor of the laser amplification system.

The instrument considered is able to delay the longer wavelenghts of
the pulse with respect to the shorter ones, or vice versa. We will refer
to “minimum chirp” as the condition in which the pulse has the shortest
duration and it is nearly Transform Limited. Then, when the low energy
components are placed before the high ones the pulse is defined to have
a “positive chirp”. Conversely, it has a “negative chirp”.

Another key element of this analysis is the autocorrelator. It mea-
sures the temporal coherence of the laser pulse. Owing to the fact that
introducing a chirp preserves the coherence, it indeed quantifies the pulse
duration.

The presented measurements are collected for different chirp/duration
values. The considered range is quite wide and spans from -7.5 to +
7.5 ps. The zero chirp value is 56 fs. Data are acquired with same pump
and probe pulse lifetime.
Examples of the data obtained are presented in fig. 4.19- 4.20.

The pump&probe maps show very clearly that there is a modification
in the shape of the signal. The stripes that at the minimum chirp are
vertical tilt forward/back in case of postitive/negative chirp. In particu-
lar, we notice this effect to be proportional to the pulse duration.
This is quantified evaluating the slope of the signal lines, fitted as a func-
tion of the pulse duration, subtracted by the zero chirp one (fig. 4.21).

We remind that the considered data were acquired with equally long
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a)

b)

c)

Figure 4.19: Examples of Positively Chirped Measurements.
Pulse lenght: a) 200 fs b) 1.5 ps c) 3.0 ps.
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a)

b)

c)

Figure 4.20: Examples of Negatively Chirped Measurements.
Pulse lenght: a) -200 fs b) -1.5 ps c) -3.0 ps.
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Figure 4.21: The tilt of the stripes representing the pump&probe signal is
reported as a function of the chirp. A linear relation is well verified by the
performed fit.

pump and probe. In order to recognize which is causing the observed
effect, we unbalance the two. We do it introducing a thick glass (1/2 cm)
in one of the two beams. In fact, the wavelength dependent refraction in
the added component changes the time compression of the transmitted
pulse.
This method allows to obtain a time difference of few hundreds of fem-
toseconds. So with high chirp values the two pulses have relatively simi-
lar lifetime. Two distinct compressors are needed to perfom this kind of
study in that range.
Nevertheless, the time difference achieved is enough to identify the probe
as the responsible of the tilt effect. We see in fig. 4.22 that with short
pump and chirped probe the slope changes. Conversely, with long pump
and minimized probe the stripes are vertical. In the latter case, an over-
all decreasing of the signal intensity is noticed.
The tilt can be explained considering modes with the same phase inter-
acting with the sample in a similar way. Hence, their signal amplitude
are related and together they produce a line. It is vertical if they have
all the same delay, it is rotated if they are chirped.

The description of the excitation process by means of a long pump
pulse is not so straightforward. Reasonably, the signal decreases because
the pulse energy is distributed over a wide time interval. However, as a
consequence of this the pump&probe effects are more difficult to study. In
particular, for the longer chirp values, they are detected only in the time
interval where pump and probe overlap. This region is usually neglected
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a)

b)

Figure 4.22: Distinction between the effects of separately chirped pump and
probe. a) Chirped probe b) Chirped pump.
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in standard studies, due to the complications arising from interference
effects between the two pulses.
Therefore, it is very difficult to obtain some definite information.

Despite this, we notice very roughly a trend in the Fourier Transform
spectra, obtained along the delay axis. The peak positions seem to move
towards lower frequencies as the pulse duration increases. Fig. 4.23
shows this behaviour. We guess it is a feature of the continuous excita-
tion during the pump-probe superposition time. We could try to verfiy
it applying the theoretical models of chapter 2 outside of the impulsive
limit. Anyway, this would require some further calculation we do not
perform in this thesis work.

Figure 4.23: The position of the peaks in the Fourier specturm are reported
against the pulse duration. It can be noticed that frequency lowers increasing
the chirp.
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Chapter 5

Statistical Analysis of
Correlation

Ultrashort light pulses are characterized by a broad multi-mode frequency
spectrum. To each mode correspond an intensity, which is the fundamen-
tal object of the study we are presenting.
The aim is to investigate with a statistical approach whether the inten-
sities of the various frequencies inside the pulse are dependent to each
other, namely if there are some correlations among the different modes.
The inspiring idea is the fact that intensity correlations should arise in a
mutimode pulse due to interaction processes with matter. In particular,
we consider the ISRS process, which involves an energy exchange between
a couple of photons with a specific frequency difference. In detail, in our
case this difference is the energy of the sample phonons.
Hence, the final goal of this work is to exploit the correlation proper-
ties in order to develop a spectroscopic technique, the Noise Correlation
Spectroscopy.
As suggested from the title, due to the statistical character of the per-
formed analysis, we study the properties and role of the stochastic fluc-
tuations involved.

In this chapter, we start giving the definition of correlation from the
statistical point of view. At first we apply the analysis to the non-
interacting (reference) light pulses. Once we have under control the
unperturbed condition, we focus on distinguishing the peculiar features
introduced in the light pulse by ISRS. In particular, controlling the in-
tensity fluctuations in a proper way we will retrieve informations about
the phonon spectra of the examined sample.
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5.1 Correlation coefficient 2-D map
We introduce the mathematical tool employed for the statistical analy-
sis. It is the correlation coefficient, ρ, evaluated between two stochastic
variables. In the present case, the considered variable is the intensity
I(ω) associated to a mode of frequency ω. From the experimental point
of view, it is the signal detected by a single photodiode in the array.
Therefore, the correlation coeffcient between the intensities relative to a
couple of frequencies ωi and ωj is

ρ
(
I(ωi), I(ωj)

)
=

< I(ωi)I(ωj) > − < I(ωi) >< I(ωj) >

σiσj

(5.1)

where the brakets denote the mean over the single-shot repetitions, and
the σ is the standard deviation relative to the considered dataset. In-
cluding the σ at the denominator normalizes the coefficient in such a way
that −1 < ρ < +1.

The correlation coefficient quantifies how much two variables are de-
pendent from each other.
Independent variables have zero correlation coefficient. It must be made
clear that care must be taken as the reverse is not always true; i.e. a null
correlation does not imply independence. Anyway, this goes beyond the
purpose of our discussion.
Correlation has got a sign attribute. Its interpretation is easier expand-
ing the stochastic variable around its mean-value I(ω) = Ī(ω) + δI(ω),
so that ρ can be rewritten

ρ
(
I(ωi), I(ωj)

)
=

< δI(ωi)δI(ωj) >

σiσj

(5.2)

where we used the assumption < δI(ω) >= 0.
It is positive if to a positive/negative fluctuation (greater/lower than av-
erage) in the first mode corresponds a positive/negative one in the second
(δI(ωi)δI(ωj) > 0). Conversely, we have negative correlation if the fluc-
tuation in the second is of the opposite sign (δI(ωi)δI(ωj) < 0).
In detail, ρ = +1 indicates a perfectly linear dependence between the
two variables, ρ = −1 an inverse proportionality. An explicative scheme
sums up the discussion in fig. 5.1.

Our experimental setup is designed for frequency-resolved measure-
ments. This means that we can distinguish multiple modes. In particular,
we can do it up to 256 (number of diodes in the experimental appara-
tus).
Calculating the correlation coefficient ρ for all the possible couples we
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𝜌 = 0𝜌 > 0 𝜌 < 0

Figure 5.1: Correlation coefficient as a function of the dependence between the
two considered variables. A positive correlation indicates that the two increase
or decrease together. Instead, a negative correlation is relative to quantities
with opposite trends.

obtain a symmetric 2-D map. The two axis are both the same frequency
scale. Practically, with our spectrometer we obtain a 256x256 grid.
In the following, we will adopt a colourscale where negative correlation
values are indicated in blue, positive in red and the part around zero in
white.

Finally, in order to start to be familiar with the correlation map
tool, we show a simple example in fig. 5.2. It is a case involving a set
of independent variables. As a consequence of this, most of the map
is null. Nevertheless, notice that the diagonal has always a correlation
coefficient equal to +1 by definition. In fact, there is considered the
trivial correlation between each mode and itself.

Figure 5.2: Example of 2-D correlation map.
Precisely, the one plotted is relative to a perfectly uncorrelated situation: the
whole map is zero, besides the diagonal (=+1 by definition).
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5.2 Noise Analysis of the Reference Pulse
In this section, we start applying the statistical analysis of correlation
to investigate the properties of the incident pulse. It is a preliminary
study, useful to distinguish later the features peculiar of the light-matter
interaction. Nevertheless, it is also an interesting tool to perform pulse di-
agnostic, through which obtain informations on the present fluctuations.
Furthermore, to characterize these is very important also for spectro-
scopic purposes. In fact, as we will see, the results obtained are deeply
relying on the typology of noise.

5.2.1 Noise Simulation

The proposed analysis bases on the frequency-resolved intensity spectra
of the ultrashort light pulses, namely I(ω). We assume the mean value
of the incident spectra to have an ideally gaussian shape. The parame-
ters that describe it are the central frequency ω0, the width σ0 and the
amplitude I0.
On the base of this, we simulate single-shot measurements spectra im-

𝜔0

𝜎0𝐼0

ω

𝐼𝜔

Figure 5.3: Schematic average frequency-resolved intensity spectrum of the
incident pulse. The parameters of the ideal gaussian shape are indicated.

plementing stochastic fluctuations of the average intensity profile. We
consider two main categories of noise. We define as “correlated noise” all
the fluctuations that preserve the gaussian shape of the pulse. On the
contrary, we dubb “uncorrelated” all noise modifying the gaussian profile.

The correlated one is implemented adding a random shift to each of
the gaussian parameters, namely δω0, δσ0 and δI0. In order to account
for the uncorrelated one we consider a more general expression, δu(ω).
It is the sum of various independent fluctuations, each centered around
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a different frequency ω′ of the spectrum.

δu(ω) =
∑
ω′

δ(ω;ω′) (5.3)

We can describe these single variation as gaussian:

δ(ω;ω′) = I ′(ω′)e
− (ω−ω′)2

2[σ′(ω′)]2 (5.4)

The width σ′ is a parameter that indicates the partial frequency range
over which the single fluctuation spreads. If it is very short1 the spectrum
results very jagged, conversely if it is wide the intensity profile is smooth.
We notice that this will be a key factor in determining the resolution of
the NCS technique.

In summary, the simulated incident intensity spectrum of a single-
shot acquisition is

I(ω) = (I0 + δI0)e
− (ω−(ω0+δω0))

2

2(σ0+δσ0)
2 + δu(ω). (5.5)

In fig. 5.4 we present the various typologies of simulated noise. These

a) b) c)

d) e)

Figure 5.4: Examples of various simulated intensity fluctuacting spectra.
Top: correlated noises on amplitude, width and frequency. Bottom: long range
and single-mode wide uncorrelated noise.

examples are obtained introducing each contribution separately. All the
correlated fluctuations and two regimes of uncorrelated noise are re-
ported.

1The minimum width is obtained considering an independent random fluctuation
for every single mode (pixel) of the radiation considered.
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a) b) c)

d) e)

Figure 5.5: Scheme of the typical fluctuations and relative correlation map.
Correlated noises ( a) amplitude, b) frequency, c) width) and uncorrelated
noises( d) short correlation, e) long correlation) are presented.
The correlated noises maps are interpretated in this way: the arrows account
for the shift sign with respect to the average profile. With respect to a fluc-
tuation at an arbitrary point (black), we see wheter the modes on the two
different pulse sides are positively (red) or negatively (blue) correlated.
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Now that we are able to simulate a dataset of single-shot spectra,
we can perform on it the statistical analysis of correlation. We calculate
for each noise typology the 2-D correlation map. We observe that the
outcome strongly depends on the kind of noise involved. The results are
shown in fig. 5.5.

These maps can be interpretated considering the way a single measure
differs from the average intensity profile.
The amplitude noise has a totally positively correlated map, because all
the modes have an intensity shift of the same sign. The frequency jitter
presents a chequered map, with four main squares. Two of them are
positive and they link modes on the same side of the average gaussian
profile. On the contrary, the negative ones link two different sides of the
pulse, which have fluctuations of opposite sign. The width case is similar
to the amplitude one, but the fact that the variation is null at the center
of the pulse.
In both the considered uncorrelated noise examples we can observe that,
besides the +1 diagonal, everywhere the correlation coefficient oscillates
around zero. Comparing the two regimes, we notice that these oscillations
present as spots. They extend over a larger region of the map if the
fluctuation width correlates a wider range of frequencies. In particular,
in the limit of fluctuations associated to a single mode, the size of the
spots is point-like.

5.2.2 Noise Measurements

We now complete our discussion about the incident pulse noise properties.
We consider the experimental data and compare them to the previously
predicted results.
The simulations shown before are obtained introducing separately the
different noise typologies. Actually, the real pulses present a mixture of
these. One of the goals of this section is to understand the relative weight
of each noise contribution inside the measured pulses.

The experimental dataset is obtained acquiring repeated single-shot
frequency-resolved intensity spectra of the reference beam. We usually
work with 1k-10k repetitions.
Starting from these data, we calculate the 2-D correlation map, shown
in fig. 5.6(a3). We notice that the overall outcome is very similar to the
amplitude noise simulation. As a consequence of this we can claim that
the amplitude fluctuations are prevailing in our setup. The correlation
is vanishing at the edges, due to the presence of uncorrelated noise. In-
deed, it is relevant at the low intensity tails of the pulse. We show this
point introducing in the simulations a small uncorrelated contribution.
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The relative map is reported in fig. 5.6(a2). In order to see whether also
other kind of noises are present we have to find a way to remove the
amplitude one that is hiding them.
We start calculating the average intensity spectrum over the dataset. We
fit it with a gaussian function and estimate its amplitude I0. Then, we
fit each single-shot measurement and obtain the relative amplitude pa-
rameter I. After that, we apply to the single-shot data a transformation
which is a function of I. In detail, we rescale the spectrum multiplying
it by I0/I. Hence, in the end every spectra has the average amplitude I0
and so the amplitude fluctuation are cancelled.
Evaluating again the correlation map with the rescaled dataset leads to
the result shown in fig. 5.6(b3). It is clearly a map representing the cor-
relations arising from mainly frequency-noisy pulses. The corresponding
simulated map, obtained adding also contribution from the uncorrelated
noise, (fig. 5.6(b2)) confirms this.

Analogously, we can extend the noise filtering procedure also to the
frequency kind. This time the relevant fit parameter is the central fre-
quency ω0. The transformation to apply to the single-shot measurement
centered in ω is a frequency shift +ω0 −ω. We notice that in most cases
the shift parameter is smaller than the minimum frequency distance be-
tween two modes, so to have an effective correction an interpolation pro-
cedure is needed.
The result is a correlation map typical of the width noise (fig. 5.6(c3)).

Finally, also the width noise can be removed fitting the σ parameter
and transforming the data stretching or narrowing the frequency scaling
to reach the average σ0. Also in this case interpolation of the axis is
needed.
The outcome is reported in fig.5.6(d3). We are expecting a completely
empty map. However, some features are still observable. Anyway, the
noise filtering process are not perfect and the effects of some correlated
fluctuation can also be seen. Furthemore, there are present also some
correlations introduced by the electrical noise of the detectors. These
can be observed acquiring measurements of the empty background.

In conclusion, the simulated noise dependent correlations have been
verified. In addition, we characterized the noise properties of the em-
ployed laser pulses. We qualitatively observed that the correlated fluc-
tuations are the most relevant (in order of importance: amplitude, fre-
quency, width). The uncorrelated noise, instead, is relatively small.
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1) Noise 2) Simulation 3) Experiment

a)

b)

c)

d)

Figure 5.6: Summary of the fluctuations properties of the reference pulse.
For each kind of noise, simulation and experimental data are presented. In
the simulations a contribution of uncorrelated noise is introduced in order to
simulate the experimental noise. The experimental data are obtained filtering
one by one in a numerical way each different fluctuation typology.
The reported plot are respectively relative to: a) amplitude noise, b) frequency
noise, c) width noise, d) uncorrelated noise.
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5.3 Noise Correlation Spectroscopy
In the previuos part of the chapter, we introduced the correlation map
calculation and employed it to do a preliminary characterization of the
incident pulses. Now, we focus on the pulses transmitted by the sam-
ple. The guiding idea is the possibility to retrieve information about the
interaction in the correlation map.

As before, the fundamental dataset consists of repeated single-shot
frequency-resolved intensity spectra. This time the relevant ones are
those of the transmitted pulse. In the present case the main interaction
is Impulsive Stimuated Raman Scattering, which involves two photons
and a phonon.
Owing to the ISRS process, the intensity of a transmitted photon mode
of frequency ω is a function of the two photons at ω±Ω, where Ω is the
interacting phonon energy. Hence, the intensities are not independent
and correlation between them are introduced.

The reference pulse channel is still taken in consideration and is useful
to obtain a clear ISRS signal. Indeed, we would like to distinguish the
features peculiar of the ISRS process only. We compare the transmitted
pulse map with the reference one in order to remove the common infor-
mations. Precisely, we subtract the first to the latter. A block-diagram
of the logical steps proper of the NCS analysis is reported in fig. 5.7.

𝜌𝑖𝑛𝑡(𝜔𝑖, 𝜔𝑗)

𝜌𝑡𝑟(𝜔𝑖 , 𝜔𝑗)

-
𝜌𝑟𝑒𝑓(𝜔𝑖 , 𝜔𝑗)

Set of repeated
𝐼𝑡𝑟(𝜔)

𝜌(𝐼(𝜔𝑖), 𝐼(𝜔𝑗))

𝜌(𝐼(𝜔𝑖), 𝐼(𝜔𝑗))
Set of repeated

𝐼𝑟𝑒𝑓(𝜔)

Figure 5.7: Block diagram that sums up the NCS technique.
Repeated single-shot frequency-resolved intensity spectra I are acquired for
both transmitted and reference pulse. Correlation coefficient 2D-map ρ is
evaluated for each channel. The interaction signal is isolated subtracting the
two and the result is the NCS correlation map ρint(ωi, ωj).

In the following we explore the spectroscopic capabilities of the NCS.
We start with numerical simulations, which we then test experimentally.
We remark that, as already done for the non-interacting analysis, we
pay attention to the peculiar dependence on the different typologies of
intensity noise. In fact, this is a key parameter for the final result.
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5.3.1 Simulation of ISRS Transmitted Intensity

In order to better understand the relevant parameters and make some
theoretical predictions, we implement the ISRS process in a numerical
simulation. We build a function that takes in input the spectrum of an
incident pulse, I inc(ω), and returns the transmitted one, I tr(ω), after the
interaction with the sample.
From chapter 2, eq. 2.43, we have that the ISRS results in

I tr(ω) = I inc(ω) + kΩE
inc(ω)[Einc(ω + Ω)− Einc(ω − Ω)] (5.6)

where kΩ is the coupling constant relative to the phonon of energy Ω.
We work in a simplified way, considering the relation expressed in terms
of intensities only. In detail, neglecting the phase of the field we can
write E =

√
I, so that

I tr(ω) = I inc(ω) + kΩ
√

I inc(ω)[
√

I inc(ω + Ω)−
√

I inc(ω − Ω)] (5.7)

which is the desired function.
In fig. 5.8 it is shown the above function calculated for the average inci-
dent intensity spectrum (considered as a gaussian with amplitude I inc0 .)
The coupling constant is chosen in order to obtain a realistic effective
shift. A ratio kΩ/I

inc
0 = ±0.2 is used; positive for the Stokes shift and

negative for the Anti-Stokes one.

Figure 5.8: Stokes (red) and Anti-Stokes (blue) shifts of the average intensity
spectrum simulated with a ratio kΩ/I

inc
0 = ±0.2. The incident gaussian pulse

is plotted in grey.

The input incident pulses are the one used in 5.2.1, with all the differ-
ent correlated and uncorrelated noise typologies considered. We calculate
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a dataset of transmitted pulse for some various fluctuation regimes.
Using realistic values for kΩ, we notice that the transmitted map is at
first sight almost equal to the reference one. However, subtracting them
a pure interaction correlation map ρint is obtained. There we observe
some clearly distinguishable features. Furthermore, we notice that also
these are deeply relying on the peculiar fluctuations involved. In fig. 5.9
we show the noise dependent ISRS maps. The reported examples are
just some of the possible results. Differences can easily arise changing
the parameters that quantify the weight of each noise.

a) b)

c) d)

Figure 5.9: Examples of NCS correlation map for different typologies of noise.
a) amplitude+uncorrelated b) frequency
c) width d) frequency+width+uncorrelated

Among these large variety of maps, particularly interesting is the one
for the uncorrelated noise, reported in fig. 5.10. Both the Stokes and
Anti-Stokes situations are plotted. The considered examples are relative
to the ideal case where every mode has independent random fluctua-
tions.
We observe that the correlations emerge only in specific points of the
map. They are the one that link couples of modes with a frequency
difference corresponding to the phonon one. Therefore, the present cor-
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relation map offers a straightforward way to extract the informations
about the phonon energy.
Concerning the sign of the correlation, we notice that it is linked with
the derivative of the average pulse intensity profile. In addition, it is
opposite comparing the Stokes and Anti-Stokes conditions.
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Figure 5.10: NCS Correlation map for pulses with a high uncorrelated noise.
a) Stokes process. b) Anti-Stokes process.

From the practical point of view, we underline that in order to ob-
tain this map there is no need to remove the correlated noises, but it
is also effective to strongly increase the right noise component, namely
the uncorrelated one. What counts is the relative weight of the differ-
ent fluctuations, that reflects in a characteristic intensity profile of the
single-shot measurement.

We refine our simulations in order to verify that the results obtained
are not linked to the approximations made.
Firstly, we consider a finite phonon lifetime. As a consequence of this,
we integrate over the phonon energies the ISRS term in eq. 5.9. We
substitute the previous delta distribution with the relative broad phonon
energy spectrum g(Ω′ − Ω).

kΩ

∫
δ(Ω′ − Ω)

√
I inc(ω)[

√
I inc(ω + Ω)−

√
I inc(ω − Ω)]dΩ′ →

→ kΩ

∫
g(Ω′ − Ω)

√
I inc(ω)[

√
I inc(ω + Ω)−

√
I inc(ω − Ω)]dΩ′

(5.8)

The simulation outcome (fig. 5.11(a)) shows an increasing of the thickness
of the correlation line on the map, representative of the phonon natural
bandwidth.
A similar effect is also introduced increasing the correlation lenght σ′ of
the uncorrelated fluctuations (see eq. 5.4). However, this time no further
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informations about the phonons are added. The thicker lines visible in
fig. 5.11(b) are a smoothing effect due to a poorer resolution. Actually,
this means that NCS frequency resolution is limited by the fluctuation
correlation lenght.

a) b)

Figure 5.11: NCS Correlation map for pulses with high uncorrelated noise.
a) Finite lifetime of the phonon is considered. b) Noise with a correlation
lenght broader than the pixel frequency difference is employed.

Until now we have always considered a single-phonon configuration.
Anyway, as also seen in chapter 4, we are working in a multiple phonon
setting. We generalize our simulation in a trivial way, adding in the
original expression 5.9 a sum over the various phonons present.

I tr(ω) = I inc(ω)+
∑
Ω

kΩ
√

I inc(ω)[
√
I inc(ω + Ω)−

√
I inc(ω − Ω)] (5.9)

The corresponding simulated map is reported in fig. 5.12.

Figure 5.12: NCS Correlation map for a multi-phonon spectra.
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In summary, from the several simulations performed we can fix some
relevant point. NCS is potentially effective in retrieving the phonon
energies involved in ISRS processes. In particular, an essential role is
performed by the noise properties. The resolution is limited by the fluc-
tuation correlation lenght, not by the ultrashort pulse bandwidth. So an
high frequency resolution can be combined together with an high tem-
poral resolution. Moreover, a multi-phonon spectra should be obtained
with a single dataset of repeated measurements, without the need of an
energy scan.

5.3.2 Test Measurements on Quartz

In the following, we report the NCS analysis performed on the experimen-
tal data. The transmitted pulse spectra are acquired after the interaction
with the α-quartz sample. Also the reference copy of the incident pulse
is collected.

We find the trace of the ISRS process working with the pump&probe
setup (fig. 3.1) used to perfom the mean-value measurements in chapter
4. We choose this configuration in order to enhance the detected signal.
Anyway, in principle NCS should also be applicable to the static analysis
of the pump pulse. Unlike the static case, the studied probe pulses are
preceeded by a pump pulse. Owing to this, the presence of a coherently
excited phonon resonantly increases the signal. In addition, the datasets
are acquired as a function of the pump-probe delay. This permit to study
the dependence on the phase of the coherent phonon. Thus, Stokes or
Anti-Stokes ISRS can be selected. Moreover, the resonant ISRS effect can
be isolated from absorption effects, by subtracting the measurements at
negative pump&probe times.

From the analysis of the incident (reference) pulse, we know that in
our setup the correlated noises are prevailing.
The most relevant are the amplitude fluctuations. Indeed, we expect that
the NCS on the measured data resembles the corresponding simulations.
These are shown in fig. 5.13(b). The two maps are obtained at a proper
delay for the Stokes and Anti-Stokes ISRS. Precisely, a blue-shift and a
red-shift phase are selected from the pump&probe frequency-delay map
(fig. 5.13(a)). We stress that the ISRS pump&probe signal is isolated
subtracting the correlation map calculated at negative times.
Following the method used in 5.2.2, we normalize all the pulse in the
dataset. So, we filter the amplitude noise in order to show the effects of
the remaining ones. The results are shown in fig. 5.13(c).
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a)

b)

c)

Figure 5.13: Experimental NCS correlation map for different typologies of
noise.
a) Pump&probe map. The lines indicate the analyzed delays: +236 fs (Anti-
Stokes blue-shift), +337 (Stokes red-shift) and -1973 fs (negative time refer-
ence).
b) Amplitude noise Stokes (left )and Anti-Stokes (right) measurements.
c) Frequency+width noise Stokes (left )and Anti-Stokes (right) measurements.

We can compare the present results with the corresponding simulation

76



in fig. 5.9(a) and (d). The NCS maps have indeed very similar features.
Moreover, as shown in fig. 5.10, we experimentally confirm that Stokes
and Anti-Stokes exhibit opposite correlation sign.

While for the correlated noises we found results in agreement with
the simulations, filtering all the gaussian fluctuations is not enough to
appreciate the uncorrelated features. The relative uncorrelated noise
is too small, as suggested by the analysis of the incident pulse. For
future developments a system capable of increasing this peculiar type of
intensity fluctuations is needed.
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Conclusions

In this thesis, we explore the possibilities offered by ultrafast time-resolved
spectroscopy in studying low-energy excitations. We pay particular at-
tention to the light-matter interaction processes involving ultrashort laser
pulses. We model them theoretically and investigate experimentally with
standard time domain techniques and the proposed novel spectroscopy
named Noise Correlation Spectroscopy. In detail, we work with an α-
quartz sample and study its coherent vibrational excitations. The setup
allows us to perform pump&probe single-shot frequency resolved mea-
surements and it has been specifically realized at the T-Rex laboratory
at Elettra-Sincrotrone Trieste.
Ultrashort pulses last less than a picosecond. Owing to the Heisenberg
uncertainty principle, to this short duration it corresponds a broad spec-
trum of frequency modes of the radiation. Actually, in this study these
peculiar properties are important for various reasons:

• The short pulse duration results in an high time-resolution. This
even allows to discriminate between the different definite phases
inside an oscillation period of a THz coherent vibration.

• The wide pulse bandwidth permits stimulated excitation of vibra-
tions, thanks to the coupling between photons whose frequency
difference matches the phonon one (Impulsive Stimulated Raman
Scattering).

• The possibility to perform frequency-resolved measurements of the
broad spectrum adds a useful degree of freedom.

• A statistical analysis of correlation inside the multimode pulse can
be performed on a set of repeated single-shot frequency-resolved
measurements. This allows to retrieve spectroscopic informations
about the photon-phonon interaction in an innovative and advan-
tageous way, namely via Noise Correlation Spectroscopy.

In our case, the relevant light-matter interaction process is the Im-
pulsive Stimulated Raman Scattering (ISRS).
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We exploit it to pump the phonons in the sample and then probe the time-
dependent modulation at the phonon frequency. Performing an energy
resolved measurement allow us to distinguish the phase of the oscillating
signal relative to each photon mode. We see that different regions of
the spectrum oscillate with different phase. This allows us to distinguish
between two main different effects.

We address them developing a both classical and quantum formalism
and we manage also to distinguish them experimentally thanks to sym-
metry properties and polarization selectivity.
We observe that the presence of the vibration in the sample modulates
the polarizability in phase with the phonon. Consequently, the refrac-
tive index is modified and so the quantity of transmitted/reflected light
changes over the whole spectrum.
The second is a resonant ISRS effect. We describe it classically consider-
ing the driven harmonic oscillator and moreover we formalize it in a more
fundamental quantum model. Relatively to the phonon momentum, the
ISRS effect can amplify (in phase) or dump (out of phase) the pump
phonon oscillation. The ISRS process conserves the number of photons,
therefore the energy exchange with the sample results in a modification
of the pulse spectral shape. The pulse is red-shifted in the Stokes case
and blue-shifted in the Anti-Stokes one.

Hence, by means of pump&probe frequency-resolved measurements
we obtain a complete phase dependent characterization of the interac-
tions between coherent phonons and ultrashort light pulses. It could be
a useful tool in controlling coherent vibrational modes and designing ap-
plications involving light-matter energy exchanges.

The above discussion refers to mean-value measurements, result of
many repeated single-shot measurements averaged over the stochastic
fluctuations present in the single acquisition. However, the noise can
carry a lot of interesting information and in order to retrieve them we
introduce the Noise Correlation Spectroscopy (NCS).
Actually, in our configuration the ISRS process introduces correlations
between the frequencies coupled by the light-vibration interaction. We
investigate them performing a statistical analysis on a set of single-shot
frequency-resolved intensity spectra, in order to retrieve traces of the in-
teraction process with the sample. In detail, we calculate the correlation
coefficient between intensities for all the pairs of modes within the pulse
bandwidth.

We discuss the NCS obtainable results by means of numerical sim-
ulations, based on the developed theoretical models. Particular care is
taken to the simulation of the type of fluctuations present on the source
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pulse. In fact the outcome is deeply relating on the noise properties.
The most interesting result is that a noise characterised by fluctuations
localized over narrow regions of the bandwidth permits to obtain a clear
measure of the vibrational energy. Precisely, the correlation width of the
involved fluctuations defines the energy resolution of a NCS spectrome-
ter.
Preliminary test measurements of both source and ISRS correlations are
performed. The results are in agreement with simulations. The experi-
mental proof of NCS capabilities is not completed here because the em-
ployed source, due to the high laser coherence, lacks a sufficiently large
component of short-frequency correlation noise and it is dominated by
long-range fluctuations. In order to achieve also this last point, we are
planning to introduce the required noise shaping the incident pulse with
a spatial light modulator.

If successfull, the NCS should be a very advantangeous technique.
Obtaining a phonon energy spectrum with pump&probe measurements
requires a time scan and its Fourier Transform. It can also be obtained
at a fixed time, scanning the energy difference between two coupling in-
put fields. In the last setting, though, the energy resolution is limited by
the pulse bandwidth and so this last approach is unsuitable for ultrafast
studies. NCS instead should allow to acquire a complete Raman spec-
trum at fixed time with both high time and energy resolution. In fact,
the broad frequency spectrum of an ultrashort pulse is no more a restric-
tion, because NCS is able to extract the information inside it. The only
practical limitation could regard the number of repetitions to acquire to
have a good statistics and a sufficiently high repetition rate to allow fast
acquisition times.
Furthemore, we underline that the NCS approach has a very general char-
acter. It can be extended to virtually all non-linear optics techniques and,
most importantly, it should be viable also in static experiments, where
only the first pump pulse is employed and measured. Moreover, other
typologies of low-energy excitations of electronic degrees of freedom, for
instance superconducting gaps could be studied. In addition, in a RIXS-
like approach even electronic transitions can be analyzed. In particular
the high-energy one could be adressed changing the light energy scale
and employing Free Electron Laser X-rays pulses.
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Appendix A

Classical Impulsively Driven
Oscillator

In chapter 2, we model our pump&probe experiment considering the
formalism of the classical impulsively driven harmonic oscillator.
In this case, the oscillator is the coherent phonon in the examined sample.
The ultrashort laser pulses exert a force on the system, which can excite,
amplify or dump the phonon oscillation.

In this appendix, we treat the general formalism of an harmonic oscil-
lator driven for a short time by a sinusoidal force. The detailed discussion
of how an ultrashort pulse can set up a force of this kind is presented
in 2.1.1. Here the goal is to obtain an expression for the phonon mode
after the interaction with the impulsive force. The result is obtained as
a function of the phonon initial conditions and, obviously, of the force
properties. In particular, attention is paid to the phase difference be-
tween force and phonon.

The starting point is the differential equation of the driven harmonic
oscillator:

Q̈(t) + ω2
resQ(t) = F (t) (A.1)

where Q(t) is the amplitude of the oscillator as a function of time, ωres is
its proper frequency and F (t) is the driving force. We set as initial con-
ditions, at a time ti, the properties relative to the maximum elongation:
Q(t = ti) = Q0, Q̇(ti) = 0. Making use of Green’s functions [6] we can
solve the differential equation and find the solution

Q(t) = Q0 cos(ωres(t− ti)) +

∫ τ

0

dt′
sin(ωres(t− t′))

ωres

F (t′). (A.2)

In our analysis the force is impulsively applied only for a short time,
corresponding to the pulse duration, τ . Hence, a sinusoidal force of
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frequency ωf and phase ϕf can be expressed as follows.

F (t) =

⎧⎪⎨⎪⎩
0, ti < t < 0

f sin(ωf t+ ϕf ), 0 < t < τ

0, τ < t < tf

(A.3)

Inserting the above expression in the differential equation solution we
obtain

Q(t) = Q0 cos(ωres(t− ti)) +

∫ τ

0

dt′
sin(ωres(t− t′))

ωres

F (t′) =

= Q0 cos(ωres(t− ti)) +

∫ τ

0

dt′
sin(ωres(t− t′))

ωres

f sin(ωf t
′ + ϕf ).

(A.4)

Solving the integral in the last term, it results

− f

2ωres

∫ τ

0

dt′[cos((ωf − ωres)t
′ + ωrest+ ϕf )− cos((ωf + ωres)t

′ − ωrest+ ϕf )] =

= − [sin((ωf − ωres)τ + ωrest+ ϕf )− sin(+ωrest+ ϕf )]

ωf − ωres
+

+
[sin((ωf + ωres)τ − ωrest+ ϕf )− sin(−ωrest+ ϕf )]

ωf + ωres
.

(A.5)

The most effective regime is the resonant one, when the force has the
proper frequency of the oscillator. That means when ωf = ωres. With
this condition the above expression becomes

Q(t) = Q0 cos(ωres(t− ti))−
τf

2ωres

cos(ωrest+ ϕf )+

+
[sin(2ωresτ − ωrest+ ϕf )− sin(−ωrest+ ϕf )]

2ωres

.

(A.6)

It is reasonable to suppose that the force rises and vanishes continuously.
So we make the assumption that sin(ϕf ) = sin(ωfτ + ϕf ) = 0. This
results in the conditions ϕf = nπ and τ = n π

ωres
. Considering the latter,

the third term in the phonon amplitude equation simplifies. So we are
left with

Q(t) = Q0 cos(ωres(t− ti))−
τf

2ωres

cos(ωrest+ ϕf ). (A.7)

Now, we want to obtain this expression as a function of a single cosine.
Through calculation in the complex plane it can be demonstrated that
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the following relation holds.

a cos(x+ ϕa)− b cos(x+ ϕb) =

=

√
(a− b)2 + 4ab sin2(

ϕa − ϕb

2
) cos

(
x+

ϕa + ϕb

2
+ arctan(

a+ b

a− b
tan(

ϕa − ϕb

2
))
)
.

(A.8)

Applying it to our case leads to the final expression

Q(t) =

√
(Q0 −

τf

2ωres

)2 + 2
Q0fτ

ωres

sin2(
−ωresti − ϕf

2
) cos

(
ωrest+ Φ

)
(A.9)

where we defined Φ the new phase of the phonon field. We remind
that we wrote the phonon as a cosine and the force as a sine. It is
useful to consider the π/2 shift involved (sin(x) = cos(x − π/2)) and
rewrite the solution as a function of the their effective phase difference
∆ϕ = −ωresti − ϕf + π/2.

Q(t) =

√
(Q0 −

τf

2ωres

)2 +
Q0fτ

ωres

(
1− sin(∆ϕ)

)
cos

(
ωrest+ Φ

)
(A.10)

In conclusion, we obtained that after the interaction the oscillator still
evolves at its proper frequency, but its amplitude changes as a function
of the applied force. Particularly interesting is the dependence on the
force phase.
We observe that the maximum amplification happens when ∆ϕ = −π/2.
Instead, for ∆ϕ = +π/2 there is a maximum dumping. It means that
the energy exchange between them is most effective when they are π/2
shifted. Therefore, the driving force is more effective when in phase with
the oscillation velocity.
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Riassunto

In questa tesi, si esplorano le possibilità offerte da tecniche di spettro-
scopia ultraveloce risolta in tempo per lo studio di eccitazioni di bas-
sa energia. Si presta particolare attenzione ai processi di interazione
radiazione-materia riguardanti impulsi ultracorti. Si sviluppano specifici
modelli teorici e conducono esperimenti con tecniche risolte in tempo e
la proposta “spettroscopia a correlazione di fluttuazioni” (Noise Correla-
tion Spectroscopy). In dettaglio, si esamina un campione di quarzo, di cui
si studiano le eccitazioni vibrazionali coerenti. L’apparato sperimentale
impiegato consente di effettuare misure di pompa-sonda risolte in fre-
quenza ed è stato appositamente realizzato presso il laboratorio T-Rex,
Elettra-Sincrotrone Trieste.
Gli impulsi ultracorti hanno durata inferiore al picosecondo. Come con-
seguenza del principio di indeterminazione di Heisenberg, a questi tempi
ridotti corrisponde un largo spettro di modi della radiazione. In questo
studio tali proprietà ricoprono un ruolo determinante:

• La breve durata dell’impulso permette una elevata risoluzione tem-
porale. Ciò permette di distinguere le diverse fasi all’interno di un
periodo di oscillazione della vibrazione coerente, che ha frequenza
dell’ordine dei TeraHertz (THz).

• L’estesa larghezza spettrale dell’impulso consente l’eccitazione sti-
molata delle vibrazioni, grazie all’accoppiamento di fotoni la cui
differenza in frequenza corrisponde a quella del fonone, ovvero il
processo di Raman Impulsato Stimolato.

• La possibilità di effettuare misure dello spettro risolte in frequenza
offre un ulteriore utile parametro.

• Si può effettuare un’analisi statistica delle correlazioni all’inter-
no dello spettro multimodo su misure ripetute di singolo impul-
so. In questo modo, attraverso la “Spettroscopia a correlazione
di fluttuazioni” è possibile ottenere informazioni spettroscopiche
sull’interazione fotone-fonone in modo innovativo e vantaggioso.
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Nel caso considerato, il processo di interazione radiazione-materia ri-
levante è lo Scattering Raman Impulsato Stimolato (ISRS). Esso è im-
piegato per pompare i fononi nel campione e succesivamente sondare la
risposta dinamica del sistema alla frequenza del fonone eccitato. Effet-
tuare una misura risolta nell’energia della sonda, permette di distinguere
la fase del segnale oscillante relativa a ciascun modo fononico. In par-
ticolare si osserva che regioni dello spettro distinte possono avere una
diversa fase di oscillazione. Grazie a ciò si possono classificare due effetti
principali.

Dal punto di vista teorico, questi sono descritti sviluppando sia un
modello classico che uno quantistico. Sperimentalmente sono rivelati
separatamente sfruttando le particolari proprietà di simmetria del cam-
pione e la possibilità di effettuare misure in funzione della polarizzazione.
Si osserva che la presenza della vibrazione nel campione modula la po-
larizzabilità in fase con la posizione media del fonone. Di conseguenza,
l’indice di rifrazione è modificato e così cambia la quantità di luce tra-
smessa/riflessa.
Il secondo effetto è un ISRS di tipo risonante. La sua descrizione classica
prevede l’adozione del modello dell’oscillatore armonico forzato, il quale
viene anche formalizzato in termini quantistici. In riferimento al momen-
to del fonone, l’ISRS può amplificare (in fase) o smorzare (opposizione di
fase) l’oscillazione fononica causata dalla pompa. Il processo ISRS con-
serva il numero di fotoni, perciò lo scambio di energia con il campione
risulta in una modificazione del profilo di intensità dell’impulso. Esso è
spostato verso le basse frequenze nel caso di processo Stokes, verso le alte
frequenze nel caso Anti-Stokes.
Riepilogando, attraverso misure di pompa-sonda risolte in frequenza si
ottiene una caratterizzazione completa in termini di fase della interazio-
ne tra fononi coerenti e impulsi di luce ultracorti. Essa può fornire un
importante riferimento per controllare i modi vibrazionali coerenti e pro-
gettare applicazioni riguardanti scambi energetici tra luce e materia.

La discussione precedente fa riferimento a misure risultato della media
di molte ripetizioni di singolo impulso. In questo modo vengono ripulite
le fluttuazioni stocastiche presenti nella singola acquisizione. Tuttavia nel
rumore si nascondono molte informazioni interessanti e la loro ricerca è
lo scopo della “Spettroscopia a correlazione di fluttuazioni” (Noise Corre-
lation Spectroscopy, NCS). Infatti il processo ISRS introduce correlazioni
tra le frequenze accoppiate dalla interazione radiazione-vibrazione. Es-
se sono studiate attraverso un’analisi statistica di misure ripetute dello
spettro di intensità di singolo impulso e risolte in frequenza. L’obiettivo
è ottenere tracce dell’interazione con il campione. In dettaglio si calcola
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il coefficiente di correlazione tra le intensità di ogni coppia di modi con-
tenuta all’interno della larghezza spettrale dell’impulso.
Nella tesi si discutono i risultati ottenibili con misure NCS effettuando
simulazioni basate sui modelli teorici sviluppati. Particolare attenzione è
data alla simulazione delle tipologie di fluttuazioni presenti nell’impulso
incidente. Difatti l’esito della misura è profondamente legato alle pro-
prietà del rumore.
Il risultato più interessante è che un rumore caratterizzato da fluttuazioni
localizzate attorno a ridotte regioni dello spettro permette di ottenere una
chiara indicazione dell’energia vibrazionale. Precisamente la lunghezza
di correlazione delle fluttuazioni considerate definisce la risoluzione in
energia di uno spettrometro NCS.
Dal punto di vista sperimentale si effettuano misure preliminari per la
verifica delle correlazioni previste sia dell’impulso sorgente che di quello
interagente con il campione. I risultati sono in accordo con le simulazioni,
anche se non è stato ancora possibile provare la configurazione di rumore
più promettente. Data l’elevata coerenza della sorgente laser impiega-
ta, le fluttuazioni presenti nell’impulso incidente sono correlate su molte
frequenze e la componente di rumore con correlazione su piccola scala
non è sufficiente per fornire un segnale distinguibile. Per risolvere questo
problema si sta preparando la possibilità di introdurre il rumore con le
giuste caratteristiche modificando il profilo di intensità dell’impulso con
un modulatore spettrale.
Se il progetto avrà successo, NCS potrebbe davvero risultare una tecnica
molto vantaggiosa. Infatti, ottenere uno spettro energetico dei fononi
con misure di pompa-sonda richiede una scansione temporale e la sua
trasformata di Fourier. Può altrimenti essere acquisito a un ritardo di
pompa-sonda fissato scansionando la differenza in energia tra due campi
in ingresso. In quest’ultima configurazione, tuttavia, la risoluzione ener-
getica è limitata dalla larghezza spettrale dell’impulso e pertanto questo
approccio è inappropriato per studi con impulsi ultracorti. NCS inve-
ce dovrebbe garantire la possibilità di ricavare uno spettro Raman a un
tempo fissato e con alta risoluzione sia energetica che temporale. L’am-
pio spettro di frequenze non è più una restrizione perchè NCS è in grado
di estrarre informazioni al suo interno. L’unico limite pratico potrebbe
riguardare il numero di ripetizioni da acquisire per collezionare una stati-
stica sufficiente con la rapidità necessaria alla particolare configurazione
considerata.
Si sottolinea come la NCS proposta abbia un carattere molto generale.
Infatti può essere virtualmente estesa a tutte le tecniche di ottica non-
lineare e, soprattutto, applicata anche in esperimenti statici, nei quali un
singolo impulso è impiegato e misurato. Inoltre possono essere analizzate
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varie tipologie di eccitazione a bassa energia di gradi libertà elettronici,
come ad esempio le gap superconduttive. Con un approccio di tipo RIXS
potrebbero essere studiate anche le transizioni elettroniche. Sarebbe pos-
sibile considerare anche quelle di alta energia, modificando la lunghezza
d’onda e impiegando raggi X impulsati di sorgenti laser a elettroni liberi
(FEL).

90



Bibliography

[1] K.G. Nakamura et al., Spectrally resolved detection in transient-reflectivity
measurements of coherent optical phonons in diamond, Physical Review
B 94, 024303 (2016).

[2] E.O. Potma, S. Mukamel, Theory of Coherent Raman Scattering, Coher-
ent Raman Scattering Microscopy, Ch.1, edited by J.X. Cheng and X.S.
Xie, (CRC press, Boca Raton, 2013).

[3] X. G. Xu, S. O. Konorov, J. W. Hepburn, V. Milner, Noise auto-
correlation spectroscopy with coherent Raman scattering, Nature Physics
4, 125 - 129 (2008).

[4] N. Rohringer, V. Kimberg, Stochastic stimulated electronic x-ray Raman
spectroscopy, Structural Dynamics 3, 034101 (2016).

[5] C. Weninger, N. Rohringer, Stimulated resonant x-ray Raman scattering
with incoherent radiation, Physical Review A 88, 053421 (2013).

[6] K.E. Schmidt, Green’s functions for the driven har-
monic oscillator and the wave equation, URL:
http://fermi.la.asu.edu/PHY531/hogreen/hogreen.html.

[7] W. Demtröder, Laserspektroskopie: Grundlagen und Techniken, 5th Ed.
(Springer, 2007), sec. 11.2.

[8] URL: http://www.rp-photonics.com/consulting.html

[9] T. Rasmussen, M. Rasmussen, P. Hansen, O. Jespersen, N. Rasmussen,
B. Rose. How to Design a Miniature Raman Spectrometer. Special Issues.
Volume 30, Issue 6. (2015).

[10] J. Clark. The structure of silicon dioxide, URL:
http://www.chemguide.co.uk/atoms/structures/giantcov.html, (2009).

[11] Scott and Porto. Longitudinal and transverse optical lattice vibrations in
quartz. Physical Review, 161 (1967).

91



[12] A. Rundquist, J. Broman, D. Underwood, D. Blank, Polarization-
dependent detection of impulsive stimulated Raman scattering in α-quartz,
Journal of Modern Optics, Vol. 52, No. 17, 2501–2510 (2005).

[13] W. Nie, Optical Nonlinearity : Phenomena, Applications, and Materials,
Advanced Materials, 5, No 7/8, (1993).

[14] J.C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena, Second Edi-
tion, Academic Press, (2006).

[15] Y.X. Yan, K.A. Nelson, Impulsive stimulated light scattering. I. General
theory,The Journal of Chemical Physics 87, 6240 (1987).

[16] Y.X. Yan, E.B. Gamble, K.A. Nelson, Impulsive stimulated scattering:
General importance in femtosecond laser pulse interactions with matter,
and spectroscopic applications, J. Chem. Phys. 83, 5391 (1985).

[17] L. Dhar, J.A. Rogers, K.A. Nelson, Time-Resolved Vibrational Spec-
troscopy in the Impulsive Limit, Chem. Rev., 94, 157-193 (1994).

[18] M.M. Wefers, H. Kawashima, K.A. Nelson, Optical control over two-
dimensional lattice vibrational trajectories in crystalline quartz, The Jour-
nal of Chemical Physics 108, 10248 (1998).

[19] R. Righini, Ultrafast Optical Kerr Effect in Liquids and Solids, Science,
Vol. 262, Issue 5138, pp. 1386-1390 (1993).

[20] B. Huttner, S.M. Barnett, Quantization of the electromagnetic field in
dielectrics, Phys. Rev A, vol. 46 n. 7, 4306-4322 (1992).

[21] M. Esposito, K. Titimbo, K. Zimmermann, F. Giusti, F. Randi, D.
Boschetto, F. Parmigiani, R. Floreanini, F. Benatti, D. Fausti, Photon
number statisctics uncover the fluctuations in non-equilibrium lattice dy-
namics, Nature Communication, 6, 10249 (2015).

[22] T. E. Stevens, J. Kuhl, R. Merlin, Coherent phonon generation and the
two stimulated Raman tensors, Physical Review B, 65, 144304 (2002).

[23] R. Boyd, Nonlinear Optics, Third Edition, Academic Press (2007).

[24] R. Merlin, Generating coherent THz phonons with light pulses, Solid State
Communications, Voi. 102, No. 2-3, pp. 207-220 (1997).

[25] M. Esposito, A new spectroscopic approach to collective excitations in
solids: pump-probe quantum state tomography, PhD Thesis, Unversità
degli studi di Trieste (2016).

[26] G. Berruto, Pump-probe Experiments with Ultrashort Mid-Infrared Light
Pulses, Master Thesis, Università degli Studi di Trieste (2014).

92



[27] R. Fowles, Introduction to Modern Optics, Second Edition, Dover (1975).

[28] R. G. Littlejohn, Gaussian, SI and Other Systems of Units in Electro-
magnetic Theory, (2016).

[29] A. Blason, Teoria Quantistica dello Scattering Raman Impulsato e Stimo-
lato, Bachelor Thesis, Università degli Studi di Trieste (2017).

93





Ringraziamenti

Grazie innanzitutto al mio relatore Daniele, per la presenza costante, la
fiducia dimostratami fin dall’inizio e molte altre ragioni, che non elenco
perchè sarà anche stanco di leggere questa tesi.
Alla mia correlatrice Giorgia dedico un grazie mille, o forse anche più,
come le ore passate insieme a lavorare su questo progetto. Davvero credo
sia la persona con cui ho vissuto di più in questo 2017 e non posso che
scusarmi e compatirla per questo.
Ringrazio moltissimo Francesca, Alexandre (merci beaucoup) e Jonathan
(thank you so much) per tutti i consigli e gli aiuti che mi hanno dato. Mi
ritengo molto fortunato a far parte di questo gruppo di ricerca. Gruppo
per il quale è sempre una risorsa Martina, che ringrazio per il suo lavoro
precedente e i puntuali e gentili incoraggiamenti.

Ringrazio i teorici Andrea Blason e il prof. Fabio Benatti per la
collaborazione e per le discussioni toste ma sempre piacevoli.

Un grazie indispensabile va a Roberto Passuello, Fulvio Billè, al mio
tutor Georgios Kourousias e a tutti coloro che ci hanno soccorso per
risolvere gli innumerevoli problemi pratici del nostro esperimento. In
particolare questo ringraziamento va anche a Federico Cilento, per la
realizzazione dei detector e per la costante disponibilità e guida in labo-
ratorio.

E poi, grz ai coinquilini Nicola e Giacomo, è più facile sopravvivere
insieme. A proposito, grazie alle nostre famiglie per i regolari e deliziosi
rifornimenti alimentari.
Ringrazio tutto il microcosmo che circonda il nostro appartamento. È
un piacere migliorarsi e peggiorarsi reciprocamente. Amiche e amici,
compagni di studio e di vita, grazie per tutto l’aiuto che mi date senza
rendervene conto e per quello chi mi avete dato senza che io me ne ac-
corgessi.
Ringrazio infine infinitamente tutta la mia grande famiglia, la mia si-
curezza. Ancor di più mamma, papà e Martina, i principali colpevoli
e vittime di quella che hanno sempre definito la mia strana forma di
intelligenza.

95


	Introduction
	Impulsive Stimulated Raman Scattering
	Noise Correlation Spectroscopy
	Reading Guide


	Theory of Photon-Phonon Raman Interaction
	Phonon-Photon Interaction in the Classical Formalism
	Electric Field Driving Force
	ISRS Pumping Process
	Polarizability Modulation Probing
	Phase-dependent ISRS of the Probe
	Observable Spectral Effects

	Quantum Formulation of the Classical Model
	Quantization of the Interaction Energy
	Interaction Effects on the Quantum State of Radiation


	Experimental Setup
	Ultrashort Pulse Generation
	Pulsed LASER Source
	Control and Characterisation of Pulse Duration

	Spectrometer
	Polarization Geometry Selectivity

	Mean-Value Pump&Probe Measurements on Quartz
	Phonon Modes of Quartz
	Data Analysis
	Fourier Analysis
	Phonon-Lifetime Analysis

	Intensity Dependent Measurements
	Polarization Dependent Measurements
	Chirp Dependent Measurements

	Statistical Analysis of Correlation
	Correlation coefficient 2-D map
	Noise Analysis of the Reference Pulse
	Noise Simulation
	Noise Measurements

	Noise Correlation Spectroscopy
	Simulation of ISRS Transmitted Intensity
	Test Measurements on Quartz


	Conclusions
	Classical Impulsively Driven Oscillator
	Riassunto
	Bibliography
	Ringraziamenti

