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Introduction

In complex systems anomalous properties can arise from the intricate interplay

between the electronic, spin and magnetic degrees of freedom. Unraveling

the physical mechanisms leading to such properties can be complicated as

at equilibrium the interplay between specific excitation cannot be measured

and is hidden under thermal fluctuations. Non-equilibrium techniques based

on ultrashort (∼ 100 fs) laser pulses allow to bridge this kind of limitation.

The rationale of non-equilibrium approaches to complex material is the fol-

lowing. One ultrashort laser pulse is used to bring the sample out of the

equilibrium and the relaxation processes can be measured by a second light

pulse. As a matter of fact a system can be characterized by its response to

a light induced perturbation: the time resolved measurement of an optical

property of the perturbed system can reveal microscopic interactions, if the

time interval of the sampling is much shorter than the characteristic time of

thermal interactions.

Non-equilibrium studies of matter are based on the so called pump and

probe spectroscopy. In pump and probe experiments the system is excited by

an intense ultrashort light pulse, called pump, and its evolution is measured at

a time delay τ by another ultrashort pulse, the probe, reflected or transmitted

by the sample. The measurement of the variation intensity of the transmitted

or reflected beam provides information on the relaxation of the system and

so on the evolution of its physical properties. The time delay τ can be tuned

by changing the optical path of one of the two beams.

This technique can be used to study electronic transitions in the sample, but

also vibrational excitation in crystals through Raman scattering, that is, the
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INTRODUCTION

excitation (or de-excitation) of an optical phononic mode in a crystal due to

electromagnetic radiation. In the Impulsive Stimulated Raman Scattering

an ultrashort pump pulse excites a vibrational mode in the medium and the

probe is scattered by the excited sample, providing information about the

mode itself.

A "standard" time resolved experiment measures the time evolution of

the material observables such as reflectivity or transmittance, which are

related to the intensity and so to the variation of the mean number of photons

〈n〉 = 〈a†a〉 of the transmitted or reflected probe. In this kind of experiments

the time domain response is typically measured integrating over subsequent

repeated pump and probe measurements. So far, no significant effort has

been made to measure higher order photon correlation in time domain exper-

iments and, more specifically, to understand which significant information

can be retrieved from a full time dependent quantum state characterization

of the probe pulse. In this thesis we have worked in experimental conditions

good enough to maintain the noise smaller than the intrinsic fluctuations

of the number of photons, so that we could extend the usual measure of an

"integrated" optical property to a full quantum state reconstruction of the

probe pulse.

We have employed quantum state reconstruction techniques, such as

Balanced Homodyne Detection, which are commonly used for the study of the

quantum state of light. The novelty of our approach is the coupling with time

resolved spectroscopy. The challenge is to understand if and eventually how

the quantum state of light is affected by the phonon one in a time resolved

experiment.

In this thesis work an experimental set-up which combines pump-probe

spectroscopy and Balanced Homodyne Detection has been assembled in the

T-Rex laboratory at Elettra-Sincrotrone Trieste.

The theory and the results of the experiment are collected in this thesis

and are organized as follows:
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• Chapter 1and 2 contains the theoretical treatments of basic concepts of

quantum optics, focusing in particular on the density operator formalism

and on an experimental technique to detect the quantum state of light.

• In Chapter 3 time resolved techniques, such as pump-probe spectroscopy

and Stimulated Raman Scattering are presented; the chapter is based

on the S. Mukamel’s treatment of four wave mixing techniques [1].

• Chapter 4 describes the experimental set-ups used for three different

kinds of measurement. Particular attention has been paid on the

characterization of the Balance Differential Detector with low electronic

noise.

• Chapters 5 and 6 finally show and discuss experimental results.
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Chapter 1

Fundamental concepts

The purpose of this thesis is to use the quantum state reconstruction of

ultrashort light pulses as a spectroscopic mean in pump and probe experiments.

In this chapter I will introduce the fundamental concepts of quantum optics

which will be used further on in the thesis. In particular, the main result of

this thesis is the first measurements of light quantum state in time domain

experiments. In order to make the approach clear we will introduce a few

basic concepts. First of all, we will specify what measuring the quantum

state of a system means. In order to clarify the approach to quantum

state measurements, we are going to introduce the concept of quantum

state associated to the electromagnetic field, using the harmonic oscillator

formalism. This rather "abstract" idea becomes more concrete through the

use of appropriate formalisms. After quantizing the electromagnetic field we

will introduce the density operator (defined in the last section of the chapter),

that allows us to consider a larger class of quantum states: not only pure

states (described simply by the wave function formalism), but also mixed

states.

1.1 Field Quantization

Both the systems we are going to study (the modes of an electromagnetic field

and the vibrational modes in condensed matter lattices) are described by the

harmonic oscillator formalism. I will now consider only the electromagnetic

5



CHAPTER 1. FUNDAMENTAL CONCEPTS

field quantization, but the concept can be generalized also to phononic fields.

With the phrase field quantization, one means the substitution of classical

dynamic variables of the field with operators that fulfill suitable commutation

relations. We will see that each mode of the electromagnetic field can be

described as a quantum harmonic oscillator, and so it can be described using

the same formalism.

From classical electrodynamics we know that an electromagnetic field is

defined by two physical quantities, the electric and magnetic field, which

are related to each other by the Maxwell equations. We know that the

same field can be described by the vector and the scalar potential. These

potentials are not uniquely defined; on the contrary there are several couples

of potentials that satisfy the relations with the fields and we can choose the

most convenient ones (that is the most convenient gauge). In particular we

choose the so called Coulomb gauge: ∇ ~A = 0 and φ = 0, where ~A is the

vector potential and φ is the scalar potential.

An electromagnetic mode is defined by its wavevector ~k and its polarization

ε̂; for simplicity we will consider a single mode case. In order to generalize to

multi mode radiation fields it is sufficient to sum over all possible ~k.

Substituting the definition of the vector potential in the Maxwell equations

and remembering that we are in the Coulomb gauge, we get a second order

differential equation for the vector potential, whose general solution, for a

single mode, is

~A(~r, t) =
1

V

[
C0ε̂e

i(~k·~r−ωt) + c.c
]
, (1.1)

where C0 is a constant, V is a "normalizing" volume and c.c. means complex

conjugate. From this expression of the vector potential ~A one can obtain the

electric and magnetic field.

From the classical theory we know the expression of the energy of the light

field, which is (in cgs unit system)

ε =
1

8π

∫
V

(
E2 +B2

)
dτ. (1.2)

Substituting the expressions for the electric and magnetic fields, keeping in

mind that the polarization vector is a versor (and so |ε̂|2 = 1 and
(
~k × ε̂∗

)
·

6



1.1. Field Quantization

(
~k × ε̂

)
= ω2

c2
) and integrating over the volume we get

ε =
1

2π

ω2

c2
|C(t)|2 , (1.3)

where C(t) = C0e
−ωt.

Let us consider now a classical harmonic oscillator, whose Hamiltonian is

HHO =
p2

2m
+
mω2

2
q2. (1.4)

Rescaling p and q according to

p =
√
mωP

q =
Q√
mω

(1.5)

we get two new quantities (P and Q), with the same dimensions, that satisfy

the relations

HHO =
ω

2

(
Q2 + P 2

)
dQ

dt
= ωP, (1.6)

so that they can be parametrized this way

Q = α0 cos(ωt)

P = −α0 sin(ωt).
(1.7)

We immediately note that Q and P are proportional to the real and imaginary

part of C(t) as defined above and rescaling C(t) with a proper constant one

gets an electromagnetic field hamiltonian identical to one of the harmonic

oscillator (Equation 1.6).

Since the hamiltonian of the harmonic oscillator and of the electromagnetic

field is the same, we expect that also their eigenvalues and eigenstates are

the same: an eigenstate |n〉 corresponds to an eigenvalue En = ~ω
(
n+ 1

2

)
.

Every photon carries an energy ~ω and there is a zero point energy of ~ω
2 .

Until now we have just shown the analogies between the two considered

systems: we have not quantized the electromagnetic field yet. But, because

of the equivalence between our system and the harmonic oscillator, we can

quantize them in the same way, i.e. using the annihilation and creation

7



CHAPTER 1. FUNDAMENTAL CONCEPTS

operators, defined respectively as â = Q̂+iP̂√
2~

and â† = Q̂−iP̂√
2~

, that acts on the

eigenstates of the hamiltonian as follows

â† |n〉 =
√
n+ 1 |n+ 1〉 (1.8)

â |n〉 =
√
n |n− 1〉 (1.9)

with
[
a, a†

]
= 1.

Q̂ and P̂ are called quadrature of the electromagnetic field and, since they are

function of the creation and annihilation operators, are operators themselves

(from now on we will rename Q̂ and P̂ with q̂ and p̂). It is possible to define

also generalized quadratures:

q̂θ =

√
~
2

(
â†eiθ + âe−iθ

)
= q̂ cos θ + p̂ sin θ

p̂θ = i

√
~
2

(
â†eiθ − âe−iθ

)
= −q̂ cos θ + p̂ sin θ; (1.10)

these definitions will be used in the description of quantum tomography.

Keeping all these considerations in mind we can finally write the expression

for the vector potential of the quantized field

~A =

√
2π~c2

ωV

[
âε̂ei

~k·~r + c.c.
]
. (1.11)

From the commutation relation between the operators a and a† (and so

between q and q), one can rewrite the expression (1.6) for the hamiltonian

Ĥem = ~ω
(
â†â+

1

2

)
. (1.12)

1.2 Coherent and Squeezed States

So far we have considered just one kind of eigenstates of the Hamiltonian

of simple harmonic oscillator (|n〉), that are also eigenstates of the number

operator n̂ = â†â and are called Fock states; their eigenvales n represent the

number of excitations. The general expression of these states is the following

|n〉 =
â†n√
n!
|0〉 (1.13)

8



1.2. Coherent and Squeezed States

where |0〉 is the ground state, such that

â |0〉 = 0. (1.14)

Fock states are not the only eigenstates of the Hamiltonian (1.12). Com-

mon states which are used to describe classical like states of the harmonic

oscillator are the coherent states. These eigenstates have some important

characteristics that make them interesting to study. First of all they are

the closest analogues to classical coherent oscillations and the optical states

generated by the laser source during our experiment are coherent. They have

also the property of saturating the Heisenberg uncertainty principle, in the

sense that the product of the standard deviations is σqσp = ~
2 and, moreover,

σq = σp.

Coherent states can be defined as the eigenstates of the annihilation operator

â |α〉 = α |α〉 . (1.15)

The eigenvalue α is complex, since the annihilation operator is not hermitian,

and the mean value of the number operator n̂ is related to α as follows

〈n̂〉 = 〈α| â†â |α〉 = α∗α = |α|2 . (1.16)

As already seen in equation (1.14) the Fock vacuum |0〉 is an eigenstate of

the annihilation operator, so it is a coherent state. From the Fock vacuum

we can generate a coherent state defining the so called displacement operator

D (α) = e(αâ†−α∗â) (1.17)

such that |α〉 = D (α) |0〉.
The displacement operator acts on the annihilation and creation operators as

follows

D† (α) âD (α) = â+ α

D† (α) â†D (α) = â+ α∗; (1.18)

from this relation we can easily evaluate the role of this operator on q̂ and p̂.

In order to better understand the action of the displacement operator, we

can consider a representation in the phase space (whose dimensions are the

9



CHAPTER 1. FUNDAMENTAL CONCEPTS

Figure 1.1: A vacuum state in phase space and a coherent state obtained

applying the displacement operator on the Fock vacuum state.

expectation values q and p) [Figure 1.1]. As we can see in Figure 1.1 the

operator displaces the mean value of q̂ by an amount proportional to Re(α)

and the mean value of p̂ proportional to Im(α). Note that D(α) changes

only the mean value and not the second momentum (variance): as a matter

of fact the state "shape" doesn’t change in phase space [2].

Let us describe the time evolution of a coherent state, trying to under-

stand what is its representation in the phase space. In order to calculate the

time dependence of the expectation values of q̂ and p̂ we will evaluate the time

evolution of the annihilation and creation operators: from the commutation

relations between â and â† and the expression of the Hamiltonian (1.12), we

get
˙̂a =

i

~

[
Ĥ(t), â

]
= −iωâ (1.19)

and then

â(t) = e−iωtâ (1.20)

(and analogously â†(t) = eiωtâ†).

Keeping in mind that q̂ =
√

~
2

(
â+ â†

)
, we get

〈q̂(t)〉 =

√
~
2

〈
α
∣∣∣â(t) + â†(t)

∣∣∣α〉 =
√

2~Re
(
αe−iωt

)
. (1.21)

(we can perform the same calculation for the mean value of the conjugate

momentum and we obtain 〈p̂〉 =
√

2~Im
(
αe−iωt

)
).

10



1.2. Coherent and Squeezed States

If we get back to the representation in the phase space (Figure 1.2), we notice

that the time evolution is a rotation of the area representing the coherent

state around the origin. It is quite similar to the time evolution in phase

space of a classical harmonic oscillator, which is a point rotating around

the origin; the difference between the two systems is due to the quantum

nature of the first one and in particular to the uncertainty principle 1. As we

Figure 1.2: Time evolution of a classical harmonic oscillator (a) and of a

coherent state (b) in phase space.

have already said coherent states are particular states, since they saturate

the uncertainty principle and have σq = σp. Other states that saturates the

1Note that the concept of phase space cannot be simply generalized from classical physics.

The first trivial observation is that in quantum mechanics we deal with operators instead of

variables, but this problem can be easily avoided by using eigenvalues. Nevertheless this is

not the only difference: the phase space is classically defined as the ensemble of points which

univocally define the state of the system; if two operators do not commute there is no way

to define a system univocally, because of the uncertainty principle (generalized uncertainty

principle: σ2
Aσ

2
B ≥

(
1
2i
〈[Â, B̂]〉

)2

). Since the position and momentum operators do not

commute a state in quantum phase space would be described by an area instead of a

point. Moreover we cannot compute the probability that a particle has both position q

and momentum p as in the classical case, but only probability distributions for q and p

separately. One can still define a function of both the eigenvalues, which is no more unique

and can assume negative values (see section 2.1)

11
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Heisenberg principle, for which σq 6= σp, are the so called squeezed states.

Since they satisfy the relation σqσp = 1
2 (we have put ~ = 1 for convenience),

if the uncertainty on one variable (q or p) is smaller than 1√
2
, the uncertainty

on the other will be grater than this quantity and so the state in phase space

will appear squeezed.

As for coherent states, also squeezed states can be obtained from the Fock

vacuum state, using suitable operators. First of all one notice that a squeezed

state can be seen as a coherent state (for example vacuum) modified by a

"scale" transformation that compresses one dimension and dilates the other:

the squeezing operator acts this way and is defined as follows

Ŝ(ξ) = e
1
2(ξ(â†)2−ξ∗â2), (1.22)

where ξ is a complex number, called squeezing parameter.

Acting with this operator on the Fock vacuum and then displacing it one

gets the general squeezed state

|α, ξ〉 = D̂(α)Ŝ(ξ) |0〉 . (1.23)

In Figure (1.3) different squeezed states are shown, in order to better un-

derstand the role of displacement and squeezing operators. Speaking about

Figure 1.3: Different squeezed states: (a) no-displaced squeezed state (α = 0);

(b) squeezed state with α 6= 0, but null phase of the squeezing parameter

(since ξ is a complex number it can be written as ξ = ρeϑ, where ϑ is the

phase); (c) squeezed state with α and θ different from zero.

time dependence of a squeezed state, its evolution in the phase space is quite

similar to that of a coherent state, but in this case not only the mean values

of the variables change in time, but also their variances, that oscillates at

12



1.3. The Density Operator

twice the frequency of the mode (that is twice the frequency of oscillation of

the mean values).

1.3 The Density Operator

The state of a quantum system can be completely characterized by a nor-

malized state vector |ψ〉, (belonging to a Hilbert space H, which contains all

possible states of the considered system): as a matter of fact if we want to

extract a piece of information about the system, we have just to compute

the expectation value of the corresponding operator Ô, that is
〈
ψ
∣∣∣Ô∣∣∣ψ〉 [3].

If the initial state and the Hamiltonian operator Ĥ of the system are known,

the previous formalism provides indeed a complete description of the system,

of its time evolution and of the properties of its observables. However, there

are circumstances in which we are not able to know |ψ〉: in these cases the

system can be described in a statistical way, making the ensemble average over

many identical systems equally prepared and introducing a new formalism

[4] [3]. Let’s introduce this kind of problem with a simple example [5].

1.3.1 Example: one-dimesional harmonic oscillator

Let us consider a one-dimensional harmonic oscillator and suppose we want to

make a position measure on an ensemble of identically prepared particles. We

will first discuss the case of a particle in a single energy state |m〉: quantum
mechanics predicts the result calculating the probability to find the particle

between x and x+ dx

W (x)dx = |um(x)|2 (1.24)

(where um(x) is the wave function in position representation).

If we instead consider the case in which the oscillator is in a superposition of

eigenstates

|ψ〉 =

∞∑
m=0

ψm |m〉 (1.25)

we get a quite different result. The probability is always the modulus square

of the wave function (defined as ψ (x) ≡ 〈x |ψ〉 =
∑∞

m=0 ψmum (x) ) and is

13



CHAPTER 1. FUNDAMENTAL CONCEPTS

defined by the expression

W (x)dx =
∞∑

m,n=0

ψ∗mψnu
∗
m(x)un(x)

=
∞∑
m=0

|ψm|2 |um|2 +
∑
m 6=n

ψ∗mψnu
∗
m(x)un(x) (1.26)

where in the last part one divides the terms where m = n from the terms

with m 6= n. Each term of the first sum represents the probability to find

the particle at the position x given it is in the mth eigenstate (|ψ|2 is the

probability to be in the mth eigenstate) and we would expect it, in a certain

sense, since it is a sort of generalization of the previous case. The second

sum represents something different and introduces the inadequacy of state

vector formalism and to the necessity of another one.

1.3.2 The density operator formalism

In order to introduce the density operator formalism let us assume to have

an ensemble of physical states equally prepared and to have statistical in-

formation about them, that is, we have an ensemble of eigenstates ψn with

probabilities pn [6]. In this case the mean value of an observable A is given

by the expression 〈
Â
〉

=
∑
n

pn

〈
ψn

∣∣∣Â∣∣∣ψn〉 . (1.27)

Notice that the probability pn demonstrates that we don’t know the exact

state of the system and not the quantum uncertainty due to the Heisenberg

principle, that is always present [4].

As we can see in Equation 1.27, the statistic state of a system can be defined

as a linear combination of the states |ψn〉 with the corresponding probabilities

pn as coefficients. All these pieces of information can be summarized in just

one operator, called density operator, which is the weighted average of the

projectors on the states |ψn〉:

ρ̂ =
∑
n

pn |ψn〉 〈ψn| . (1.28)

14



1.3. The Density Operator

Thanks to the introduction of this operator, the mean value of an observable

can be written in the more compact way

〈Â〉 =
∑
n

pn 〈ψn| Â |ψn〉

=
∑
m

∑
n

pn 〈ψn| Â |m〉 〈m|ψn〉

=
∑
m

〈m| ρ̂Â |m〉

= Tr
(
ρ̂Â
)

(1.29)

where in the second step we have introduced the completeness
∑

m |m〉 〈m|,
and Tr

(
Ô
)
is the trace of Ô, that is the sum of the diagonal matrix elements

in any matrix representation.

Relation (1.29) implies two important consequences: the immediate knowl-

edge of all properties of the system and the possibility of expressing all with

matrix representation. As a matter of fact if we can calculate the expectation

value of every observable, we know everything about the system.

The density matrix is the set of the matrix elements of the operator ρ̂ on

whatever basis. There is a physical interpretation of these elements: the

diagonal elements ρnn are called populations and represent the probability

of the system to be in the eigenstate |n〉, while the off-diagonal elements

ρnm provide the coherence between the states n and m (this means that ρnn
is different from zero only if the system is in a coherent superposition of

eigenstates n and m) [4].

1.3.3 Properties of the density operator

In this section properties and observations about the density matrix (and so

of the density operator too) are discussed, in order to better understand the

utility of this formalism:
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1. The density matrix has unitary trace:

Tr (ρ̂) =
∑
m

∑
n

pn 〈m|ψn〉 〈ψn|m〉

=
∑
n

pn 〈ψn|

(∑
m

|m〉 〈m|

)
︸ ︷︷ ︸

I

|ψn〉

=
∑
n

pn 〈ψn|ψn〉 =
∑
n

pn = 1

(1.30)

since the probability of finding whatever state must be 1.

2. If all pn are zero except one (that will be equal to one), the density

operator is ρ̂ = |ψ〉 〈ψ|, i.e. the projector on the state with probability

equal to one. In this case the wave function provides all information

of the system and the new formalism becomes redundant, although

still correct. The state is said to be a pure state, in contrast with the

mixed state, whose properties can be described only through the density

operator.

3. Let us consider the square of the density matrix and compute its trace

Tr
(
ρ̂2
)

=
∑
n

p2
n ≤

∑
n

pn = 1. (1.31)

It is a simple way to distinguish a mixed state from a pure one: in the

last case the trace will be exactly equal to one (and ρ̂2 = ρ that is the

density operator is a projector), while in the former it will be strictly

less then one.

4. The density matrix is hermitian and its diagonal elements are positive

or null (it follows from the fact that they are probabilities)

1.3.4 Example: a two level system

Let us see an example of a simple two level system [7] in order to understand

the importance of the density operator formalism. Consider a two level system

and assume for simplicity that the two levels |a〉 and |b〉 are symmetrically

16
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distributed with respect to the zero. The Hamiltonian of the system in the

basis [|a〉 , |b〉] is

H =

(
∆ 0

0 −∆

)
. (1.32)

Consider now two different cases:

1. At time t = 0 the system is in a pure state and can be described both

as an eigenstate |ψ〉 and with the density operator ρ = |ψ〉 〈ψ|. If

|ψ〉 = 1√
2

(|a〉+ |b〉), the density matrix is

ρ1 =
1

2

(
1 1

1 1

)
. (1.33)

2. At time t = 0 the state is mixed and can be described only by the

density operator. Suppose that the probability for the system to be in

state |a〉 (or |b〉) is 1
2 . In this case the density matrix is

ρ2 =
1

2

(
1 0

0 1

)
. (1.34)

In both cases the probability of measuring an energy ∆ or −∆ is 1
2 , but the

two states are not equal. First of all one is pure and the other is mixed, as

we have already said: we can verify it computing the trace of ρ̂2 (in the first

case we get 1 and in the second 1
2). In order to demonstrate that they are

completely different states, let’s calculate the expectation value of a general

observable Ô, whose representation in the chosen basis is

Ô =

(
a b

c d

)
. (1.35)

Keeping in mind the relation 1.29 and knowing the two density matrices ρ1

and ρ2, we get 〈Ô〉 = a+b+c+d
2 in the first case and 〈Ô〉 = a+d

2 in the second:

so the mean values of the observables (that can completely characterize

the system, if the set of observables is complete) are in general different,

and so the states are different. Furthermore there is no wave function that

characterize the second state, that is, there is no ψ2 such that ρ2 = |ψ2〉 〈ψ2|
[7].
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1.3.5 Time evolution of the density operator

From the definition of the density operator 1.28 and the Schrödinger equation

i~
∂ψ

∂t
= Ĥ |ψ〉 . (1.36)

we can easily obtain the time evolution of ρ

∂ρ̂

∂t
=

∑
m

∂ |ψm〉
∂t

pm 〈ψm|+
∑
m

|ψm〉 pm
∂ 〈ψm|
∂t

= − i
~
Ĥ
∑
m

|ψm〉 pm 〈ψm|+
i

~
∑
m

|ψm〉 pm 〈ψm| Ĥ

= − i
~

[
Ĥ, ρ̂(t)

]
(1.37)

The previous relation is known as Liouville von Neumann equation [8].

In order to describe the time evolution of the density operator we can use the

matrix representation and study the time dependence of the matrix elements.

Consider for simplicity a two level system, but the results can be generalized

to more complicated systems.

The hamiltonian operator in the basis of its eigenstates can be expressed

with the matrix

H =

(
ε1 0

0 ε2

)
. (1.38)

where ε1 and ε2 are the two eigenvalues of H (that is, the two energy levels of

the system). Reminding relation (1.37) and inserting the matrix H, we get

d

dt

(
ρ11 ρ12

ρ21 ρ22

)
= − i

~

(
0 (ε1 − ε2)ρ12

(ε2 − ε1)ρ21 0

)
, (1.39)
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1.3. The Density Operator

from which we notice that the diagonal terms are constant in time, while the

off-diagonal ones have an oscillatory behavior, with frequency ε1−ε2
~ :

ρ̇11 = 0 −→ ρ11(t) = ρ11(0)

ρ̇22 = 0 −→ ρ22(t) = ρ22(0)

ρ̇12 = − i
~ (ε1 − ε2) ρ12 −→ ρ12(t) = ρ12(0)e−

i
~ (ε1−ε2)t

ρ̇21 = − i
~ (ε2 − ε1) ρ21 −→ ρ21(t) = ρ21(0)e−

i
~ (ε2−ε1)t

(1.40)

Note that in the two level system considered as example before, the density

matrices 1.33 and 1.34 become

ρ1(t) =
1

2

(
1 e−2i∆t

e2i∆t 1

)
, ρ2(t) =

1

2

(
1 0

0 1

)
. (1.41)

In both cases the probability of measuring an energy equal to ∆ or −∆

is 1
2 , but the operators involve differences in the expectation values of the

observables. For example let’s consider an operator B =

(
0 b

b 0

)
(it could

be the x component of the spin in presence of an external magnetic field in

the z direction). In fact we obtain
〈B〉1 = Tr (ρ1(t)B) = b cos(2∆t)

〈B〉2 = Tr (ρ2(t)B) = 0

. (1.42)

So, while in the first case we get a time dependent expectation value, in

the second one it is constant: this example underlines again the difference

between mixed and pure states with same probability.

1.3.6 Liouville representation

The matrix representation, though clearer and more concrete respect to the

operator one, in this circumstance can be substituted with a simpler one,

in which the time evolution of the density operator 1.37 has the form of

the Schrödinger equation 1.36. This result is reached through two simple

modifications of the notation used until now:
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• the density matrix is no more represented by a matrix: it becomes a

column vector containing all the matrix elements (for example for a

2x2 matrix we will obtain a vector of 4 elements);

• the introduction of Liouville superoperator L , which acts on operators

(that’s why it is called "superoperator") in the following way

L Ô ≡
[
H, Ô

]
. (1.43)

In practice the Liouville space is the cartesian product of two Hilbert spaces

and its elements are the density operators ρ̂.

In order to comprehend the use of this formalism, we will consider the usual

two level system, with energy ε1 and ε2; Equation 1.45 becomes, in Liouville

representation

d

dt


ρ11

ρ12

ρ21

ρ22

 = − i
~


0 0 0 0

0 (ε1 − ε2) 0 0

0 0 (ε2 − ε1) 0

0 0 0 0


︸ ︷︷ ︸

L


ρ11

ρ12

ρ21

ρ22

 , (1.44)

that is
dρ

dt
= − i

~
L ρ; (1.45)

it is known as Liouville equation and is formally equivalent to the Schrödinger

equation. Thanks to this similarity we can obtain the solution of the differ-

ential equation in analogy with the Schrödinger equation [7], so

ρ(t) = U (t, t0)ρ(t0), with U (t, t0) = e−i
L
~ (t−t0)

and
∂U (t, t0)

∂t
= − i

~
L U (t, t0) .(1.46)

In order to distinguish the Liouville from the Hilbert space we will use, from

now on, the so called tetradic notation. We are now going to introduce

briefly this notation and some additional definition, to establish a complete

isomorphism between the time evolution in ordinary Hilbert space and the

evolution of the density operator [1].
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1.3. The Density Operator

• The state of the system, i.e. an element of the Liouville space is indicated

by a double bracket |ρ〉〉. A basis set is defined as |jk〉〉 ≡ |j〉 〈k|: it is a
matrix whose element in the jth row and kth column is 1 while all other

elements are zero. The completeness condition is
∑

j,k |jk〉〉 〈〈jk| = 1.

• The operators in Hilbert space (Ô) are elements of the Lioville space:

they are indicated as vectors (|O〉〉) and can be expanded in a basis

set |O〉〉 =
∑

j,k |j, k〉〉Ojk. Since operators are elements in the new

space, we can define a scalar product between them, namely 〈〈B|A〉〉 ≡
Tr
(
B†A

)
; consequently the orthonormality condition is 〈〈jk|mn〉〉 =

Tr [|k〉 〈j|m〉 〈n|] = δknδjm. The scalar product 〈〈jk|O〉〉 provides the
matrix element Ojk.

• The operators in Liouville space are called superoperators or tetradic

operators (as the Liouville superoperator L ) and are usually indicated

with a calligraphic font. They are defined as

F =
∑

j,k,m,n

|jk〉〉 〈〈jk|F | |mn〉〉 〈〈mn| , (1.47)

while their four indices matrix elements are Fjk,mn = 〈〈jk|F |mn〉〉.

• The time evolution is described by the relation |ρ̇〉〉 = − i
~L |ρ〉〉, while

the time evolution operator is defined in equation (1.46).

The tetradic notation will be useful in future, when we will introduce the

four wave mixing theory.
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Chapter 2

Theory

In this chapter the most relevant theoretical aspects of this thesis are intro-

duced, in order to understand the kind of measurements we made, the setup

(described in chapter 4) and the experimental results. In particular I will

focus on the Wigner function formalism for describing quantum states and on

the theory beyond the experimental technique of quantum state tomography,

which allow us to "measure" the quantum state of ultrashort light pulses.

2.1 Wigner Function

As we have just seen, a quantum state can be identified by a state vector |ψ〉
(in case of a pure state) or a density operator ρ̂. However there exists another

formalism, which derives from the previous ones, that brings us directly and

"visually" the properties of the quantum state: it is the Wigner representation

and lives in the phase space.

Let us go back to classical physics in order to define by analogy some important

concepts. In classical mechanics a physical system is described by a point

(q, p) in the phase space. A statistics of the position and the momentum

a distribution W (q, p) can be introduced, which expresses the probability

of finding a particular value of the two variables during their simultaneous

measurement. The probability distributionW (q, p) allows us to compute, and

predict, all statistical quantities and in this sense it characterizes a classical

state. This concept can’t be simply generalized to quantum optics because the
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Heisenberg uncertainty principle asserts that we can’t measure simultaneously

position and momentum exactly. Nevertheless also in quantum optics we are

interested in a formalism that can predict the statistic of our observations [6].

Another important difference between classical and quantum physics is the

concept of phase space: in the quantum case the motion is described by the

operators q̂ and p̂, which don’t commute and cannot define a phase space

as we know it from the classical case. However we can construct a space

whose dimensions are the eigenvalues q and p and find out a distribution

depending on these two quantities. Keeping all these differences in mind, we

can consider the following phase space distribution (called Wigner function)

W (q, p) =
1

2π~

∫ +∞

−∞
dξe−

i
~pξ 〈q +

1

2
ξ| ρ̂ |q − 1

2
ξ〉 . (2.1)

The previous function was introduced by E. P. Wigner in 1932 for the first

time [9], without explicit motivations [5]. We are now going to justify the

choice by giving an intuitive explanation and making a list of its properties.

First of all let us define our aim: we want to describe the motion of a particle

between the positions q′ and q′′ (assume ξ = q′′ − q′). In analogy with

the case of energy transition between two levels n′ and n′′ (in which we

compute the matrix element 〈n′′| µ̂ |n′〉, where µ̂ is the dipole operator), let us

consider 〈q′′| ρ̂ |q′〉. We can redefine the states as q′ = q− 1
2ξ and q′′ = q+ 1

2ξ,

where q is the center of the displacement (q ≡ q′′+q′

2 ). In order to obtain a

momentum distribution we perform a Fourier transform and finally get the

Wigner function ( 1
2π~ is just a normalization factor).

The expression (2.1) is the most general one: in case of a pure state it becomes

W (q, p) =
1

2π~

∫ +∞

−∞
dξe−

i
~pξψ∗

(
q − 1

2
ξ

)
ψ

(
q +

1

2
ξ

)
; (2.2)

this definition will be useful to introduce the concept of quasiprobability

distribution.

2.1.1 Properties of the Wigner function

At the beginning of this section the Wigner representation was introduced

with the scope of being a pictorial representation of the quantum state; it

is truth and we will see why, but the Wigner function gives us much more
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2.1. Wigner Function

information: it allows us to calculate expectation values of observable, and

so to characterize quantitatively the state. However in this respect it is not

unique: infinite other functions satisfy this request [5]. Nevertheless the

Wigner function is unique for its important properties; we are now going

to list some of them, from to the most "mathematical" ones to those with

interesting physical meaning.

1. First of all the Wigner function is real , that is W ∗ (q, p) = W (q, p): it

can be simply demonstrated by considering the complex conjugate of

the function (keeping in mind that the density operator ρ is hermitian)

and replacing q with −q.

2. Thanks to the factor 1
2π~ the Wigner function is normalized , namely∫ +∞

−∞

∫ +∞

−∞
W (q, p) dqdp = 1; (2.3)

(it derives from the properties of the density operator (1.30) and of the

Dirac delta δ(x) = 1
2π

∫ +∞
−∞ eikxdk and δ(αx) = 1

|α|δ(x)).

3. This property deals with the marginals of the Wigner function and

represents the connection of this variable with probability distributions.

Marginals are the integral of the function over one of the dimensions of

the phase space: we will demonstrate that they represent the probability

distribution function on the other variable. Let us consider for example

the integration over p:∫ +∞

−∞
W (q, p) dp =

∫ +∞

−∞
dξ 〈q +

1

2
ξ| ρ̂ |q − 1

2
ξ〉 1

2π~

∫ +∞

−∞
dpe−

i
~pξ︸ ︷︷ ︸

2π~δ(ξ)

=

∫ +∞

−∞
dξ 〈q +

1

2
ξ| ρ̂ |q − 1

2
ξ〉 δ (ξ)

= 〈q| ρ̂ |q〉 ≡W (q). (2.4)

W (q) is the probability distribution for the position; analogously one

gets the momentum distribution integrating over the position q [5].

25



CHAPTER 2. THEORY

Figure 2.1: Example of Wigner function and relative position and momentum

distribution [10]

4. Another important property of the Wigner function is the so called

overlap formula [6] (or trace product rule [5]) , since it has three

remarkable consequences. Its expression is

Tr
(
ÂB̂
)

= 2π~
∫ +∞

−∞

∫ +∞

−∞
WA (q, p)WB (q, p) dqdp, (2.5)

where WA and WB are the Wigner transforms of the operators Â and

B̂ (the same as in relation 2.1, with one of the operators instead of ρ):

it can be easily demonstrated with the usual trick of the Dirac delta,

as in the case of the marginals, and simple changes of variables [6].

A consequence of this formula is the calculation of the expectation value

of a general observable Ô. Remembering the relation (1.29), we get

〈Ô〉 = Tr
(
ρ̂Ô
)

= 2π~
∫ +∞

−∞

∫ +∞

−∞
W (q, p)WÔ (q, p) dqdp. (2.6)

In this sense there is a strictly connection with the classical probability

distribution; nevertheless the next consequence underlines the differ-

ences between the two cases.

In the case of pure states ρ̂j = |ψj〉 〈ψj | the trace of the product is

Tr (ρ1ρ2) = Tr (|ψ1〉 〈ψ1|ψ2〉 〈ψ2|) = | 〈ψ1|ψ2〉 |2

= 2π~
∫ +∞

−∞

∫ +∞

−∞
W1 (q, p)W2 (q, p) dqdp, (2.7)

i.e. the transition probability between the pure states |ψ1〉 and |ψ2〉.
If the two states are orthogonal their scalar product is zero. From

the second line of relation 2.7 we find out that, in order to have a
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null integral, at least one of the two Wigner function should have

some negative values (excluding particular cases); this represents one

of the main differences with the classical distribution and that’s why

the Wigner function is called quasiprobability distribution . Note

that this statement doesn’t exclude the possibility of a non-negative

Wigner function: in particular Gaussian states (for example coherent

and squeezed states) are positive everywhere.

2.1.2 Time evolution of the Wigner Function

We have already shown the evolution of a quantum state expressed as the

density operator time evolution. Since the Wigner function depends on the

density operator, starting from the Liouville von Neumann equation (1.37),

we can get the time evolution of the Wigner function, that is

∂W

∂t
=
−i
~

1

2π~

∫ +∞

−∞
dξe−

ipξ
~ 〈q +

1

2
ξ|
[
Ĥ, ρ̂

]
|q − 1

2
ξ〉 . (2.8)

The hamiltonian is the sum of a kinetic ( p
2

2m) and potential part U and the

previous equation can be rewritten in this way

∂W

∂t
= T + U , where

T = − p

M

∂

∂q
W (q, p, t),

U =
l=0∑
∞

(i~/2)2l

(2l + 1)!

d2l+1U(q)

dq2l+1

∂2l+1

∂p2l+1
W (q, p, t). (2.9)

as demonstrated by W. P. Schleich [5]. In order to show the time evolution for

Gaussian states let us first consider the ground state of a harmonic oscillator

and provide a sudden displacement: the so obtained state is coherent. If we

know the initial Wigner function (that is a two-dimensional Gaussian with

the same width along q and p) and the harmonic potential, we can solve the

differential equation 2.9 and finally get the time dependence of a coherent

state in phase space. This procedure demonstrates [5] that a coherent state

evolves in time by rotating in the phase space (similarly to the classical case);

if we compute the marginals for every time instant t, we observe that the

variables q and p perform harmonic oscillation with constant width, as shown
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(a)

(b)

Figure 2.2: Time evolution of the Wigner function of a coherent state (a)

and a squeezed state (b) in phase space [5]

.

in Figure 2.2 (a). With a similar procedure one can calculate also the time

evolution of a squeezed state. The result is always a rotation in phase space,

and the marginals oscillate harmonically in time, but their width is no more

constant: it oscillates in time too and a large width in momentum implies

a small one in position and vice versa. The frequency of this oscillation is

twice that of the q and p mean values oscillations, in agreement with what

we found out in section 1.2.
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2.2 Homodyne detection

Now the question is how can we measure a quantum state, i.e. its Wigner

function? In this section we are going to introduce the method for quantum

state tomography based on the Balanced Homodyne Detection (BHD). To

introduce the technique we will show that BHD, under low noise conditions,

provides the measurements of the projection of the Wigner function on

different planes. This characteristic will be used to achieve a tomographic

reconstruction of the optical quantum state. A schematic set-up is showed in

figure 2.3. We want to know the quantum state of the signal a, while b (the so

Figure 2.3: Schematic diagram of Balanced Homodyne Detection [11]

called local oscillator) is a known coherent state |z〉. The two modes interfere

in a balance (50:50) beam splitter. The intensities of the output modes c and

d are measured and subtracted by a differential detector repeatedly1. It can

be shown that the values of the quadratures of the signal fields, as they have

been defined in section (1.1)

x̂Φ =
1√
2

(
âe−iΦ + â†eiΦ

)
, (2.10)

for every phase difference Φ (the phase difference id obtained by changing the

optical path of the local oscillator) allow to reconstruct the Wigner function.

1In the pulse regime, the interferometric measurements are performed for every single

light pulse. Under this condition the the experiment can be described as a repeated

measurement on equally prepared quantum state.
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Let us consider in details this technique, starting from the beam splitter: we

have to understand how the quantum states transform under the action of a

beam splitter operator.

2.2.1 Beam Splitter

The description of the beamsplitter will proceed as follows. Consider a

generic beam splitter using a classical treatment, we will focus on a 50:50

beam splitter and, finally we will discuss to the quantum case.

In our model a beam splitter is essentially a dielectric medium localized in

space: light impinge on and emerge from it. We know that the Maxwell

equations should be valid both out and inside the medium and that the

solution should be continuous on the boundaries. The most simple model is

that of a linear dielectric medium, in which there is a linear coupling between

the modes

al′ =
∑
l

Ul′lal, (2.11)

where al is the amplitude of the lth mode on one side of the beam splitter

(in our case a and b), while l’ refers to the other side (c abd d).

As we can see in Figure 2.3 in homodyne detection there are two input and

two output modes, and, therefore, we have to compute a 2× 2 transformation

matrix (whose elements are the Ul′l defined before). In general(
c

d

)
=

(
t1 r2

r1 t2

)(
a

b

)
, (2.12)

where ti and ri are the transmission and reflection coefficients.

For the energy conservation, assuming a lossless beam splitter, |a|2 + |b|2 =

|c|2 + |d|2; substituting c and d in the right hand side with the their expression

in (2.12) one gets the equations

|t1|2 + |r1|2 = |t2|2 + |r2|2 = 1

t1r
∗

2 + t∗2r1 = t∗1r2 + t2r
∗

1 = 0. (2.13)

Now consider a 50:50 beam splitter: one can easily imagine that |t1|2 =

|r1|2 = |t2|2 = |r2|2 = 1
2 , while the second equation of 2.13 connects the
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phases of the transmission and reflection coefficients. The phase depends on

some characteristics of the beam splitter itself; nevertheless we can consider

a particular condition and get the phase difference. Assume a symmetric

situation t1 = t2 = 1√
2
: in this case the reflection is asymmetric and, if

r1 = 1√
2
, one obtains r1 = −r2. The transformation matrix becomes

UBS =
1

2

(
1 −1

1 1

)
. (2.14)

In making the transition to quantum mechanics we replace the amplitude al
with the operators âl [5] and we get

ĉ =
1√
2

(
â− b̂

)
d̂ =

1√
2

(
â+ b̂

)
. (2.15)

2.2.2 From photocurrents to quadratures

Once the two beams have interfered in the beam splitter the intensities of the

output beams are measured and then subtracted. Let Î be the differential

current operator, defined as Î = ĉ†ĉ− d̂†d̂, where c and d are the annihilation

operators of the modes c and d while c†c and d†d are their photon number

observables (the nomenclature of the modes is referred to Figure 2.3). Using

equations (2.15) one obtains

Î = â†b̂+ b̂†â. (2.16)

The phase difference Φ between the signal and the local oscillator can be

varied changing the optical path of the latter; to introduce this concept we

make the substitution b̂→ b̂eiΦ in equation (2.16) and get

ÎΦ = â†b̂eiΦ + b̂†âe−iΦ. (2.17)

We will now demonstrate how this operator, and in particular its expectation

value, is related to the quadrature x̂Φ (Equation 2.10). The procedure is the
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following

〈ÎΦ〉 = Tr
[
ρ̂s ⊗ |z〉〈z| ÎΦ

]
= Tr

[
ρ̂s ⊗ |z〉〈z| (â†b̂ eiΦ + b̂†â e−iΦ)

]
= Tr

[
ρ̂s ⊗ |z〉〈z| (â†b̂ eiΦ)

]
+ h.c. =

(
Tr[ρ̂s â†] · Tr[|z〉〈z|b̂ eiΦ]

)
+ h.c.

=
(
Tr[ρ̂s â†] · 〈z|b̂ eiΦ|z〉

)
+ h.c. =

(
Tr[ρ̂s â†] · z eiΦ

)
+ h.c.

= Tr
[
ρ̂s (â† z eiΦ + â z∗ e−iΦ)

]
= |z|Tr

ρ̂s (â†eiΦ + âe−iΦ)︸ ︷︷ ︸
√

2x̂Φ


=
√

2 |z| 〈x̂Φ〉 , (2.18)

where Tr [ρ̂s ⊗ |z〉〈z|IΦ] is the expectation value of the photocurrent ÎΦ on

the total input state ρ̂s ⊗ |z〉 〈z| and at the end, since z in a complex number

z = |z|eiθ we have redefined Φ→ Φ + θ. The separation of the trace in the

second line is possible since the two states belong to different Hilbert spaces.

Nevertheless this demonstration is valid under certain conditions dealing with

the local oscillator. The first observation is that the operator Î has a discrete

spectrum, but if the local oscillator is in a strong semiclassical state (high

intensity) its quantum fluctuation can be neglected and b̂→ z. Moreover the

expectation values of the moments of order greater than one are different

from the quadratures ones: it can be demonstrated [12] that

〈ÎnΦ〉 = 〈x̂n−2
Φ

(
x̂2

Φ +
â†â

2|z|2

)
〉. (2.19)

They tend to the quadrature moments only if 〈â†â〉 � |z|2.
In conclusion we can perform a balanced homodine detection only if two

condition on the local oscillator are satisfied:

1) |z| � 1

2) |z|2 � 〈â†â〉 .
(2.20)

2.2.3 Pulsed regime

The previous description of Balanced Homodyne Detection does not treats

explicitly the case of pulsed laser sources. However performing time domain

measurement (with a pulsed sources of light) can be interesting in order to

study states of light with non classical feature, which can be crated by non
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2.2. Homodyne detection

linear interactions. Since the high peak intensity of pulsed laser enable a large

variety of non linear effects, pulsed laser sources are the ideal playground

to look for non classical states of light. In addition to this, the intrinsic

advantage of pulses sources is that they can be used in pump and probe

measurements. This possibility will be exploited here to study in time domain

to analyze coherent vibrational states in condensed matter.

On the other hand the use of pulsed sources entails some technical challenges

for the detector:

1. The electronics should be fast enough to separate the signals coming

from different laser pulses

2. The detector must subtract precisely the two photocurrents in order to

eliminate the classical noise of the local oscillator, even at high energy

(since we work in the semiclassical regime of the local oscillator)

3. It should be able to measure the shot noise, which is due to the

quantization of the electromagnetic field (and not to characteristics of

the detector) and describes the fluctuation of the number of photons.

This means that the detector should provide very low noise to the

signal, that is, should have efficiency η close to 1. In particular we

define efficiency the ratio between the shot noise and the total noise at

a certain intensity of the beam (the highest one which does not present

other noise contributions). Fortunately verifying this property of the

photodetector is quite simple, since the shot noise varies linearly with

the power of the beam, while the classical noise scales quadratically

and the electronic noise is constant [11] (see Figure (2.4)).

There is another problem which is not connected with the detector: since both

the signal and the local oscillator are pulsed, they cannot be monochromatic

and the theory of Balanced Homodyne Detection might not be valid anymore.

Nevertheless a mathematical formalism has been developed that generalizes

the treatment of the single mode Balanced Homodyne Detection to the pulsed

regime [13].
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Figure 2.4: Schematic result of a noise measurement: the linear component

(blue) represent the shot noise, while the constant one (green) is the electronic

noise. η is the efficiency of the detector.
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Chapter 3

Time resolved measurements

So far we have introduced concepts of quantum optics and an experimental

technique to measure the quantum state of light. The project of this work

is to couple these quantum optics aspects with time resolved spectroscopy

and in particular with pump and probe experiments and Raman spectroscopy.

In a pump and probe experiment an ultrashort pulse (∼ 100 fs) called

pump impinges on the sample and injects excitation in the system; a second

pulse, called probe, is then transmitted (or reflected) by the sample during

its relaxation, in order to measure the variation of optical properties of the

sample (transmittance or refletivity). The time delay between the two pulses

can be tuned by changing mechanically the optical path of one of the beams

(through a slit, for example): 1 µm difference corresponds to a time delay of

3.3 fs. This variation allows to measure the dynamics of the transmitted or

reflected probe after the system excitation.

Raman scattering is an inelastic scattering process from vibrational

modes of molecules or lattice in crystals. Naively we can imagine an experi-

ment in which a light pulse impinges on the sample: the energy difference

between the incident and the final beams is due to the excitation or de-

excitation of vibrational modes. In particular Raman spectroscopy gives

information about the frequencies of optical phononic modes near the Bril-

louin zone center.

35



CHAPTER 3. TIME RESOLVED MEASUREMENTS

To determine Raman active modes one needs a complete treatment in group

theory; nevertheless the rule of mutual exclusion tells us that in a centrosym-

metric crystal even parity modes are Raman active [14]. We will consider

stimulated Raman Spectroscopy, in which a pump pulse excites nuclear vibra-

tions in the sample and then the probing beam is scattered by the excited

system.

In this chapter these concepts are introduced, following the formalism sug-

gested by S. Mukamel in his work Principles of nonlinear optical spectroscopy

[1].

3.1 Nonlinear response function

We could say naively that the aim of optical spectroscopy is to understand

the features of a sample studying the variation of the properties of the

light passing through (or reflected by) it. So, in order to define a theory

that describes this experimental technique, it is "sufficient" to focus on an

optical quantity which connects the properties of the material with that

of the electromagnetic radiation: the polarization P (r, t) seems to be a

good candidate, since it is a material quantity and appears in the Maxwell

equations. In this section we are going to develop the nonlinear response

theory, a formalism used in the calculation of optical polarization.

Before starting with our purpose we will make some approximations in order

to simplify the calculations:

1. We will adopt the semiclassical approximation, that is, the electromag-

netic field is considered classical and the sample is treated quantum

mechanically.

2. We will consider a perturbative expansion, which is valid only if the

radiation field is weak enough. The approximation of weak field is

not so restrictive, since the field must be compared with the internal

fields (in an hydrogen atom it is of the order of 1017 W/cm2, while the

maximum intensity of our fields is about 103 W/cm2).
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3.1. Nonlinear response function

3. The argument will be introduced in dipole approximation: we assume

the samples dimension to be much smaller than the optical wavelength:

consequently the field can be considered homogeneous in the interested

region. This assumption is used in the first calculation and then the

results are generalized to more complex systems.

In dipole approximation the semiclassical Hamiltonian describing the radiation-

matter interaction is

H ′ = −
∫
E (r, t)P (r) dr = −E (r, t)V, (3.1)

where V is the dipole operator V =
∑

α qα (r− rα) (we sum over all nuclei

and electrons α with charge qα and positions rα).

The total Hamiltonian is H = H0 +H ′ and its time evolution is defined by

the equation

dρ̂

dt
= − i

~

[
Ĥ0, ρ̂

]
− i

~

[
Ĥ ′, ρ̂

]
= − i

~
L0ρ−

i

~
L ′ρ, (3.2)

where ρ is the density operator and the first line is written in Hilbert space

notation, while the second in Liouville one; as a consequence of equation

(1.43) L ′(t)A = [H ′, A].

Let us introduce a new superoperator, that will be useful to simplify the

notation in Liouville space:

V A = [V,A] . (3.3)

Our first aim is to write the power series of the density operator, but, in

order to do this, let us before focus on the time evolution operator.

3.1.1 Time evolution operator

From the differential equation (1.46)

∂U (t, t0)

∂t
= − i

~
L U (t, t0) , (3.4)

we can get an expression for the Liouville time evolution superoperator

U (t, t0), with initial condition U (t0, t0) = 1. If we are considering a system
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described by a time independent Hamiltonian, the time evolution superopera-

tor is simply

U (t, t0) = e−
i
~L (t−t0) (3.5)

whose representation in Hilbert space is

U (t, t0)ρ(t0) = e−
i
~H(t−t0)ρ(t0)e

i
~H(t−t0). (3.6)

If we consider instead a more general case, in which the Hamiltonian is time

dependent, the solution of the time evolution operator becomes

U (t, t0) = expT

[
− i
~

∫ t

to
dτU (τ)

]
, (3.7)

where the subscript T means time-ordered exponential, i.e. a short notation

for

U (t, t0) = 1 +

∞∑
n=1

(
− i
~

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1...

∫ τ2

t0

dτ1 ×

× L (τn)L (τn−1)...L (τ1)

(3.8)

U (t, t0)ρ (t0) = ρ(t0) +
∞∑
n=1

(
− i
~

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1...

∫ τ2

t0

dτ1 ×

× [H(τn), ... [H(τ2), [H(τ1), ρ(t0)]] ...] , (3.9)

where we have used the definition of the Liouville superoperator (1.43).

The interaction picture

So far we treated the entire Hamiltonian perturbatively (as a matter of fact

it compares "entirely" in the expansion of U (t, t0) (3.9)), but this method

is usually valid for short times and it breaks down at longer times. The

interaction picture, instead, treats one part of the Hamiltonian (H0) exactly

and expands only the remaining part H1. If the Hamiltonian is conveniently

divided in the two parts, that is if the Hamiltonian H0 is "simple" and its time

evolution can be calculated exactly, the expansion is valid for longer times.

This representation can be considered intermediate between the Schrödinger

picture and the Heisenberg one, since in this case both state vectors and
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operators are function of time and contribute to the time dependence of

observables; they are represented in Hilbert space as follows

|ψI(t)〉 = e
i
~ Ĥ0t |ψS(t)〉

ÂI(t) = e
i
~ Ĥ0tÂS(t)e−

i
~ Ĥ0t. (3.10)

One can introduce the same picture in Liouville space, by partitioning the

Liouville superoperator as suggested by equation (3.2)

L = L0 + L ′. (3.11)

Consequently also the time evolution operator can be split in two parts

U0(t, t0) = expT

[
− i
~

∫ t

t0

dτL0(τ)

]
Uint(t, t0) = expT

[
− i
~

∫ t

t0

dτL ′
int(τ)

]
(3.12)

(where L ′
int(τ) = U†(τ, t0)L ′U†(τ, t0) ), whose product gives the total time

evolution superoperator; finally we can express the total operator as

U (t, t0) = U0(t, t0) +
∞∑
n=1

(
− i
~

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1...

∫ τ2

t0

dτ1 ×

× U0(t, τn)L ′(τn)U0(τn, τn−1)L ′(τn−1)...

... U0(τ2, τ1)L ′(τ1)U0(τ1, t0). (3.13)

3.1.2 Expansion of the density operator

Let us come back to the time dependent density operator and consider its

expansion in powers of the electric field, i.e.

ρ(t) ≡ ρ(0)(t) + ρ(1)(t) + ρ(2)(t) + ... (3.14)

where ρ(0)(t) = ρ(−∞). Keeping in mind the time evolution of the elements

of Liouville space (1.46) and the evolution of the superoperator U (t, t0) (3.13)

we get

ρ(n)(t) =

(
− i
~

)n ∫ t

t0

dτn...

∫ τ2

t0

dτ1G (t− τn) Lint (τn) G (τn − τn−1) ·

· Lint (τn−1) ...G (τ2 − τ1) Lint (τ1) G (τ1 − t0) ρ (t0) (3.15)
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where G (τ) = θ(τ)e−
i
~L τ is the Liouville space Green function in absence of

radiation fields and θ(τ) is the Heavyside step function.

Since ρ(t0) represents the equilibrium density operator, it does not evolve in

time in absence of external fields, so G (τ1 − t0)ρ(t0) = ρ(t0). Furthermore

L ′
int = −E(t)V , as follows from equations (3.1) and (3.3). The equation

for the nth contribution of the density operator then becomes

ρ(n)(t) =

(
i

~

)n ∫ t

t0

dτn...

∫ τ2

t0

dτ1E (r, τn)E (r, τn−1) ...E (r, τ1)×

× G (t− τn) V G (τn − τn−1) V ...

... G (τ2 − τ1) V G (τ2 − τ1) V ρ (t0) . (3.16)

Finally if we change the time variables with tk ≡ τk+1 − τk (and τn+1 = t),

send t0 → −∞ and define V (τ) ≡ e
i
~L τV e−

i
~L τ , we get

ρ(n)(t) =

(
i

~

)n ∫ +∞

0
dtn...

∫ +∞

0
dt1E (r, t− tn)E (r, t− tn − tn−1) ...

...E (r, t− tn − tn−1...t1) G (tn + tn−1 + ...+ t1) V (tn−1 + ...+ t1) ...

...V (t1) V (0) ρ (t0) .

(3.17)

The knowledge of the perturbative expansion of the density operator is

useful since it allows to compute the expectation value (or more precisely, its

expansion) of any observable on the considered state [Equation (1.29)]; in

particular we developed it in order to find out the polarization P (r, t), i.e.

the expectation value of the dipole operator V .

We are interested in this expansion because every order represents a different

kind of measurement: the linear polarization determines linear optics, P (2)

represents second order processes, such as frequency sum generation and

third order concerns techniques including four wave mixing and pump-probe

spectroscopy. The nth order contribution to the polarization is

P (n)(r, t) =〈V 〉 = Tr[V ρ] = 〈〈V |ρ〉〉

=

∫ +∞

0
dtn...

∫ +∞

0
dt1S

(n)(tn, tn−1, ...t1)E (r, t− tn) ·

· E (r, t− tn − tn−1) ...E (r, t− tn − tn−1...t1) ,

(3.18)
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where

S(n) (tn, tn−1, ...t1) =

(
i

~

)n
〈〈V |G (tn)V G (tn−1)V ...G (t1)V |ρ(−∞)〉〉

=

(
i

~

)
θ(t1)θ(t2)...θ(tn)·

· 〈〈V (tn + ...+ t1)|V (tn + ...+ t1) ...V (t1)V (t0) |ρ(−∞)〉〉
(3.19)

is the nth order response function and sum up the total microscopic infor-

mation for the calculation of optical measurement. We can define the same

quantity in the Hilbert space and, using the definition of V , one obtains

S(n) (tn, tn−1, ...t1) =

(
i

~

)
θ(t1)θ(t2)...θ(tn)·

·〈V (tn + ...+ t1) [V (tn + ...+ t1) , [... [V (t1), [V (t0), ρ(−∞)]] ...]]〉.
(3.20)

Note that the Heaviside step functions θ(t) guarantee the causality principle

in the calculation of the polarization, since it depend only on the fields at

earlier times.

Third order response

Since in definition (3.19) every V represents a commutator, the nonlinear

response function S(n) is made up of 2n terms, but only half of them are

independent: the others are the complex conjugates of the former.

In this thesis we are particularly interested in the third order response function,

because it is used to treat four wave mixing techniques (described in section

3.2). Let us rewrite equation (3.19) for n = 3:

S(3)(t3, t2, t1) =

(
i

~

)3

θ(t1)θ(t2)θ(t3)〈〈V (t3 + t2 + t1)|

V (t3 + t2 + t1)V (t2 + t1)V (t1)V (0) |ρ(−∞)〉〉

=

(
i

~

)3

θ(t1)θ(t2)θ(t3)〈V (t3 + t2 + t1)

[V (t2 + t1) [V (t1) [V (t0), ρ(−∞)]]]〉,

(3.21)
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which can be redefined as

S(3)(t3, t2, t1) =

(
i

~

)n
θ(t1)θ(t2)θ(t3)

4∑
α=1

[Rα(t3, t2, t1)−R∗α(t3, t2, t1)] ,

(3.22)

where

R1(t3, t2, t1) = 〈V (t1 + t2 + t3)V (0)ρ(−∞)V (t1)V (t1 + t2)〉

R2(t3, t2, t1) = 〈V (t1 + t2 + t3)V (t1)ρ(−∞)V (0)V (t1 + t2)〉

R3(t3, t2, t1) = 〈V (t1 + t2 + t3)V (t1 + t2)ρ(−∞)V (0)V (t1)〉

R4(t3, t2, t1) = 〈V (t1 + t2 + t3)V (t1 + t2)V (t1)V (0)ρ(−∞)〉. (3.23)

are the so called Liouville paths.

3.1.3 Extended systems

Up to now we have considered a simple model of an isolated small particle

for which the adiabatic approximation is valid; let us generalize the obtained

result to a more realistic system with arbitrary size. In this case the interaction

Hamiltonian is

H ′ = −
∫
drE(r, t) · V (r), (3.24)

where V (r) is a polarization operator. From the generalization of equation

(3.18) one gets

P (n)
νs (r, t) =

∫
drn

∫
drn−1...

∫
dr1

∫ +∞

0
dtn...

...

∫ +∞

0
dt1S

(n)
ν1,...νn,νs(r; rn, ...r1, tn, tn−1, ...t1)Eνn(rn, t− tn)×

× Eνn−1(rn−1, t− tn − tn−1)...Eν1(r1, t− tn, tn−1...t1), (3.25)

with nonlinear response function

S(n)
ν1,...νn,νs (r; rn, ...r1, tn, tn−1, ...t1) =

=

(
i

~

)n
〈〈Vνs(r)|G (tn)Vνn(rn)G (tn−1) ...G (t1)Vν1(r0) |ρ(−∞)〉〉.

(3.26)

In the previous equations Eνi(rj , t) is the field polarized in the νi direction and

S(n) describes the νs component of the polarization induced at point r and

time t by n interactions with the field at times t−tn, t−tn−tn−1, ...t−tn−...−t1
and points rn, ..., r1.
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3.1.4 Double-sided Feynman diagrams

We have just obtained the optical polarization, both for point-like and

extended systems, which contains the total information about the interaction

we want to study. Nevertheless the physical interpretation of its expression

is not so clear, even for simple systems. So let us introduce a graphic

representation, containing a lot of information about the interaction, the so

called double-sided Feynman diagram. This representation is based on the

concepts of response function and density operator. In order to introduce it

we will consider the third order response function analyzed in section [3.1.2],

not only because it is simpler to be represented, but also because the third

order of the polarization perturbative expansion in useful to treat four wave

mixing techniques [section (3.2)], as already anticipated.

Let us consider expression 3.22: we are looking for a graphic representation of

Ri (equations 3.23). The double-sided Feynman diagram can be constructed

using the following rules:

1. Two vertical lines represent the density operator, and, in particular,

the left line is the ket, while the right one is the bra.

2. Time is running from the bottom to the top of the lines (so we could

say that the lines represent the time evolution of the density operator).

3. The interaction with the field is represented by wavy arrows pointing

towards or away from the system.

4. As a convention the last interaction (in this case at time t1 + t2 + t3)

"goes out" from the left side (the ket).

5. The sign of Ri is (−1)n, where n is the number of interaction on the right

(bra), because any of them represents the second term of a commutator.

In our situation in R1, R2 and R3 there are 2 interactions on the right

and in R1 there is no interaction on the right, so in both cases the sign

is plus.

6. An arrow pointing to the right stands for the contribution of the field

Eje
i(kj ·r−ωjt) and the action of the photon annihilation operator â,
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while an arrow pointing to the left represent its complex conjugate

and the action of the creation operator â†. As a consequence an arrow

pointing towards the system symbolizes photon absorption, while an

arrow pointing away describes photon emission

7. The last interaction must end in a population state.

Following these rules one can draw the Feynman diagram for any light-matter

interaction. The third order response function, in particular, gives these

contributions:

Figure 3.1: Feynman diagrams representing the contributions of the third

order response function (3.23).

3.2 Classification of four wave mixing techniques

In this section we are going to treat low order nonlinear optical techniques,

connected with the nonlinear polarization P (n−1); the simplest and most

common ones are related to multiwave mixing. The n-wave mixing process is

due to the interaction between n−1 electromagnetic fields, with wave vectors

k1...kn and frequencies ω1...ωn: a coherently generated signal should have

wave vector ks = ±k1±k2± ...±kn and frequency ωs = ±ω1±ω2± ...±ωn.

3.2.1 n-wave mixing

Let us compute the contribution to the nth order of the signal generated by

many electromagnetic fields. In general the total electric field can be written
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as

E(r, t) =
n∑
j=1

Ej(r, t)ei(kj ·r−ωjt). (3.27)

If the signal field is outside the absorption spectrum, the dielectric function is

real, i.e. ε(ωj) = n2
j , where nj is the refractive index of the medium for light

at frequency ωj (note that kj =
ωj
c nj). From the Maxwell equations we get

~∇× ~∇×E(r, t) +
n2

c2

∂2E(r, t)
∂t2

= −4π

c2

∂2PNL(r, t)
∂t2

, (3.28)

where PNL(r, t) is the nonlinear polarization generated by the interaction

between the incoming modes and the medium. Let us rewrite the nonlinear

polarization in the form

PNL(r, t) =
∑
n

∑
s

P (n)
s (t)ei(ks·r−ωst), (3.29)

and focus only on one term of the previous sum, that experimentally means

that we fix the position of the detector (index s) and we choose a particular

technique, which allows us to see a specific order of the signal (index n). In

order to simplify the calculation we change the coordinate system, such that

ks is parallel to the z-axis; as a consequence ks · r = ksz.

Assuming that the solution of equation (3.28) is of the form

E(r, t) = Es(z, t)ei(k’s·r−ωst) + c.c., (3.30)

that Ps(t) varies very slowly (i.e.
∣∣∣∂Ps(t)∂t

∣∣∣ � |ωsPs(t)|) and inserting all

information in (3.28), one gets that

Es(l, t) =
2πi

n (ωs)

ωs
c
lPs(t)sinc

(
∆k · l

2

)
ei

∆k·l
2 , (3.31)

where l is the "thickness" of the sample along the z-axis, with ks · l � 1

(which means that the wavelength of the incident beam should be much

smaller than the dimension of the sample), ∆k = ks−k’s and sinc(x) = sinx
x ,

as shown in Figure (3.2).

Note that for l→∞ sinc
(

∆k·l
2

)
→ (2π)3δ (∆k · l): the last limit represent

the phase matching condition.

45



CHAPTER 3. TIME RESOLVED MEASUREMENTS

Figure 3.2: Function sinc(x) = sinx
x .

Heterodyne detection of wave mixing

We already know that performing a spectroscopic experiment we finally get a

signal proportional to the square of the polarization. The advantage of wave

mixing is that the signal can be generated in a direction different from that

of the incoming fields, reducing considerably the background and giving a

more sensitive response, but it is also much weaker. For this reason another

technique is usually coupled to wave mixing, the heterodyne detection, which

allows us to amplify the signal (and so the sensibility) by adding a new field,

called local oscillator. The local oscillator should have the same wave vector

direction of the output signal: in this way the measured intensity (I(t)) is

a superposition of the local oscillator and the signal fields (ELO and ES

respectively), i.e.

I(t) =
n(ωs) · c

8π
|ELO(t) + ES(t)|2

= ILO + IS(t) +
n(ωs) · c

4π
Re [E∗LO(t) · ES(t)] . (3.32)

As already said this technique is used when the signal is weak, so we can

always choose an intense local oscillator: in this case the term IS in negligible

when compared to ILO or to the product of the two fields, while ILO can

be easily subtracted, since the field is known and does not interact in the

sample.

A particular case of this technique occurs when the field is generated along

one of the incoming beams: in this case we have an intrinsic heterodyne
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detection and one measures the intensity

I(t) =
n(ωs) · c

4π
Re [E∗3(t) · ES(t)] ∝ ω2lIm [E∗3(t) · PS(t)] , (3.33)

where I2 is the incoming field intensity (with frequency ω2); the notation is

in accordance with that used to describe pump and probe [section 3.3] and

Raman [section 3.4] spectroscopy.

3.2.2 Four wave mixing

Different orders of the polarization allow to study different phenomena. For

the second order polarization P (2) we get three wave mixing processes, such as

the second harmonic generation (ks = 2k1 and ωs = 2ω1), or more generally

sum or difference frequency generation (ks = k1 ± k2 and ωs = ω1 ± ω2).

However second order non linearities vanish for isotropic media with inversion

symmetry: in this case the first order non linearity is the third one and one

gets four wave mixing processes.

In general when light-matter interactions take place we don’t know exactly

what happens to the density operator (that is how it evolves in time), since

the polarization contains all the possible Liouville paths. Nevertheless a

convenient choice of some experimental conditions allows us to get a lot of

information about the process itself. We will initially consider an ideal time

domain four wave mixing measurement performed with three well separated

pulses: as a matter of fact controlling the time ordering of the pulses and

selecting the wave vector direction of the output signal, we can choose a

particular Liouville space path.

Let us consider an electric field made up of three pulses

E(r, t) = E1(t+τ+τ ′)ei(k1·r−ω1t)+E2(t+τ)ei(k2·r−ω2t)+E3(t)ei(k3·r−ω3t)+c.c.,

(3.34)

where Ej is the envelope of the j-th pulse and ωj is its mean frequency;

suppose the time delays τ and τ ′ between the pulses to be much longer then

the duration of the pulses (Figure (3.3)).

As one can simply observe from the definition of ks, there are eight possible

directions for the output signal; nevertheless some opportune approximations

can reduce their number.
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Figure 3.3: Simplified scheme of a four wave mixing process.

Suppose that our system is a two-electronic level one and that the frequencies

of the electromagnetic fields are near resonance, i.e. ω1, ω2, ω3 ≈ ωeg (where

~ωeg is the energy difference between the levels). Considering the transition

due to the three fields, if we compute the third order polarization, we obtain

terms with frequency (ωj−ωeg) or (ωj +ωeg). The latter oscillate much faster

than the former and performing a time integration over the signal (present

in the calculation of the polarization), it gives a small contribution and can

be neglected: this is the so called rotating wave approximation.

For the same reason the first two fields (E1 and E2) must have opposite

sign of frequency, otherwise we get a highly oscillatory term ei(ω1+ω2)t2 which

disappear with the integration over the period t2. This means that the only

possible wave vectors for the resulting field are ±k3 ± (k2 − k1): it is possible

to interpret the signal in terms of a grating formed by the first two beams,

while the third undergoes a Bragg diffraction from that grating.

Finally the dominant components of the polarization are:

P (3)(ka ≡ k3 + k2 − k1, t) =

(
i

~

)3 ∫ +∞

0
dt3

∫ +∞

0
dt2

∫ +∞

0
dt1

[R2(k3,k2,k1) +R3(k3,k2,k1)]E3(t− t3)E2(t+ τ − t3 − t2)

E∗1(t+ τ + τ ′ − t3 − t2 − t1)ei(ω3+ω2−ω1)t3ei(ω2−ω1)t2e−iω1t1)

(3.35)
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P (3)(kb ≡ k3 − k2 + k1, t) =

(
i

~

)3 ∫ +∞

0
dt3

∫ +∞

0
dt2

∫ +∞

0
dt1

[R1(k3,k2,k1) +R4(k3,k2,k1)]E3(t− t3)E∗2(t+ τ − t3 − t2)

E1(t+ τ + τ ′ − t3 − t2 − t1)ei(ω3−ω2+ω1)t3e−i(ω2−ω1)t2eiω1t1)

(3.36)

and their complex conjugates. Positioning the detector along a specific

direction (ka, kb, −ka or −kb), one can select the desired contribution of

the polarization. Moreover if the duration of the pulse is short enough, its

envelope tends to a Delta function and the calculation of the third order

polarization becomes easier.

We must keep in mind that this result is due to some relevant simplifications.

First of all we have considered a two level system: in a three level system, for

example, also k1 + k2 + k3 and ω1 + ω2 + ω3 can be a resonant combination!

Moreover if the pulses overlap we can get additionally contributions, due to

the permutations of k1, k2 and k3. In order to obtain different spectroscopic

techniques we have to change some if these experimental conditions: in

particular we are interested in pump-probe spectroscopy, in which we will

consider pulses that overlap, and off-resonance Raman scattering, in which

the frequencies are far from ωeg and their difference is equal to a vibrational

transition (ω1 − ω2 = ωνν′).

3.3 Pump and probe

Let us consider now a four wave mixing technique in which we have only partial

control on time ordering, that is to say that the time interval τ is sufficiently

large to distinguish the third pulse from the first two, whose time order is not

completely defined. Pulses 1 and 2 interfere in the medium creating a grating

of matter response of k-vector k1 − k2, while pulse 3 undergoes a Bragg

diffraction which generates a scattering beam with ks = k1 ± (k3 − k2).

The present situation seems to be quite different from a typical pump and

probe experiment, first of all because it involves three or even four (if we

consider also a local oscillator to detect the signal better), instead of two

pulses (the pump and the probe). Let E1(t+ τ) be the envelope of the pump,
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centered at time t = −τ and E3(t) the probe one, peaked at t = 0: the

hypothesis on the time delay τ ensures that the pump comes before the probe.

One can consider the effect of the pump on the sample as the interaction of

more pulses on it: therefore E2 is the pump envelope too (E1 = E2), just

arriving at a slightly different time. Since k1 = k2, the two possible signal

wave vectors are ks = k3 and ks = 2k1 − k3, but in the usual configuration

of a pump-probe experiment the field measured propagates along the probe

direction, therefore only the first possibility is correct. Moreover in this

particular situation the probe field acts as a local oscillator too, as described

in the section about heterodyne detection.

Using equations (3.18), (3.22) and (3.23), reminding that in the present

case we have a partial time ordering, so the only condition on time is that

E3 interacts last, that E3 acts as a local oscillator too (and the measured

intensity is given by equation (3.33) integrated in time), and performing the

change of variable t→ t− τ + t3, one finally gets the following signal

IPP (ω1, ω2, τ) =

(
1

~

)3

2ω2Re

{∫ +∞

−∞
dt

∫ +∞

0
dt3

∫ +∞

0
dt2

∫ +∞

0
dt1

[E∗3(t− τ + t3)E3(t− τ)E∗1(t− t2)E1(t− t2 − t1)·

· ei(ω2t3+ω1t1)[R1(t3, t2, t1) +R4(t3, t2, t1)]+

+ E∗3(t− τ + t3)E3(t− τ)E1(t− t2)E∗1(t− t2 − t1)·

ei(ω2t3−ω1t1)[R2(t3, t2, t1) +R3(t3, t2, t1)]]

}
(3.37)

In the previous expression only contributions that are second order in the

pump and probe fields has been considered. Obviously there are also terms

of fourth order in the probe and zeroth in the pump field with the same wave

vector (ks = k3−k3 +k3), but since we want to measure the probe difference

absorption (that is the difference between the probe in presence of the pump

and in absence of the latter) they do not contribute to the difference signal.
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3.4 Off-resonant Raman Scattering

Raman scattering is an inelastic diffusion of photons in which the energy

difference between the incident and the scattered beam corresponds to vibra-

tional levels of the sample. In impulsive Raman spectroscopy experiments

a laser pulse is applied (pump) and coherent vibrations are observed in the

variation in time domain of the optical properties of a second pulse (the

probe), due to the excitation of coherent phonons. The term off-resonant

refers to the fact that the involved energies are far from electronic transitions.

Off-resonant Raman spectroscopies are a simple class of non-linear techniques

related to P (3): we look for two photon resonance, whose frequency difference

is resonant with vibrational transitions (ωνν′ = ω1 − ω2). As we have already

anticipated we use only two pulses, even if we want to observe two photon

resonances. As in the case of pump-probe measurements the first two fields

are both provided by the first pulse, but there is an important difference

with the previous case: this time the frequencies (ω1 and ω2) cannot be

the same, otherwise no phonon can be excited. The solution comes from

the pulsed nature of laser radiation: since the beams are limited in time

(that is they are not continuous), they present a frequency dispersion. If

the bandwidth is large enough to contain a vibrational energy gap of the

sample, we will observe Raman scattering. In our case the laser radiation has

a bandwidth of ∆λ ≈ 30 nm, which corresponds to ∆ω ≈ 8 · 1013 Hz, which

is larger than the lowest energy Raman active modes in our sample (whose

energy is of the order of some Terahertz), but is lower then the energy gap

of α-quartz (~∆ω ≈ 0.06 eV, while the energy gap is several electronvolts).

Raman experiments are performed using ultrafast laser pulses, shorter than

the relevant vibrational periods and relaxation times (which appears in the

signal as broadening).

Assume to have two simultaneous pumps, with central frequencies ω1 and

ω2 (and wave vector k1 and k2) respectively, which interacts in the sample

creating a dynamic grating with wave vector k1 − k2. After a time delay τ a

third pulse with frequency ω3 (and wave vector k3) impinges on the sample

and is scattered from it. The Raman signal wave vector is ks = k3 + k1− k2,
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corresponding to the Bragg diffraction from the grating. Note that in our

case k1 and k2 have the same direction and similar modulus, and the angle

between k1 and k3 is as small as possible, therefore the direction of the

Raman scattering is close to the probe one (k3) [see Figure (3.4)].

The total electric field in a Raman experiment is

Figure 3.4: Scheme of Stimulated Raman Scattering on the sample. Red

lines represent the two pump pulses with same direction but slightly different

modulus, while the green line is the probe pulse. Inserting the data of our

experiment (wavelength λ = 800 nm, Raman active mode with frequency

ν = 3.9 THz), the modulus of k3 is two order of magnitude bigger than the

modulus of k1 − k2. Even if we consider an angle θ between the pump and

the probe propagation direction of 20◦ (in our experimental set-up it is surely

less) the ratio between the ks component parallel to k3 and the perpendicular

one is about 300, therefore the propagation direction of the signal can be

considered the same of the probe one.

E(r, t) = E1(t−τ)ei(k1·r1−ω1t)+E2(t−τ)ei(k2·r2−ω2t)+E3(t)ei(k3·r3−ω3t)+c.c.,

(3.38)

where pulses 1 and 2 are coincident in time and centered in t = −τ , while the

third pulse is peaked at t = 0; the time delay τ is large enough to consider

the first pulses well separated from the last. The measured signal will depend
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on the third order nonlinear polarization through the relation

IRS(τ) =

∫ ∣∣∣P (3)(ks, t, τ)
∣∣∣2 dt, (3.39)

with polarization

P (3)(ks, t, τ) =

∫ +∞

0
dt1

∫ +∞

0
dt2

∫ +∞

0
dt3S

(3)(t3, t2, t2)

{
E3(t− t3)·

· E∗2(t+ τ − t2 − t3)E1(t+ τ − t1 − t2 − t3)eiωst3eiω1t1ei(ω1−ω2)t2+

+ E3(t− t3)E∗2(t+ τ − t1 − t2 − t3)E1(t+ τ − t2 − t3)eiωst3e−iω2t1ei(ω1−ω2)t2

}
,

(3.40)

where we have considered that E3 is always the last pulse. S(3) has eight

terms (Equation 3.22), which depend on the Hamiltonian of the system. Let

us now introduce the Brownian oscillator model which allows the description

of the dynamics of nuclei in a crystal in order to calculate the response

function.

Brownian oscillator model

The Brownian oscillator model describes the nuclear dynamics both in the

case of coherent and damped motions and so represents a general way to

study the coupling between nuclear motions and optical transitions.

Let us consider a two electronic-level system, with a ground state |g〉 and an

excited state |e〉 and with nuclear coordinates qj coupled linearly with the

electronic system. The Brownian oscillator Hamiltonian is

H = |g〉Hg 〈g|+ |e〉He 〈e|+H ′ (3.41)

where

Hg =
∑
j

[
p2
j

2mj
+

1

2
mjω

2
j q

2
j

]

He = ~ω0
eg +

∑
j

[
p2
j

2mj
+

1

2
mjω

2
j (qj + dj)

2

]
(3.42)

and qj , pj , mj represent the coordinate, momentum and mass of the jth

nuclear mode, while ~ω0
eg is the electronic energy gap at the equilibrium
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and dj is the displacement of the equilibrium configuration of the jth mode.

Moreover the nuclear degrees of freedom are coupled to a bath of harmonic

oscillators with coordinates xn and momenta pn. The interaction between

the two kinds of oscillators is assumed to be linear, with strength cn, and is

described by

H ′ =
∑
n

[
p2
n

2mj
+
mnω

2
n

2

xn −∑
j

cnjqj
mnω2

n

2 ]
(3.43)

Suppose that the total system is initially at equilibrium in the ground

electronic state

ρ̂g = |g〉 〈g| e−β(Hg+H′)

Tr
(
e−β(Hg+H′)

)1 (3.44)

and define

Cj = 〈qj(t)qj(0)ρg〉. (3.45)

The latter quantity is related to the response function through the so called

cumulant expansion, which is a method to calculate the response function

perturbatively: in this case the expansion is performed directly on the response

function rather than on the time evolution operator. In this thesis we are

not going to derive it; anyway it is important to know that the term of the

expansion (and so also the Ri of equation (3.23)) are exponential of the

function g(t) ≡
∫ t

0 dτ2

∫ τ2 dτ1C (τ1), and C (τ) =
∑

j

(
mjω

2
j dj

~

)
Cj .

One can separate Cj in its real and imaginary part

C ′j(t) =
1

2
[〈qj(t)qj(0)ρg〉+ 〈qj(0)qj(t)ρg〉]

C ′′j (t) =
−i
2

[〈qj(t)qj(0)ρg〉 − 〈qj(0)qj(t)ρg〉] . (3.46)

Computing the Fourier transform of these coefficients and considering high

frequency vibrations and the ideal case of absence of friction in the oscillator,

the latter experiences a coherent motion and we get

C ′′j = − ~
2mjωj

sin(ωjt). (3.47)

1Thermal states are discussed in Appendix A
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In order to have a more compact notation let us define

ρD(t) = e−
i
~HetVegρge

i
~HgtVge

ρW (t) = e
i
~HetVege

− i
~HgtVge

ρ′D(t) = Vgee
− i

~HetVegρge
i
~Hg

ρ′W (t) = Vgee
i
~HetVege

− i
~Hg (3.48)

(where V is the usual dipole operator), such that

R1 = 〈ρW (t3)Gee(t2)ρD(t1)〉

R2 = 〈ρW (t3)Gee(t2)ρ†D(t1)〉

R3 = 〈ρ′W (t3)Ggg(t2)ρ′†D(t1)〉

R4 = 〈ρ′W (t3)Ggg(t2)ρ′D(t1)〉 (3.49)

and, from equation (3.22),

S(3)(t1, t2, t3) =

(
i

~

)3

θ(t1)θ(t2)θ(t3)·

·
{
〈
[
ρW (t3)− ρ†W (t3)

]
Gee(t2)

[
ρD(t1)− ρ†D(t1)

]
〉+

+ 〈
[
ρ′W (t3)− ρ′†W (t3)

]
Gee(t2)

[
ρ′D(t1)− ρ′†D(t1)

]
〉
}
.

(3.50)

Keeping in mind this new notation one finally gets

P (3)(ks, t, τ) =
i

~3
E3(t)

∫ +∞

0
dt2e

i(ω1−ω2)t2E1(t+ τ − t2)E∗2(t+ τ − t2)·

· 〈〈ρ′W (ωs)− ρ′†W (ωs)|Ggg(t2) |ρD(ω1)− ρ′D(−ω2) + ρ′†D(ω1)− ρ′†D(−ω2)〉〉,
(3.51)

where ρ(ω) is the Fourier transform of ρ(t) and ωs = ω3 + ω1 − ω2.

In general the third order polarization should depend on ω1, ω2 and ωs;

however under off-resonant conditions this dependence is weak and all the

frequencies can be replaced by ωp = ω1+ω2
2 . The previous approximation is

valid only during t1 and t3 periods; that’s why we kept the term ei(ω1−ω2)t2 ,

which represents the two photon resonance.

Equation (3.51) can be rewritten also using the polarizability operator at the
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average frequency

α ≡ 1

~
VgeGeg(ωp)Veg + VgeGeg(−ωp)Veg

and

α(t) ≡ e
i
~Hgtαe−

i
~Hgt = αGgg(t)

(3.52)

(the previous expression is obtained by calculating the linear response function

and remembering that the dipole moment V = αE at the first order).

From the previous relation one gets

ρ′W (ωp)− ρ′†W (ωp) = ~α

ρ′D(ωp)− ρ′†D(−ωp) = ~αρg

ρ′†W (ωp)− ρ′†D(−ωp) = ~ρgα. (3.53)

Substituting the previous operators in equation (3.51) one gets

P (3)(ks, t, τ) =− E3(t)

∫ +∞

0
dt2e

i(ω1−ω2)t2E1(t+ τ − t2)·

· E∗2(t+ τ − t2) 〈− i
~

[α(t2), α(0)] ρg〉︸ ︷︷ ︸
χαα(t2)

,
(3.54)

where χαα is the linear response function associated to the polarizability.

The measured signal can be calculated by performing the modulus square of

the polarization and then integrating over time t

IRS =

∫ +∞

−∞
dt|E3(t)|2

∣∣∣∣∫ +∞

0
dt2e

i(ω1−ω2)t2E1(t+ τ − t2)E∗2(t+ τ − t2)χαα(t2)

∣∣∣∣2 .
(3.55)

Off-resonant Raman Scattering is due to the dependence of the electronic

polarizability on the nuclear coordinates (α(q)), which is totally contained in

the term χαα. The dependence is usually weak (but not completely negligible,

as of resonant excitations), so one can expand α(q) around some equilibrium

positions q0:

α(q) = α(q0) +
∑
j

kjqj + ..., (3.56)

where kj ≡ ∂α
∂qj

evaluated in q0. The previous expansion is usually justified

for phonons in crystals, since the relevant values of the positions are confined
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in a small region close to the equilibrium ones. If we truncate the expansion

to linear order in q, we get

χαα(t) = − i
~
∑
j

k2
j 〈[qj(t), qj(0)]ρg〉 (3.57)

with

qj(t2) ≡ e
i
~Hgt2qje

− i
~Hgt2 (3.58)

(note that the zeroth order of the expansion does not contribute, since it is a

number and commutes with all operators).

From relation (3.45) we notice that this result is connected to the harmonic

Brownian oscillator through the relation

χαα(t) =
2

~
∑
j

k2
jC
′′
j (t) (3.59)

3.4.1 Impulsive Raman Scattering

Impulsive pulses (of the order of femtoseconds) have a sufficiently broad

bandwidth to excite high frequency vibrations coherently. Let us first take

E1 and E2 to have identical envelopes Ep and the same frequency; the third

order polarization becomes

P (3)(ks, t, τ) = −E3(t)

∫ +∞

0
dt2 |Ep(t+ τ − t2)|2 χαα(t2). (3.60)

If both the pump and the probe pulses are impulsive, they can be approxi-

mated by a Dirac delta and one obtains

PIRS = −E3(t)

∫ +∞

0
|δ(t+ τ − t2)|2χαα(t2) = −E3(t)χαα(t+ τ)

IIRS =

∫ +∞

−∞
|E3(t)|2︸ ︷︷ ︸

δ(t)

∣∣∣∣ 1

2π

∫ +∞

−∞
dωe−iω(t+τ)χαα(ω)

∣∣∣∣2

=

∣∣∣∣ 1

2π

∫ +∞

−∞
dωe−iωτχαα(ω)

∣∣∣∣2 = |χαα(t)|2 ,

(3.61)

where χαα(ω) is the Fourier transform of the linear response function associ-

ated to the polarizability.
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Inserting the expression of the linear response function associated to the

polarizability (3.59) in (3.61) and keeping in mind the relation that connects

the coefficients C ′′j of the Cumulant expansion with the field frequency (in

absence of friction) (3.47), one notice that the scattered field has the same

Fourier components of the excited Raman active modes of the medium, and

IIRS ≈

∑
j

1

mjωj
sin(ωjt)

2

. (3.62)

Note that low frequency modes are more visible than high frequency ones,

since the amplitude of the single mode contribution is proportional to ω−1
j .

The previous result is based on the implicit assumption of a prefect homo-

dyne configuration, in which the initial probe beam is totally extinguished; a

more realistic treatment would consider a coupling between the emitted field

and the probe, in heterodyne configuration (3.2.1). In this case the measured

field is the sum of the emitted field (which is very weak) and the initial probe,

which acts as local oscillator:

PTOT = −E3(t)χαα(t+ τ) +AE3(t)eiω3t, (3.63)

(where A is a dimensional constant) and, inserting the previous equation in

3.61,

IIRS =

∫ +∞

−∞
dt |E3(t)|2︸ ︷︷ ︸

δ(t)

{ ∣∣∣∣ 1

2π

∫ +∞

−∞
dωe−iω(t+τ)χαα(ω)

∣∣∣∣2 +
∣∣Aeiω3t

∣∣2︸ ︷︷ ︸
A2

+

+ 2ARe

[
1

2π

∫ +∞

−∞
dωe−iω(t+τ)χαα(ω)eiω3t

]}
.

(3.64)

Under the action of the Dirac delta and because of relation (3.47), the previous

equation becomes

IIRS ≈ A2 +

∑
j

1

mjωj
sin(ωjt)

2

+ 2A
∑
j

1

mjωj
sin(ωjt), (3.65)

where the only relevant term is the last one, since the second is much smaller

and the first is constant. Therefore performing this kind of measure we will
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obtain an intensity which is essentially the sum of signals that oscillates with

the same frequency of the Raman active modes in the material. In our case,

as we will see in chapter 5, just one mode is visible and the output signal is

exactly a sine wave.
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Chapter 4

Experimental apparatus

As already anticipated the scope of this work is to combine different tech-

niques: the pump-probe Raman spectroscopy and quantum tomography. The

latter is commonly used to study the quantum state of light in quantum

optics laboratories. Our aim is to study the quantum state of ultrashort

probe pulses after they have interacted with a photoexcited material. To this

purpose we combine the two techniques of pump and probe and tomographic

reconstruction of the light quantum state. In this chapter I will describe the

set-ups we used both for "simple" time domain Raman scattering experiments

and for time-resolved tomography.

4.1 Experimental set-up

In this work several kinds of measurements on the sample (α-quartz) have been

performed. In the present section I will describe the different experimental

set-ups. The main structure for the pump and probe setup is depicted in

Figure (4.1).

The laser source produces ultrashort pulses with wavelength λ = 800 nm

and repetition rate 250 KHz. The beam is divided by a beam splitter (BS)

in a pump and a probe beam. The probe is then reflected by some mirrors,

impinges on the sample and is finally detected. The pump is also deflected to

impinge on the sample, but two of the mirrors along its path are positioned
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CHAPTER 4. EXPERIMENTAL APPARATUS

Figure 4.1: Simplified scheme of the experimental set-up of the time resolved

measurement.

on a mechanical translator stage used to change the time delay between the

pump and the probe. The optical paths of the two beams are chosen to have

the same length for a translator position close to the center one. Filters,

half-wave plates and polarizers are put along the beams paths to control their

intensity and polarization.

In order to measure different observables in the same excitation conditions,

variations in the last part of the set-up (represented as the box sample-

detection in Figure 4.1) should be performed. In details we made “Standard”

time domain Stimulated Raman Scattering spectroscopy measurements, a

sort of noise measurement (with the same set-up of the Balance Homodyne

Detection, but without the local oscillator) and time resolved BHD. The

three set-ups are now presented.

4.1.1 Standard time domain Raman measurements

In the first kind of measurements a "simple" time domain Raman spectroscopy

is performed: the pump pulse excites optical vibrations in the sample that

are detected by the probe pulse. Both the pump and the probe are focused

on the sample by a lens and after the interaction a second lens collimates the
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4.1. Experimental set-up

transmitted beam. The pulse passes through a polarizer in order to select the

emitted field (as described in section 6.1.2) and finally reaches the photodiode

and the detector. We made two kinds of Raman measurements which mainly

differ for the detection system.

• In the first measurement (Figure 4.2) the output of the photodiode

is sent to a lock-in amplifier , which measure the AC component

of a signal integrated over different subsequent pulses. That’s why

in this measurement the signal is modulated by using a mechanical

chopper (whose output is sent to the lock-in, in order to select the

correct frequency) in the pump path. The result of the experiment

is the intensity of the transmitted probe as a function of the delay

between the pump and probe 1.

Figure 4.2: Simplified scheme of the experimental set-up of the Raman

measurement with lock-in amplifier.

1It is important to note that in this configuration the response is integrated over a large

number of pulses determined by the lock-in acquisition times (typically we used acquisition

times of 100 ms, corresponding to 25000 pulses). This configuration allows for a very

precise measurement of the mean photon number transmitted by the sample as a function

of the pump-probe delay, but doesn’t allow for the measurements of intrinsic noise due to

pulse to pulse intensity fluctuation.
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• In the second measurement (Figure 4.3) the noise is eliminated first

of all by making the subtraction between the transmitted signal and

a reference one (the probe before the interaction). For this reason a

beam splitter (BS) is put before the sample and the intensities of the

two beams are finally subtracted by a balanced amplified differential

detector. Two wedged plates are put in the path of the reference signal

to balance it with the transmitted field one. A fast digitizer allows to

acquire hundreds of pulses: a software can then average their intensities

(eliminating the noise contribution), but also calculate the variance and

higher momenta, in order to make also a statistical analysis.

Figure 4.3: Simplified scheme of the experimental set-up of the Raman

measurement with differential detector and reference beam. In the figure BS

is a beam splitter, while λ/2 is a half wave plate, used to tune the probe

power of both the branches

64
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4.1.2 Homodyne detection without local oscillator

In order to measure the shot noise of the transmitted light pulses we made

use of a sort of Homodyne detection without local oscillator (Figure 4.4).

The scheme is similar to the first we have analyzed, but in this case after the

sample and the polarizer there is a non-polarizing beam splitter which divides

the beam in two with same intensity (the last two polarizers and half wave

plates ensure the balance between them). A balanced differential detector

measures the difference between the intensity of every couple of pulses and

the data are acquired by a fast digitizer as in the previous case.

Figure 4.4: Simplified scheme of the experimental set-up of the "Homodyne

detection without local oscillator".

65



CHAPTER 4. EXPERIMENTAL APPARATUS

4.1.3 Time resolved homodyne detection

The last measurements we made are time-resolved balanced homodyne detec-

tion (section 2.3) in which the signal passes through the sample previously

excited by the pump pulse (Figure 4.5). The phase difference between the

signal and the local oscillator (LO) is provided by a mirror put on a piezoelec-

tric translator, that slightly modifies the path of the LO. The wedge plates

balance the paths of the two branches; one of them is mounted on a slit that

allows to vary in a quite precise way the optical path of the local oscillator, so

that the two beams interfere on the beam splitter. The differential detector

measures the difference between the intensity of the two new pulses. The

result of this measurement is the value of the quadrature 〈x̂φ〉 both as a

function of the phase difference φ provided by the piezoelectric translator

and the time delay between the pump and the probe, experimentally due to

the motion of the slit. As in the previous cases many pulses are analyzed in

order to get average, variance and higher momenta.

Figure 4.5: Simplified scheme of the experimental set-up of the time resolved

BHD. In the figure BS represents a beam splitter, while λ/2 is a half wave

plate
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4.2. Instrumentation

4.2 Instrumentation

In this section I will give more details about some instruments and parts of

the set-ups previously described. In particular I will focus on the differential

detector and the digitizer 2.

4.2.1 Balanced Differential Detector

As already anticipated we need a balanced amplified differential photode-

tector, which is able to measure the difference between the photocurrents

(proportional to the intensities of the signals) provided by two photodiodes.

Since the detector is amplified its response is proportional to the quantity we

want to measure.

In quantum optics experiments low-noise conditions are very important and

therefore the detector must have some characteristics and in particular high

shot-to-electronic noise ratio (that is low electronic noise; this feature is

relevant also for common time resolved measurement as we shall see later).

For the first measurements we used a commercial detector (Thorlabs PDB430A);

however it did not completely satisfy our noise requests and so we finally

decided to use a "home-made" detector, based on the work of H. Hansen [15].

We have made some tests on the detector in order to verify its adequacy to

our measurements (see section 2.2.3).

1. First of all we deal with pulses of about 80 fs with repetition rate 250

KHz, which means a pulse every 4 µs. The electronics of the detector

should be fast enough to separate the signals coming from different laser

pulses, that means that the duration of the response of the detector

should be shorter than 4 µs; this condition is fulfilled, since the response

length is about 1 µs as one can see in Figure (4.6).

2. The second test deals with the characterization of the two photodiodes

independently: we expect that their output voltage is proportional to

2The laser system is described in appendix B.3. In order to understand the following

sections it is sufficient to know that it is a pulsed laser source and its output beam has

λ = 800 nm, with spectral width ∼ 30 nm, repetition rate of 250 KHz and about 1.5 W

mean power.
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Figure 4.6: Detector response of a single laser pulse of ∼ 100 fs. In order

to analyze the detector response just one diode measurements have been

performed.

the intensity we want to measure, but this property should be verified.

Therefore we keep the photodiodes open one at time and measure the

output voltage as a function on the local oscillator intensity (the signal

beam is blocked during the measurement). The result is reported in

Figure 4.7. One can immediately note that until 6 · 104 photons per

pulse the diodes present a linear behavior. For higher intensities of the

local oscillator the diodes saturates: this effect is immediately visible,

since the detector response results deformed (Figure 4.8)

3. The previous points describe just preliminary analyses, which ensure

the validity of the measurements, but the scope of the new detector is

a high shot-to-electronic noise ratio, which we will now consider. The

electronic noise is a detector feature and do not depend on the the

signal, while the shot noise is determined by the quantum nature of

light and is the quantity we want to measure. Its dependence on the

intensity of the signal can be easily calculated for a coherent state. The

shot noise can be defined as the variance (var(A) = 〈A2〉− 〈A〉2) of the
number operator n̂ = â†â. Keeping in mind the definition of coherent

state (1.15), the relation (1.16) and the commutation rule [â, â†] = 1,
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Figure 4.7: Integral of the detector output over the pulse region as function

of the local oscillator intensity. The signal has been blocked.

one gets var(n̂) = 〈n̂〉. Since the current output of the photodiodes

is proportional to the intensity of the signal, Î = cn̂ (where c is a

constant) and therefore

var(Î) = c2var(n̂) = c2〈n〉 = c〈Î〉. (4.1)

The shot noise scales linearly with the intensity of the beam impinging

on the photodiode and is distinguishable from the electronic noise.

In order to compare the two noises we measured a set of pulses (with

both the photodiodes) and computed the variance of the their time

integral (Figure 4.9). The linear dependence on the intensity represents

the shot noise, while the contribution to the noise when the intensity

tends to zero is due only to the detector (electronic noise).

For relative high intensities the noise has higher order contribution, so

we can perform measurements with maximum intensity corresponding

to about 1.5 V peak output (∼ 1.5 · 107 photon per pulse). At this

intensity value the shot-to-electric noise ratio is 8.3 dB (to be compared

with 2 dB of the commercial detector).

Another quantity that allows to test the sensibility of the detector is

the so called efficiency (see section 2.2.3), which is the ratio between
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(a)

(b)

Figure 4.8: Single diode response for high intensities of the probe: the pulse

is deformed with respect to low intensities (in Figure 4.6).

the shot and the total noise at a specific intensity of the beam. The

measured efficiency for our detector is 0.88.
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Figure 4.9: Variance of the time integral of 2000 acquired pulses. Different

noise contribution are visible: constant electronic noise (green), shot noise,

which depends linearly on the intensity, and higher order contributions for

intensities higher than 1.5 V.

4.2.2 The fast digitizer

Once the balanced differential detector has subtracted and amplified the two

input signals, the output voltage is sent to a fast 8-bit ADC, which has a

sampling rate of 1 GSample/s, that means that it can acquire up to one

difference current value every nanosecond.

The ADC is mounted on a 500 MByte memory board, with a specific option

called Multiple Recording ; it allows to acquire only for a limited time, in order

to limit the data to collect. In our case, for example, the laser repetition rate

is 250 KHz, that means a pulse every 4 µs. Nevertheless the response of the

detector lasts about 1 µs; the other 3 µs are not useful for our purpose and

so can be discarded. This selection is possible by choosing an appropriate

trigger and "duration" of the acquisition after the trigger itself. The Multiple

Recording is sketched on Figure (4.10).
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Figure 4.10: Multiple recording acquisition: only a defined time interval

(which contains the relevant data) of the signal is saved. The beginning of

the acquisition is determined by a trigger [16].
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Chapter 5

Experimental results

In this chapter I will show the experimental results; as in the previous chapter

they will be divided in three kinds of measurements: time domain Raman

Spectroscopy (both detected by a lock-in amplifier and a fast digitizer),

Homodyne detection without local oscillator and time resolved Balanced

Homodyne Detection.

5.1 Standard time domain Raman Spectroscopy

The first measurement is a "typical" time resolved Impulsive Stimulated

Raman Spectroscopy, in which phonons are excited in the medium by the

pump pulse, while the probe detects the sample optical properties after the

excitation. The result of the measure is the intensity of the emitted field

as function of the time delay between the pump and the probe (provided

mechanically by a slit). We expect to measure an oscillating field, whose

frequency is the same of the excited vibrational mode. Raman active modes

in α-quartz are represented in Figure (6.1): since the dispersion of our mode-

locked laser pulse is about ∆λ = 30 nm the maximum energy difference

between the pump pulses 1 and 2 (so named in section 3.4), i.e. the maximum

energy of the excited phonon, is about 460 cm−1 and the signals related to

high energy modes are less intense than the low energy ones (equation 3.62).

Moreover, As described earlier, the polarizer after the sample selects only the

contribution of only E-modes of α-quartz.
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Lock-in

First measurements have been performed with a lock-in amplifier, as described

in section (4.1.1). They represented preliminary measurements that allow us

to find the "zero" of the pump probe, that is, the slit position for which the

pump and the probe pulses impinge on the sample at the same instant. The

other aim of these measurements was to find the polarizer rotation for which

the probe contributions vanishes (in order to see only the emitted field one

and select just Raman active E-modes).

A typical result of this measurement is shown in Figure (5.1): after the

Figure 5.1: Emitted field in a standard time resolved Raman Scattering

experiment. The most intense peak represents the time coincidence between

the pump and the probe, while the following oscillations have the same

frequency of the nuclear vibration due to the pump.

pump (the coincidence between the pump and the probe determines the peak)

oscillations in the signal are visible. They are quite definite and the period of

the oscillation can be directly measured. Anyway, in order to get more precise

and complete information one can perform a Fourier analysis, which clearly

provides the frequency components of the signal. The Fourier transform of

the signal represented in Figure 5.1 is shown in Figure 5.2: only one peak at

frequency ν = 3.9 THz is visible. It corresponds to a Raman active mode of

α-quartz (Figure (6.1)), and in particular a E-mode with wave number 128

cm−1.
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5.1. Standard time domain Raman Spectroscopy

Figure 5.2: Fourier transform of the signal after the pump. Only one E-mode

is evident at frequency 3.9 THz (128 cm−1).

Fast digitizer

The same measurement can be performed with a different acquisition system:

in particular we used a fast digitizer which allows to collect many values

of the same quantity (referred of different pulses at the same time delay

between the pump and the probe) in order to get not only the signal, but

also a statistical analysis (Figure 4.3). We especially considered the mean

signal and its variance. For the relevant cases we computed also the third

and fourth momentum.

The analysis of the variance provides a useful contribution to the study of the

quantum state of light, which is not accessible simply from the emitted field.

As a matter of fact we expect the variance to have the same behavior of the

signal, since the noise will be higher when also the field has greater values,

but other frequency components can appear in this case. For example a peak

at twice the frequency of the excited mode can be related to squeezing, as

discussed in section (1.2).

The results are shown in figure (5.3): both the average signal and the

variance are plotted. Observations on the mean are the same as for the
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(a)

(b)

Figure 5.3: Average differential transmitted signal (blue) and variance (red) in

two different measurements. In both cases the variance follows the oscillation

of the average. The details of the measurements are: (a) pump power 680

mW, 4000 pulses per time delay, 100 scans of the slit; (b) pump power 620

mW, 4000 pulses per time delay, 50 scans of the slit

lock-in measurements: after the pump pulse, which is evident since produces

the only high peak in the signal, quite regular oscillations, with defined period,

can be seen. The same behavior characterizes the variance, which is in phase

with the measured mean field. No significant difference between the two sets
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5.1. Standard time domain Raman Spectroscopy

of data is visible in time domain.

Nevertheless in Fourier space the two measurements give quite different results

(Figure5.4): in both cases one notices a strong frequency contribution at

(a)

(b)

Figure 5.4: Fourier transforms of the signal reported in Figure (5.3). While

the first measure (a) shows only a Fourier component at about 3.9 THz

(which corresponds to a Raman active mode of α-quartz) both in the signal

and the average, in the second one (b) a peak at 7.84 THz in the variance is

visible.

about 3.9 THz, both in the average (as we have already seen in the lock-in

measurements) and the variance, but in Figure 5.4.b the variance shows
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also a small peak at frequency 7.84 THz, which is about the double of the

frequency of the E-mode we have already observed. As already anticipated it

is probably related to the squeezing of the phonon mode (see chapter 6).

The major difference between the two measurements is in the noise level:

(a)

(b)

Figure 5.5: Comparison between (a) signal and 3rd momentum and (b)

variance and 4th momentum as function of the time delay between the pump

and the probe. In both graphics the two quantities have almost the same

time dependence.
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in the first case the noise is higher (about one order of magnitude larger, as

one can see from the values of the variance) and so the oscillation at 2ω is

hidden within the noise level and cannot be observed.

The acquisition of many pulses allows also to compute higher momenta,

which should provide information on the symmetry and the "width" of the

distribution of measured data near the expected values: in Figure 5.5 (a) and

(b) 3rd and 4th momentum are compared with the signal and the variance

respectively. We notice that higher momenta do not add information, since

their time dependence is essentially proportional to lower momenta; this fact

is confirmed also by their Fourier transform (Figure 5.6).

Figure 5.6: Fourier transforms of the four momenta represented in Figure

(5.5): they confirm the similarity of momenta with the same parity.

For this reason, from now on only the contributions of the signal and of

the variance will be shown.
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5.2 Homodyne detection without local oscillator

In order to consolidate the evidence of a squeezing of the phonon mode

produced by photoexcitation in this condition we performed a measurements

of the time evolution of the probe shot noise after the interaction with the

sample. In the experimental configuration 4.4 the sample is excited by the

pump and then the probe measures the variation of the optical properties of

the medium, as in the previous case. After the sample and the polarizer a

50:50 beam splitter divides the beam and the intensities of the two branches

are measured and subtracted by a differential detector (see Figure 4.4).

The result of the measurement is the difference of intensities as function of

the time delay between pump and probe: in Figure 5.7 the data are shown.

Also in this case after the pump (which causes the highest peak) the signal

and its variance oscillate with the same frequency, as demonstrated by their

Fourier transform (Figure 5.7 (b)), in which the usual frequency component

(at about 3.9 THz) appears both in the average and in the variance. Also in

this case the variance presents also a second Fourier component at about 7.9

THz. The difference with the results of the previous set-up is visible in time

domain (Figure 5.7 (a)), where a difference in the phase of the two quantities

is evident.

We still do not know the causes of these results, since we would expect a zero

mean value for this measure (one can prove it through the homodyne detection

theory 2.18 inserting a vacuum state |0〉 as local oscillator). Oscillations in the

average are probably due to the unbalance of the two beam branches which

enter the detector, but even in this case there is no apparent explanation for

the phase shift of the variance.
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(a)

(b)

Figure 5.7: Results of the measurement Homodyne without local oscillator :

comparison (a) between the average signal and its variance, which underlines

the phase difference in the oscillations after the pump and (b) between their

Fourier transforms, which show the same frequency contribution.
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5.3 Time dependent Balanced Homodyne Detection

Up to now we have made hypothesis about the quantum state of light just

considering intensity measurements as function of the time delay between

the pump and the probe and analyzing both the signal (i.e. the average

oh hundreds of pulses for each time delay) and the variance. Our set-up

(see Figure 4.5) allows to have much more complete information about the

quantum state of light by combining time-resolved Raman spectroscopy and

Balanced Homodyne Detection. The coupling of the two techniques provides

the value of the quadrature xΦ as a function of both the phase difference

Φ between the emitted field and the local oscillator (determined by the

piezoelectric translator) and of the time after the excitation. The result of

the measurement is a two-dimensional image, since the quadrature depends

on two variables: typical data are shown in Figure 5.8

We performed a preliminary analysis of the time evolution of the quadrature

at a fixed phase difference (that is we considered a single horizontal line in

Figure 5.8) and then for each time delay we analyzed the quadrature and

reconstruct the Wigner function in order to get the quantum state of light

after the interaction with the excited sample as function of time. Moreover,

from the Wigner function one gets the expectation values of every observable

of the system through relation 2.6.

5.3.1 Fixed phase difference

Let us consider first of all the case of fixed phase difference, that is, let us

select a line in the two-dimensional image (Figure 5.8).

From a first analysis we noticed that "structures" in the measure are more

visible in the minimum of the quadrature value 1.

Also in this case the coincidence between the pump and the probe is repre-

sented by the highest peak in time dependence and, as in the previous cases,

we get one spike in frequency domain at ν = 3.9 THz, which is the usual

Raman active E-mode.
1If we perform a measurement at a fixed position of the slit and we vary only the

piezoelectric translator position we get a sine function, which, of course, presents periodic

minima (see Figure 5.10). In Figure 5.8 the minimum is represented by the blue zone.
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Figure 5.8: Image of the quadratures xΦ as function of time and phase

difference Φ (both expressed as the number of steps of the slit and the

piezoelectric translator respectively). The step of the slit is 2 µm, which

corresponds to a time delay of 13.5 fs, while the piezoelectric translator

one is of 10 nm; every point value is the average of 800 pulses. The powers

of the pump and probe beams are respectively 700 mW and 2 µW , which

corresponds to intensities of 5.7mJ/cm2 and 45 nJ/cm2 per pulse respectively.

The zone around time=50 is due to the interaction of the pump with the

sample. Every row in the figure represents the time dependence of the

quadrature at a fixed phase, while the columns are the usual quadrature,

which are function of the phase difference, and can be used to reconstruct

the quantum state of light at a specific time delay.

Even if every value of the quadrature is the average of many pulses, a single

measurement is not precise enough and so several scans in the same conditions

have been performed; we have then computed the Fourier transform of the

time dependent quadrature at the same phase difference and finally performed

the average.
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(a)

(b)

Figure 5.9: (a) Time dependent values of the quadrature xΦ at fixed phase

difference between the signal and the local oscillator (remember that the

step of the slit corresponds to a delay of 13.5 fs). One can observe that after

the coincidence on the sample of the pump and the probe, these values are

modulated by the excited phonons. The frequencies of the latter can be

measured performing the Fourier transform of the signal (b), which underlines

just one component at about 3.9 THz, as in the previous measurements.
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5.3.2 Fixed time delay

Our set-up allows measure the field quadrature xΦ of the transmitted signal

for every time delay between the pump and the probe (Figure 5.10).

For every phase difference 800 values have been collected, which are sta-

Figure 5.10: Quadrature of the measure represented in Figure 5.8. Every

blue point represent the photocurrent generated by a single pulse. The green

represents the mean values for each phase difference and the red one is a sine

wave fit. Axis has been rescaled with the procedure described in this section.

tistically distributed around their mean value. In Figure 5.10 the average

of the pulses is a sine wave, while its "thickness" is of course related to

the variance. Subtracting the mean value for each phase difference to the

corresponding quadrature value, one may observe also a modulation in the

standard deviation (and so in the variance).

Notice that the values measured by the differential detector and the corre-

sponding piezo positions should be rescaled in order to obtain the couple

(xΦ, Φ). We already know that the value provided by the photodetector is a

measurement of the differential photocurrent (see equation 2.18), which is

proportional to the quadrature:

xMΦ = γxΦ, (5.1)

where xMΦ is the measured value at phase Φ.

Our aim is the calculation of the coefficient γ: to obtain it we need some

reference data, whose quadrature is known a priori.
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Consider the quadrature of the vacuum state |0〉: its expectation value is

zero for Φ, since

xΦ = 〈x̂Φ〉 = 〈0| âe
−iΦ + â†eiΦ√

2
|0〉 = 0, (5.2)

but its variance is

σ2
0 = 〈x̂2

Φ〉 −
2

〈x̂Φ〉︸︷︷︸
0

=
1

2

{
〈0| â2e−2iΦ |0〉+ 〈0| â†2e2iΦ |0〉+ 〈0| â†â |0〉+ 〈0| ââ† |0〉

=
1

2
.

(5.3)

The previous equation demonstrates that the variance of a vacuum state is

independent on the phase Φ and is equal to 1
2 .

Therefore the measure of the quadrature of a vacuum state (obtained by

blocking the signal and performing a BHD measurement) provides a set of

data x0
Φ, such that

(
σM0
)2

= γ2 · 1

2
=⇒ γ =

√
2
(
σM0
)2
, (5.4)

where
(
σM0
)2 is the (constant, in principle) variance of the detected quadrature

xMΦ .

The previous treatment is based on the hypothesis of an ideal detection; on

the contrary the efficiency of the detector affects the measurement. To take

into account also the electronic noise contribution, one can compute another

coefficient γ′, which is related to γ by the relation

η =
A

A+B
=

(
γ

γ′

)2

, (5.5)

where the efficiency η and coefficients A and B are defined in Figure 2.4 [13].

In order to rescale the axis of the phase difference Φ one can perform a fit

of the quadrature xΦ with the function f = A0 + A cos(ξt + Φ0) where t

represents the piezo position. From the obtained parameter one can subtract

A0 to all the data and consider two consecutive points in which the fit function

is equal to zero. In this way one gets ξt1 + Φ0 − ξt2 − Φ0 = π, from which

derives the scaling factor ξ = π
t1−t2 . We have so obtained the rescaled values
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(a)

(b)

Figure 5.11: Quadrature of a vacuum state: (a) data obtained by Balance

Homodyne Detection; (b) rescaled data.

of the phase difference, the quadrature and its variance.

All these data (both mean quadratures and variances) enable the recon-
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struction the Wigner function and so to completely characterize the quantum

state of the signal at each time delay. In particular the quadrature distri-

bution at each phase is connected to the marginals of the Wigner function

and so to its "shape", while its mean value provides the position of the peak

of the function in phase space. More details about the Wigner function

reconstruction are given in Appendix E, while the results will be discussed in

the next chapter.
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Chapter 6

Discussion

The central task of my work has been to investigate the quantum nature of

the vibrational states observed in time domain experiments. The approach

taken is twofold. A full quantum state reconstruction of the probe pulses

as a function of pump-probe delay has been experimentally achieved and

realistic models to link the quantum fluctuations in the probe photon state

to the intrinsic quantum fluctuations on the vibrational mode have been

developed. The structure of this concluding chapter is representative of

such an approach. We start by giving a description of Impulsive Stimulated

Raman Scattering specific for the generation and detection of coherent phonon

in quartz. Subsequently we address how the measurements of intrinsic

fluctuation in the probe photon number could be related to non classical

vibrational states in photoexcited matter. Finally, we show through a full

quantum state reconstruction of the ultrashort probe pulses that the quantum

state of the vibrational modes can be used to manipulate the probe quantum

state.

6.1 Stimulated Raman Scattering on α-Quartz

Quartz is often used as a paradigmatic example for the generation of coherent

phonons via Impulsive Stimulated Raman Scattering and it represents the

ideal playground to test the coupling of the two techniques described above.

In particular we used α-quartz, that is the low-temperature (less than 848 K)
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phase of quartz, which has trigonal structure and D3 symmetry (see Figure

6.2 (a)), with 9 atoms for unit cell [17].

6.1.1 Raman active modes

Group theory calculations shows that the 27 degrees of freedom (3 times

the atoms for unit cell) are divided in 2 acoustic vibration with A2 and E

symmetry and 16 optical vibrations: 4A1 + 4A2 + 8E. We are interested in

the latter, and in particular in the four totally symmetric modes A1 and 8

doubly degenerate modes of symmetry E.

In our experiment the sample is 1 mm thick and the front and back faces are

Figure 6.1: Raman spectra of α-quartz at room temperature; the label L

indicates Longitudinal modes, while T Transverse ones. In Figure (a) A1

modes are presented, while in Figure (b) one can see the E modes (the arrows

point on intense A1 modes, visible also in the second spectrum by reason of

imperfect alignment). [18]
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6.1. Stimulated Raman Scattering on α-Quartz

orthogonal to the c-axis. In this way the laser propagates along the c-axis (in

order to avoid complications arising form linear birefringence [19]) and the

only accessible vibrational modes are those of a system with C3 symmetry

(see Figure 6.2 (b) and (c)).

Figure 6.2: (a) Crystal structure of α-quartz [20] and (b) its projection on

the plane perpendicular to the c-axis [21]. (c) Normal mode vibrations for a

C3 symmetry crystal or molecule [17].

6.1.2 The probing process

In Stimulated Raman Scattering Spectroscopy a first pulse impinges on the

sample exciting vibrational states and a second one probes the process. As a

consequence of the interaction between the probe and the sample after the

excitation a new electric field is generated (as described in chapter 3): if the

angle between the pump and the probe propagation directions is small this

emitted field propagates in the direction of the probe wave vector and its

modulus is given by equation (3.31).

In our case we have an intrinsic heterodyne configuration, since the probe

acts as local oscillator too. This configuration allow us to amplify the emitted
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field, as described in equation 3.32. In order to distinguish the contribution

of the emitted field from that of the probe we exploit the Optical Kerr Effect,

which acts on the polarization of the beams.

The ith component of the third order polarization can be generally written

as

P
(3)
i (z, ω) ∝

∑
j,k,l

χ
(3)
i,j,k,lE1,j(z, ω1)E2,k(z, ω2)E3,l(z, ω3), (6.1)

where χ(3)
i,j,k,l is the four-rank susceptibility tensor and in our configuration it

has three terms, reported in figure (6.3). The Stimulated Raman Scattering

Figure 6.3: Susceptibility tensor components in our experimental configura-

tion, one for each normal mode if α-quartz. [19]

can be seen as a two step process: in the first one phonons are created from

the pump photons, while in the second probe photons interact with the

newly created phonons, producing the final scattered photons. The complete

four-rank tensor is so given by χ(3)
ijkl = AijAkl +ETijE

T
kl +ELijE

L
kl; the result

is represented in figure (6.4). In the previous representation the outer level

Figure 6.4: Complete four-rank susceptibility tensor [19].

rows and columns correspond to the analyzer and the probe polarizations

and the inner ones to the pump polarizations [19]. Since in our case we have

just one pump pulse, we consider only tensor elements for which j=k. The
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6.1. Stimulated Raman Scattering on α-Quartz

most general expression for the polarization in this case is:

(
px

py

)
=

(
c2 cos(α− 2β) + a2 cos(α)

−c2 cos(α− 2β) + a2 cos(α)

)
, (6.2)

where α is the angle of the probe and β of the pump (both above the x axis).

If the probe pulse is vertically polarized (α = 90◦) and the pump has β = 45◦

the emitted field is horizontally polarized: positioning a polarizer after the

sample one can separate the emitted field from the probe (Figure 6.5 and

(6.6)).

Figure 6.5: Polarization configuration: if the probe field is vertically polarized

and the pump polarization form a 45◦ angle with the former, the emitted

field is horizontally polarized.

Figure 6.6: Our experimental configuration to detect the emitted field [17].

93



CHAPTER 6. DISCUSSION

6.2 From the probe state to quantum fluctuation

of the vibrational mode

6.2.1 Squeezing of the vibrational mode in photon number
fluctuations

All measurements described in the previous chapters are implemented on

the probe, which has interacted with the sample. The first ones (Standard

time resolved Raman Scattering) provides the variation of the optical proper-

ties of the sample, as a consequence of the excitation of Raman modes due

to the pump pulse, measured as modulation of the intensity of the signal.

Thanks to the fast digitizer one can digitize hundreds of pulses for each time

delay between the pump and the probe and get more information from the

statistical analysis of the variance and higher momenta. The result of the

transmittance measurement is predicted by semiclassical theories (such as

four wave mixing, describe in chapter 3) and does not provide information

on the quantum state of the probe. A preliminary information about it can

be obtained by the Fourier analysis of the variance. As already anticipated

a frequency component with twice the frequency of the oscillations of the

emitted field is indicative of phonon squeezing. As schematized in Figure

6.7 the squeezed phonon mode has a variance in one of the quadratures

which oscillates at twice the fundamental phonon frequency. It should be

noticed that in our experiments we observe an oscillation at twice the phonon

frequency in the fluctuation of the mean number of photons in the probe

pulses as a function of the pump and probe delay. The central task of my

work has been to investigate how the variance observed in the photon state

could be representative of intrinsic quantum fluctuations on the state of the

vibrational mode.

In order to better understand how the oscillation at double frequency of

the variance is related to the squeezing of the vibrational mode we studied

the amplitude of the double frequency component in the Fourier transform

as a function of the intensity of the pump pulses. As described in section 1.2

it is expected that, while the generation of coherent vibrational states can
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6.2. From the probe state to quantum fluctuation of the vibrational mode

(a)

(b)

Figure 6.7: (a) Time evolution of a squeezed state due to a harmonic poten-

tial. The Wigner function rotates around the origin with a certain angular

frequency ω. The standard deviation, which can be seen as the projection on

the axes of the width of the Wigner function, assume the same value twice

during one period of the rotation, that is, varies with a frequency 2ω. An

introduction to the time evolution of the Wigner function is treated in section

2.1.2. (b) Comparison between the Fourier transform of the signal and the

variance. The peak at frequency 2ω is visible only in the latter.
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be given by interaction terms which are linear in the phonon modes creation

and annihilation operators (b† + b), in order to obtain squeezing second order

terms ((b†)2 + b2) in the phonon latter operators are needed [22]. The results

of such an analysis is given in Figure 6.8. We suppose the existence of a

relation between the dependence of the Fourier component on the amplitude

of the pump pulse and the squeezing of the phononic state. Future analyses

will be made, in order to examine in depth this relation. An evidence of the

squeezing in the phonon mode can be extracted by comparing the lifetime

of the ω (∼ 3.9 THz) component of the oscillations in the variance with the

2ω one. In order to extract such information, we can multiply the signal

with a gaussian function centered at a certain time delay and perform the

Fourier transform of this product, in order to study the time evolution of

the frequency components. The result is shown in Figure 6.9: one notice

that while the component at the usual frequency ω is visible at any time and

decreases slowly in intensity, the peak at 2ω is weaker from the beginning

and vanishes for times larger than 2 ps.

Figure 6.8: Intensity of the peak at frequency 2ω in the Fourier transform as

function of the power of the probe. The blue dotted line represents the noise

level.
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6.2. From the probe state to quantum fluctuation of the vibrational mode

Figure 6.9: Time evolution of the frequency component in an Impulsive

Stimulated Raman Scattering measurement.

6.2.2 Full quantum state reconstruction of the probe pulses

The same effective interaction terms between the phonon mode and the pump

which is used to "prepare" the material in a quantum coherent/squeezed

vibrational state can be used to manipulate the quantum state of the probe

pulses. The quantum state reconstruction of the probe pulses is performed in

a BHD configuration as described in chapter 4.1.3. The Balanced Homodyne

Detection measurements provide a measure of the quadrature of the field

from which one can reconstruct the Wigner function (see Appendix E). This

probability distribution allows to make two equivalent analyses: since it gives

a visual representation of the quantum state in phase space one can directly

understand same feature of the analyzed radiation (number of photons and

squeezing, for example). Moreover if the Wigner function is known one can

calculate the expectation value of any operator, such as the mean number of

photons or the squeezing parameter.

SomeWigner function at different times are shown in Figure 6.10 1: oscillations

of the mean values of q are connected to variations of intensity of the mea-

sured signal, while deformations in the shape may be connected to squeezing.

In our results the mean value of q oscillates in time, as the intensity in the

pump-probe measurement (see Figure 5.1); they are connected since the mean

1A video figuring the time evolution of the Wigner function can be found

at https://sites.google.com/site/danielefausti/educational-materials/Wigner_

movie.wmv?revision=1
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Figure 6.10: Wigner function of the probe pulse at three different time delays

between the pump and the probe.

number of photons is 〈n̂〉 = q2

2
2. Differences in the standard deviation are

not easily visible, since they are very small.

Quantum properties of the photon state can be measured calculating

the expectation values of some observables: in particular we considered the

number of photons, the values of q and p, their variances and the squeezing

parameter ξ = 1
4 ln

(
σ2
p

σ2
q

)
. The results are plotted in Figure 6.11. One can

immediately notice that the number of photons shows the same oscillations

of the Raman Scattering measurements (Figure 5.1) and present the same

frequency component. The second spike of the variance in Fourier space is not

visible, but we have important information about the squeezing parameter:

it always positive, even if small, so we can say that the state is squeezed and

the squeezing itself is modulated by the frequency of the Raman mode at

about 3.9 THz.

Finally we must specify the method of calculation of the expectation values.

2In general the number of photons depends on both coordinates p and q (〈n̂〉 = q2+p2

2
.

In our case the mean value of the quadrature as function of the phase difference Φ (see

Figure 5.10) has always been fitted as a cosine with fixed phase. The result is a sort of

rotation of the phase space, such that the so obtained q-axis has the direction of the line

connecting the origin with the center of the Wigner function. That’s why a displacement

along the q-axis in our results is directly connected to the number of photons.
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(a)

(b)

(c)

(d)

Figure 6.11: Expectation values calculated with the Wigner function of the

signal: (a) coordinate q, (b) number of photons, (c) variances, both along q

and p axes, (d) squeezing parameter. On the left side expectation values are

shown, while on the right the Fourier transforms has been computed

The reconstruction of the Wigner function determines some artifacts which

are not related to the photon state, but are difficult to "correct". One of them

is the presence of many negative points (which are not present in a gaussian

state), which appear with a certain regularity in the tails of the distribution

and affect both the normalization of the function and the mean values. So

we decided to fit the reconstructed Wigner function with a 2D gaussian and
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to extract the expectation values directly from the fit parameters.

6.2.3 From photon to phonon quantum state detection

Raman active modes in samples have already been studied through ultrafast

spectroscopic techniques [23, 24, 25, 26] and semiclassical theories (as the

four wave mixing theory, described by S. Mukamel and reported in Chapter

3) have been developed in order to explain the experimental results and

the relationship between the intensity of the detected signal and phononic

excitations in the sample. In particular we know that the time evolution of

ionic displacement is linearly mapped into the number of photons scattered

by the sample (see section 3.4.1).

These theoretical treatments present anyway a limit: the radiation is described

classically. If we want to measure a purely quantum property, as the squeezing,

for example, a semiclassical theory is not adequate. In our specific case this

means that we do not know how the phononic quantum noise is mapped

in the electric field. As a consequence from the measurements described in

the previous section we can, at least in principle, deduce only two kinds of

information:

• in our configuration the pump pulse excites a Raman active E-mode at

about 3.9 THz

• the quantum state of the probe after the interaction with the excited

sample is squeezed and the squeezing parameter oscillates with the same

frequency of the vibrational mode (see the discussion in the previous

section).

For this reason the use of time resolved spectroscopic techniques to get

information about quantum properties of the phononic field has been criticized

in the past [2, 27]. In the following paragraph we are going to propose a

model to describe the relation between the quantum state of phonons and of

the probe [28]; simulation to verify its validity are still in progress.

Let us consider a time resolved ISRS 3 measurement step by step:

1. the pump pulse impinges on the sample and generates coherent phonons
3Impulsive Stimulated Raman Scattering

100



6.2. From the probe state to quantum fluctuation of the vibrational mode

2. during the time delay between the pump and the probe the phononic

states evolves thanks to interactions with the environment

3. the probe pulse impinges on the sample and interacts with its phononic

state

4. the pump field is detected through BHD.

Our hypothesis is that the Hamiltonian which describes the effects of the

pump on the sample is essentially the same that justifies the imprinting of

the nature of the vibrations of ions in the material on the probe pulse. Let

us try to write this Hamiltonian, starting the theory of the ISRS.

Since our pump pulse is not in resonance with electronic transitions in the

α-quartz and has a certain frequency dispersion, it can excite Raman active

modes on the sample with frequency Ω = ν1 − ν2, where ν1 and ν2 are both

contained in the envelope of the pulse in frequency domain (see Figure 6.12).

Moreover one can describe the interaction between the pump and the sample

Figure 6.12: Envelope of the pump pulse in frequency domain. Three different

couples of frequencies (ν1, ν2) for which ν1 − ν2 = Ω are showed.

as the destruction of a photon with frequency ν1 and the creation of a photon

with energy hν2 and of a phonon with frequency ν1 − ν2. If we sum over all

the couples (ν1, ν2) contained in the spectrum of the pump pulse, for which

ν1− ν2 = Ω, in the limit of an instantaneous excitation one gets the following

interaction Hamiltonian

Hint =
∑

ν1−ν2=Ω

(
γSaν1a

†
ν2
b† + γAa

†
ν1
aν2b

)
δ(t), (6.3)
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where aν represents the annihilation operator of a photon with frequency ν,

b is the same operator for a phonon with energy hΩ, and γ are dimensional

constants which reflects the effective coupling between photons and phonon.

The first term in the sum represent exactly the situation described before,

in which a phonon is created (Stokes Raman Scattering), while the second

stands for the destruction of a photon (ν2) and a phonon (Ω) and the creation

of a higher energy photon (ν1), which is an anti-stokes process. Note that in

general γA the scattering intensities are related by [14]

Iantistokes
Istokes

= e
− hΩ
kBT , (6.4)

(for T = 300 K and Ω = 3.9 THz, IantistokesIstokes
≈ 0.5). Finally the δ function in

equation 6.3 represents the impulsive character of the process.

Let us now write the quantum state of the total system (sample and radiation)

for each step of the process listed before.

1. In the initial state the sample is in thermal equilibrium at temperature

T and its quantum state can be described by the density operator of a

thermal state ρ̂β , with β = (kBT )−1 (see Appendix A), while the pump

pulse is in a coherent state |ν〉. The total initial state is

ρ̂0 = |ν〉 〈ν| ⊗ ρ̂β. (6.5)

When the pump impinges on the sample the state evolves instanta-

neously under the action of an operator

U = e−i
∫
Hintdt

= e
−i
∑
ν1−ν2=Ω

[
γSaν1a

†
ν2
b†+γAa

†
ν1
aν2b

] (6.6)

and becomes

ρ̂1 = Uρ̂0U
†. (6.7)

The density operator ρ̂1 contains information both on phonon and

photon states; since now we are interested only in phonon state, the

photon degrees of freedom can be traced over and one gets

ρ̂phon1 = Trphot [ρ̂1] . (6.8)
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2. After the action of the pump, phonons interact with the environment

and evolve in time. The time dependence of their density operator is

due to the evolution of a coherent state and dissipative effects; standard

techniques based on the Lindblad form allow to compute the quantum

state ρ̂2(t) for a time t after the excitation.

3. As in point 1 the initial state of the interaction between the probe

and the sample can be expressed as |α〉 〈α| ⊗ ρ̂phon2 (t), where |α〉 is
the coherent photon state of the probe. The probing process is again

described by the evolution under an unitary operator U’, which is

similar to the U operator defined in point 1, but with different coupling

constants γ. The result is the density operator

ρ̂3(t) = U ′ |α〉 〈α| ⊗ ρ̂phon2 (t)U ′†. (6.9)

4. In the last step we detect the probe pulse. The density operator ρ̂3(t)

is still a measure of the phonon and photon state, so, this time, phonon

degrees of freedom can be traced over and one obtains

ρ̂phot4 (t) = Trphon [ρ̂3]

= Trphon

[
U ′ |α〉 〈α| ⊗ ρ̂phon2 (t)U ′†

]
.

(6.10)

Since the density operator (and consequently the Wigner function) completely

characterizes the quantum state of a system, and, according to these model,

the quantum state of the output signal is affected by the vibrational quantum

state, we expect that also purely quantum properties can be detected through

time resolved spectroscopy. In particular in our case this would mean that

the phonon quantum state can be mapped on the photon one. Simulations

based on this treatment are being executed in order to confirm its validity

and to understand if the squeezing of light is visible only when a squeezing

of the phonon state is present.
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Figure 6.13: Simplified scheme of the model and the relation between phonon

and photon quantum states.
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Thermal states

The so called thermal light is the electromagnetic radiation emitted by a body

at a certain temperature T. The radiation pattern consists of a spectrum of

oscillating modes: each of them can be described as an harmonic oscillator

with angular frequency ω.

The probability of finding n photons in the ith mode is given by the Boltz-

mann’s law [29]

Pω(n) =
e
− En
kBT∑∞

k=0 e
− Ek
kBT

(A.1)

where En = ~ω
(
n+ 1

2

)
is the quantized energy and kB is the Boltzmann

constant.

By substituting En in equation A.1 and keeping in mind the summation of a

geometric progression
(∑k

j=0 x
j = 1−xk+1

1−x , for 0 < x < 1

)
, one gets

Pω(n) = e
− ~ωn
kBT

(
1− e−

~ω
kBT

)
. (A.2)

The mean photon number can be derived as

〈n̂〉 =

∞∑
j=0

jPω(j)

=
e
− ~ω
kBT

1− e−
~ω
kBT

,

(A.3)

which is the so called Bose-Einstein distribution.

For the definition of density operator (ρ̂ =
∑

ω Pω(n) |ψω〉 〈ψω|, where the
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possible values of ω are supposed to be discrete and |ψω〉 are the eigenstates

of the harmonic oscillator hamiltonian with eigenvalues ~ω
(
n+ 1

2

)
), one gets

ρ̂T =
∑
ω

e
−En(ω)

kBT∑
k e
−Ek(ω)

kBT

|ψω〉 〈ψω|

=
∑
i

e
−En(ω)

kBT

Tr

(
e
− Ĥ
kBT

) |ψω〉 〈ψω| . (A.4)

The Wigner function of a thermal state is a gaussian centered in the origin

of the phase space, broader than the vacuum one.
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Laser source

In order to perform our experiments we need a laser source that produces

ultrashort pulses (10 − 100 fs) with a 250 KHz repetition rate (number of

pulses per unit of time). Such repetition rate has been chosen as a trade

off between the needs of acquiring a significant number of data (requiring

high repetition rate), and high intensity per pulse needed for accessing large

dynamical range in photoexcitation.

The laser system is made up of an oscillator that produces short low intense

pulses and of an amplification system that increases their energy. A technique

called Kerr Lens Mode-locking permits to obtain ultrashort pulses, with

no active optical elements in the oscillator cavity. Finally the pulses are

amplified with a chirped pulses amplification scheme. In the following section

we are going to treat these techniques in more detail.

B.1 Mode-Locking

Passive mode locking schemes are based on the geometrical properties of the

resonant cavity of the laser system: in this chapter I’m going to show briefly

a simplified model [30].

Let us consider the electric field inside the laser cavity as the sum of all its

modes, that is all the modes with wavelength λ = 2L
m , where L is the cavity

length and m are integers known as mode orders. In simple lasers there is no
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phase relation between the modes and interference effects produces an almost

constant output intensity, called continuous wave. In Mode-Locked lasers the

phase relation between the modes is forced to be fixed, in order to interfere

constructively and to produce a train of pulses well separated in time.

The total electric field inside the cavity can be expressed as

E(t) =
N∑

n=−N
E0 e

i [(ω0+n∆ω)t+nϕ] (B.1)

where n is the difference between the considered mode and the mode n0 with

frequency ω0 and

∆ω =
4πL

c
(

1

n0 + n
− 1

n0 + n+ 1
) ≈ 4πL

cn2
0

(B.2)

In this expression we have supposed for simplicity that all modes have the

same amplitude E0.

We can rewrite the expression of the field this way

E(t) = eiω0tA(N, t) (B.3)

where A(N, t) =
∑N

n=−N E0 e
inτ , with τ = ∆ωt+ϕ, in order to consider only

the quantity A(N, t) from now on. Rewriting the last expression, dividing

the terms with positive n from the terms with negative n and computing the

sum of the obtained geometric series, we finally get

A(N, τ) = E0
sin (2N−1

2 τ)

sin ( τ2 )
, (B.4)

A(n, τ) and A(n, τ)2 in function of τ = ∆ω, t+ϕ are reported in Figure B.1

B.2 Kerr lens mode-locking

The technique used to lock the modes is based on the so called Kerr Lens

Effect, a nonlinear effect due to the properties of the active medium present

in the laser system. A Kerr active medium has a refractive index which

depends on the electromagnetic field intensity. As the beam in the cavity has

a Gaussian power density distribution, it is much more intense in the center

with respect to the edge and the refractive index will vary linearly with the
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(a)

(b)

Figure B.1: Line shape of A(N, τ) (a) and A(n, τ)2 as function of τ , for

arbitrary values of N. They represent the time distribution of the pulses due

to the Mode-Locking technique.

intensity across the beam profile [30]. In this way the active medium of the

cavity works as a lens that focuses the beam at the center; since the Kerr

effect depends on the intensity of the beam, pulsed and continuous wave

modes are focused in different ways and, changing the geometry of the cavity

it is possible to select only pulsed modes (Figure B.2). At the end of the

cavity a mirror trasmits partially the train of pulses, with repetition rate

T−1 = c
2L .
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Figure B.2: Kerr lens scheme [31].

B.3 Chirped pulse amplification

In order to amplify the laser pulses produced in the oscillator, the amplifier

uses a scheme called Chirped pulse amplification. This technique is divided

in three steps: stretching, amplification and compression.

In the first step the pulse is stretched in time through reflection and dispersion

on gratings (different spectral components follow different path) , in order

not to damage the crystal of the amplifier. Then the pulse is sent to the

amplifier itself, where it can perform a certain number of cycles (it can be

controlled) in order to produce an amplified pulse, but still spectrally and

temporally spread. Finally the pulse is compressed through reflections on grat-

ings (the inverse process with respect to what is happening into the stretcher).

B.4 The laser system

We have described the general processes and techniques that allow us to obtain

ultrashort laser pulses. Now we give the characteristics of our laser system.

The mode-locked source is a Ti:Sapphire oscillator (Mira Seed), in which

the active medium is Ti doped Al2O3; it produces pulses with a wavelength

centered at 800 nm and about 30 nm broad, with a 80 MHz repetition rate

and output power approximately 800 mW. The oscillator is pumped by a

Nd : Y V O4 laser (Verdi V-18) which produces monochromatic continuous

radiation with wavelength λ = 532 nm. The pulses are the stretched and sent

to the amplifier RegA (which is also pumped by Verdi) and then recompressed.

The final output is a pulsed beam of 250 KHz repetition rate (that is a pulse
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every 4µs) and about 1.5 W mean power. The scheme of the laser system in

showed in Figure (B.3).

Figure B.3: Laser system scheme.
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Appendix C

Autocorrelation

The Balance Homodyne Detection set-up is essentially a Mach-Zehnder

interferometer, which measures the interference between two coherent elec-

Figure C.1: Scheme of the Mach-Zehnder interferometer

tromagnetic fields coming from the same beam source. In practice the initial

radiation is divided in two beams by the first beam splitter; both experience

a reflection and finally interfere on the second beam splitter. Two photode-

tectors are put at the end: the first one measures the interference of the pulse

transmitted by both the beam splitters with the one which has been reflected

twice. They have the same phase and so we see a contructive interference.

The other branch is the sum of the fields which have been first reflected and

then transmitted or vice-versa: their phase difference is π and so one has

destructive interference.
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APPENDIX C. AUTOCORRELATION

All previous considerations are based on the assumption that the optical

paths of the beams after the first beam splitter have the same length. In order

to reach this aim the set-up configuration is usually rectangular; moreover

since we introduced some objects (the sample, half-wave plate and polarizers),

one should pay attention on the modifications of the optical paths due to

the different refractive indexes. That’s why we introduced two wedge plates,

which balance the paths. Nevertheless all these strategies are not enough to

find the interference: one should move one of the mirrors to slightly vary the

phase difference between the pulses. This is possible thanks to the piezoelec-

tric translator.

In order to find the piezo positions for which the signal and the local oscil-

lator interfere in the 50:50 beam splitter, one should perform a preliminary

measure; it consists of a BHD scan (without pump pulse) on a large range of

piezo positions (about 100 µm).

Let us try to understand what we expect from this measurement; notice that

we can work in the classical regime of the interferometer, so the probe can

be intense, in order to get higher signal. If the probe is a coherent state |α〉,
one gets, from equation 2.18

ÎΦ =
√

2|z||α| cos Φ, (C.1)

where Φ is the phase difference between the signal and the local oscillator and z

is the eigenvalue of the latter. This is a measure of the classical autocorrelation

pattern of the pulse (Figure C.2). Note that for our experimental configuration

Figure C.2: Interferometric autocorrelation figure

a 10 nm step of piezo corresponds to a 10
√

2 nm variation of the local oscillator

optical path (see Figure C.3).
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Figure C.3: Variation in the optical path of the local oscillator due to the

position of the piezo. Two configurations of the mirror on the piezoelectric

translator are shown, in order to compare the optical paths. Note that this

figure is schematic and the scale is not exact; as a matter of fact the step of

the piezo must be much smaller than the diameter of beam.
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Appendix D

Systematic errors in BHD

measurements

Performing measurements of time resolved Balance Homodyne Detection we

noticed a suspect squeezing in many Wigner function, especially when the

intensity of the probe was high. In order to verify this behavior we decided

to execute the same measurement without the sample and we found out the

same result (see Figure D.1). This proof demonstrated that there was a

systematic error which affected the data.

The problem concerns the instability of the piezo read-out position: if we read

the position of the piezoelectric translator (using an apposite software) we do

not get always the same result. On the contrary one obtains a distribution

around the mean value with standard deviation σ = 3 nm [11].

In order to understand how uncertainty could affect our measurements, we

decided to simulate it: we considered a quadrature of a coherent state and

added to the position of the piezo (i.e. to the phase difference) a random

number with gaussian distribution around zero and standard deviation of 3

nm. This modification is much more visible in correspondence of the phase

difference for which the derivative
∣∣∣dxΦ
dΦ

∣∣∣ is maximum, since even a small error

in the phase Φ determines a considerable variation in xΦ (about
∣∣∣dxΦ
dΦ

∣∣∣ ·∆Φ).

Therefore the variance increases around the points of maximum derivative, in

absolute value, which occur with double frequency with respect to the same

value of the quadrature and so this uncertainty entails a false squeezing in
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APPENDIX D. SYSTEMATIC ERRORS IN BHD MEASUREMENTS

(a)

(b)

Figure D.1: BHD measurement without sample, with a probe power of 28

µW , which corresponds to an intensity of 634 nJ/cm2. In Figure (a) the

Wigner function is represented, while its projection on the horizontal plane

is plotted in (b).

the measured quantum state.

We also noticed that this effect depends on the probe power, so we performed

several measurements without sample at different intensities and for each one
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we calculated the squeezing parameter, which depends on the ratio between

the standard deviations of the Wigner function along the p and the q axis.

The squeezing parameter increases monotonically with the signal intensity;

making the same calculation for the simulated data we got the same result

and it confirms the hypothesis about the causes of the fictitious squeezing

D.2. Since we cannot improve the sensibility of the piezoelectric translator,

we decided to consider only low intensity data.

Figure D.2: Squeezing parameter as function of the number of photons of

the signal. Green points represent experimental data, while the blue line

is a simulation based on the hypothesis of a 3 nm uncertainty in the piezo

position.

Another problem in BHD measurements is related to the phase in long

experiments. This effect is visible in Figure D.3 (a) in which a shift of the

phase is evident, whose cause is probably a variation of the difference between

the optical path of the local oscillator and the signal. It might be caused

by a variation of temperature, which modifies the optical paths (since the

beams pass through some objects which can experience thermal expansion).
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APPENDIX D. SYSTEMATIC ERRORS IN BHD MEASUREMENTS

Since this shift of the phase is a systematic effect, we usually "correct" the

(a)

(b)

Figure D.3: Result of a time resolved balance homodyne detection measure-

ment. In Figure (a) we notice a shift of the phase, which is "corrected" in

(b).

image: we fit the columns of the image with a sine function and redefine a

point of maximum (or minimum) of the sine function as the first point of the

column. The result is shown in Figure D.3.b.
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Appendix E

Wigner function reconstruction

Balance Homodyne Detection provides set of data of the form (xθ, θ), where

xθ is the quadrature related to the phase difference θ between the signal and

the local oscillator, experimentally obtained by changing the piezoelectric

translator position. Our aim is to get the Wigner function starting from

these data, since it complitely characterizes the quantum state of the signal

we want to measure and allow to compute the expectation values of all the

observables of the system.

The Wigner function is directly related to the quadrature xθ, and in particular

to the marginal distribution pr(xθ, θ) (see section 2.1.1) through the so called

Radon transform

pr(xθ, θ) =

∫ +∞

−∞
Wdet(xθ cos θ − Pθ sin θ, xθ sin θ + Pθ cos θ)dPθ. (E.1)

The previous equation underlines that pr(xθ, θ) is the integral projection of

the Wigner function in a vertical plane which forms an angle θ with the q-axis

in phase space (Figure E.1). The subscript det stands for detected and refers

to the fact that we deal with the reconstructed Wigner function and not the

"real" one [32]. The difference between the two is due to the experimental

conditions and limits; one can think that the detected Wigner is related to

the real one by a convolution with a gaussian function which contains the

efficiency of the detector (see Figure 2.4).

Several numerical methods exist to obtain the Wigner function starting

from the experimental data. Some of them are classified as inverse linear
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APPENDIX E. WIGNER FUNCTION RECONSTRUCTION

Figure E.1: Example of Wigner function and relative marginal pr(Qθ, θ),

represented as projection on a plane rotated of an angle θ with respect to

the Q-axis. [32]

transform techniques and are based on the definition of marginals. Since

the integration in equation E.1 is a linear operation, one can reverse it and

reconstruct the function from the marginals. The numerical inversion of the

Radon transform is well known in medical imaging, but we need a technique

which takes into account also the efficiency of the detector.

The minmax reconstruction algorithm [33] satisfies the previous requests and

provides a Wigner estimation

W η
h,M (q, p) =

1

M

M∑
i=1

Kh,η
xθi ,θi

(q, p), (E.2)

with

Kh,η
xθi ,θi

(q, p) =

∫ 1
h

− 1
h

dt
|t|
4π
e
−it
(
q cos θi+p sin θi−

xθi√
η

)
+t2 1−η

4η . (E.3)

The previous estimation depends on the data (xθi , θi), the detector efficiency

η, the number of collected data M and an adaptive parameter h, necessary

since the integrand diverges. The value of h which minimizes uncertainties

[33] is

h =

√
2β + 2γ

logN
, (E.4)

where β depends on the class of the Wigner function and should be less

than 1
4 , while γ = 1−η

4η (η is the efficiency of the detector). Once the Wigner
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function has been reconstructed, all expectation values of observables Ô can

be computed with the relation

〈Ô〉h =

∫
dqdpOW (q, p)W η

h,M

=
1

M

M∑
i=1

∫
dqdpOW (q, p)Kh,η

xθi ,θi
(q, p),

(E.5)

where OW (q, p) is the Wigner transform of the operator Ô (see section 2.1.1).
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Conclusions

A quantum state can be completely characterized by its Wigner function

(WF), since it allows to compute the expectation value of any observable of

the system. In addition to this the WF gives an immediate representation of

the state characteristics: properties such as coherence or squeezing are visible

in the WF shape in phase space.

Both photon and phonon fields are described with the quantum oscillator

formalism and have eigenstates whose Wigner function is a gaussian in phase

space. The quantum state of light can be detected through Balanced Homo-

dyne Detection (BHD), while the detection of phonon quantum state is still

a discussed topic.

In this thesis work we developed a set-up which connects time resolved

techniques with BHD, in order to get a more profound analysis of the probe

scattered in an Impulsive Stimulated Raman Scattering (ISRS) measurement.

To test our new approach to pump and probe experiments we studied a rep-

resentative sample for transparent materials such as α-quartz, whose Raman

active modes have been extensively studied with more standard approaches.

The measurements described in this thesis have been made possible by

the use of a unique combination of the following instruments:

• a laser system which provides ultashort pulses (∼ 100 fs) with high

repetition rate (250 KHz);

• a "home made" balanced differential detector with high efficiency (that

is low electronic noise);
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• a fast digitizer, which allows to analyze hundreds of equally prepared

pulses, to average them and calculate variance and higher momenta in

order to get statistical information too.

Performing "standard" time domain ISRS measurements we observed os-

cillations in the signal due to the mapping of the phonon state on the photon

one, which has been theoretically demonstrated. From this measure one can

obtain the frequency of the excited Raman mode (128 cm−1 in our case).

The analysis of the variance showed two Fourier components: one at the

same frequency of the signal and the other at twice this frequency. The latter

component is rationalized in terms of a squeezing of the excited vibrational

state, which in our model is mapped onto a photon number fluctuation in the

probe quantum state. The squeezing is confirmed by the Wigner function

reconstruction of the probe state as a function of the delay time between the

excitation and the instant in which the probe impinges on the sample. The

calculation of the expectation value of the squeezing parameter demonstrates

not only that it is not zero, but also that it oscillates at the frequency of the

excited phononic mode.

To the best of our knowledge, a fully quantum description of how purely

quantum phononic states (such as a squeezed one) are mapped on a photon

field is not available. We developed a phenomenological model which describes

the interaction of the two fields. Future investigations of such interactions

will potentially enable a new approach to the manipulation of the quantum

state of ultrashort pulses through time domain experiments.
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Riassunto

Uno stato quantistico può essere completamente caratterizzato dal suo ope-

ratore densità ρ̂, dal momento che il valore di aspettazione di qualunque

osservabile Ô del sistema si ottiene dalla relazione 〈Ô〉 = Tr
(
ρ̂Ô
)
. Il forma-

lismo dell’operatore densità ha inoltre il vantaggio di descrivere anche stati

misti, che non sono accessibili con l’usuale notazione delle funzioni d’onda

nello spazio di Hilbert.

Analoghe proprietà caratterizzano la funzione di Wigner , una distri-

buzione di quasi-probabiltà che dipende dalle coordinate dello spazio delle

fasi q e p. La definizione di spazio delle fasi quantistico non è una semplice

generalizzazione del caso classico, dal momento che nella quantizzazione del

campo le variabili classiche vengono sostituite da operatori e quindi q e p

saranno in questo caso gli autovalori di questi operatori. Inoltre la posizione

e il momento non commutano e sono legati dal principio di indeterminazione

di Heisenberg: da ciò consegue che uno stato non può essere definito uni-

vocamente (cioè con un punto nello spazio delle fasi). Per questo motivo

uno stato quantistico viene rappresentato come un’area nello spazio delle

fasi e non esiste una funzione che descriva la probabilità che il sistema abbia

contemporaneamente posizione q e momento p, ma solo distribuzioni di pro-

babilità per q e p separatamente. Per questo motivo la funzione di Wigner è

definita di quasi-probabilità e può assumere valori negativi.

Tra le proprietà di questa distribuzione ricordiamo il fatto che i suoi marginali,

cioè gli integrali su una delle dimensioni dello spazio delle fasi, sono la distri-

buzione di probabilità dell’altra variabile e che la conoscenza della funzione

di Wigner permette di calcolare i valori di aspettazione di ogni osservabile del
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sistema. Inoltre la rappresentazione di questa funzione nello spazio delle fasi

esprime in maniera diretta le proprietà più rilevanti del sistema quantistico

in esame.

In questo lavoro di tesi vengono trattati sia campi fononici che fotonici,

entrambi descritti con il formalismo dell’oscillatore armonico, i cui autostati

sono stati di Fock e stati gaussiani (la cui rappresentazione dello spazio delle

fasi è appunto una gaussiana). Noi siamo interessati alla seconda categoria

ed in particolare a stati che saturano il principio di indeterminazione: stati

coerenti (in cui l’indeterminazione sulle due variabili è la stessa) e stati

squeezed.

Lo stato quantistico della luce può essere ricostruito tramite tecniche di

tomografia quantistica, come la detezione omodina : questa tecnica speri-

mentale prevede l’interferenza su un beam splitter 50:50 del campo che si

desidera conoscere (segnale) con un fascio più intenso e noto (detto oscillatore

locale). La differenza tra le intensità dei due fasci uscenti dal beam splitter è

proporzionale alla quadratura di campo x̂Φ = 1√
2

(
âe−iΦ + â†eiΦ

)
in funzione

della differenza di fase Φ tra il segnale e l’oscillatore locale, che può essere

ottenuta variando il percorso ottico di uno dei due fasci. Da questa quantità

è possibile ricostruire la funzione di Wigner del segnale.

Se la tecnica di detezione dello stato quantistico della luce è ormai nota e

spiegata teoricamente, dall’altro lato la completa caratterizzazione di stati

fononici rappresenta ancora un argomento di discussione [2, 27] e non esiste an-

cora un modello teorico puramente quantistico che la descriva adeguatamente.

Al contrario modelli semiclassici per la detezione di stati fononici sono

stati ampiamente sviluppati. Un esempio sono le tecniche spettroscopiche

basate sullo scattering Raman stimolato, che prevedono l’eccitazione di

fononi nel campione con un impulso di luce intenso (pump) e lo studio della

relativa variazione delle proprietà ottiche del sistema in funzione del tempo

trascorso dall’eccitazione. Una trattazione formale, di cui riportiamo in segui-

to solo i punti fondamentali, è contenuta nel lavoro di S. Mukamel Principles

of Nonlinear optical spectoscopy [1].

La spettroscopia ottica si propone di studiare le caratteristiche di un campione
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analizzando la variazione delle proprietà della luce da lui riflessa o trasmessa.

Per questo è necessario concentrarsi su una quantità che connetta le carat-

teristiche del sistema con la radiazione elettromagnetica: la polarizzazione.

Ricordando che la polarizzazione P altro non è che il valore di aspettazione

dell’operatore di dipolo V e che vale la relazione 〈V̂ 〉 = Tr
(
ρ̂V̂
)
, eseguendo

uno sviluppo perturbativo dell’operatore densità ρ̂ in approssimazione di

dipolo e di campi deboli, si ottiene l’ordine n-esimo dello sviluppo della

polarizzazione

P (n)(r, t) =

∫ +∞

0
dtn...

∫ +∞

0
dt1S

(n)(tn, tn−1, ...t1)E (r, t− tn) ·

· E (r, t− tn − tn−1) ...E (r, t− tn − tn−1...t1) .

(E.6)

Nell’equazione precedente S(n)(tn, tn−1, ...t1) è la funzione di risposta del

sistema, che dipende dal campione in esame, ed E(t) sono i campi elettrici

che interagiscono con il sistema.

I processi connessi con l’n− 1-esima componente della polarizzazione sono

definiti processi di n-wave mixing e sono dovuti all’interazione di n− 1 campi

elettromagnetici con il campione. Nei materiali con simmetria per inversione

la componenete al secondo ordine della polarizzazione è nulla e quindi il

primo contributo non lineare è legato a fenomeni del terzo ordine, cioè a

processi di four wave mixing.

In questa trattazione l’impulso di pump dello Scatterig Raman Stimolato

è rappresentato dai primi due impulsi che raggiungono il campione e per i

quali non è previsto un preciso ordine temporale; la loro interazione genera

una sorta di reticolo (con vettore d’onda pari alla differenza tra quelli dei due

impulsi) dal quale il terzo impulso (probe) viene scatterato. La direzione e

la polarizzazione del fascio scatterato forniscono le prime informazioni sul

modo Raman eccitato dall’impulso di pump. La funzione di risposta dipende

dal campione e nel caso di cristalli può essere calcolata a partire dal modello

dell’oscilatore Browniano, che descrive la dinamica nucleare nel caso di oscil-

lazioni coerenti e smorzate. Il risultato, nel caso impulsivo, prevede che il

probe scatterato dal campione sia modulato da un segnale con frequenza pari

a quella del modo Raman eccitato.

Nel nostro caso il campione è costrituito da quarzo a temperatura ambiente

129



RIASSUNTO

(detto α-quartz) e per la nostra configurazione sperimentale il modo vibrazio-

nale eccitato ha simmetria E e numero d’onda 128 cm−1.

Scopo di questo lavoro di tesi è la combinazione delle due tecniche spe-

rimentali (Detezione Omodina e Scattering Raman Stimolato) per ottene-

re un’analisi più completa dell’impulso di probe dopo l’interazione con il

campione. In particolare non vogliamo solo misurare l’intensità del fascio,

che, come anticipato, fornisce informazioni sull’energia del fonone eccitato,

ma anche le fluttuazioni intrinseche dovute alla quantizzazione del campo

elettromagnetico, la cui connessione con lo stato fononico non è ancora chiara.

Questo tipo di misura è stata resa possibile da una adeguata strumen-

tazione , che comprende:

• un sistema laser che sfrutta la tecnica di Kerr Lens Mode Locking per

produrre impulsi ultracorti (∼ 100 fs) con una repetition rate di 250

KHz (cioè un impulso ogni 4 µs);

• un detector differenziale bilanciato costruito appositamente per eseguire

queste misure, che presenta caratteristiche di elevata velocità dell’elet-

tronica (tale da consentire la detezione di un impulso ultacorto ogni 4

µs mantenendo separati i segnali) ed elevato rapporto tra shot noise e

rumore elettronico, in modo da essere sensibile alle fluttuazioni dovute

alla natura quantistica della luce;

• una scheda di acquisizione in grado analizzare centinaia di impulsi

ugualmente preparati (necessari per la ricostruzione della funzione di

Wigner) e di calcolarne la media, la varianza ed i momenti successivi

per ottenere un’analisi statistica della misura.

Piccole modifiche al set-up ci hanno permesso di effettuare essenzialmente

tre tipi di misure . La prima, una sorta di detezione omodina senza l’oscil-

latore locale, consiste in un processo di Scattering Raman Stimolato in cui

il segnale finale è diviso da un beam splitter 50:50 in due fasci che vengono

misurati dal detector differenziale.

Non è difficile immaginare che una misura di questo tipo dovrebbe fornire
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una differenza di intensità media nulla; quest’ipotesi è confermata anche dalla

teoria alla base della detezione omodina (basta sostituire all’oscillatore locale

il vuoto). Al contrario il risultato di questa misura è un’intensità media che,

dopo l’arrivo del pump sul campione, oscilla alla frequenza del modo Raman

eccitato. L’analisi della varianza fornisce lo stesso risultato, ma in questo caso

le oscillazioni presentano una differenza di fase rispetto a quelle della media.

La varianza inoltre presenta un’altra componente di Fourier a una frquenza

circa doppia rispetto a quella del modo vibrazionale. Le misure sono state

ripetute e presentano sempre lo stesso risultato. Probabilmente la presenza

di segnale è dovuta a un semplice sbilanciamento tra i due rami in uscita dal

beam splitter, che produrrebbe appunto risultati simili. Tuttavia questa ipo-

tesi non spiega il comportamento della varianza, che resta un problema aperto.

La seconda è una misura di Scattering Raman Stimolato risolto in tempo:

l’intensità del probe scatterato dal campione in seguito all’eccitazione di modi

Raman viene misurata del detector. Il risultato di questo tipo di misura è

l’oscillazione dell’intensità alla frequenza del solito modo Raman a 128 cm−1.

Anche la varianza presenta lo stesso comportamento dell’intensità, compresa

la fase. In condizioni di rumore sufficientemente basso si nota una seconda

componente di Fourier nella varianza ad una frequenza doppia rispetto a

quella del modo Raman.

Questo effetto può essere spiegato con uno squeezing dei fotoni di probe:

l’evoluzione temporale di un autostato dell’Hamiltoniana dell’oscillatore ar-

monico quantistico (e quindi anche dei fotoni) nello spazio delle fasi è infatti

rappresentata da un’area che ruota attorno all’origine degli assi. Se lo stato

è squeezed, e quindi la deviazione standard (rappresentata nello spazio delle

fasi dalla larghezza della distribuzione) lungo q è diversa da quella lungo p,

si può facilmente vedere che la varianza oscilla al doppio della frequenza.

L’ipotesi di squeezing è confermata della terza misura, una Detezione

Omodina risolta in tempo. Si tratta di una normale misura di tomografia

quantistica effettuata a diversi ritardi temporali τ tra il pump ed il probe. Il

risultato è un grafico tridimensionale in cui la quadratura di campo dipende

sia dalla fase relativa tra segnale e oscillatore locale (come normalmente
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accade nella detezione omodina), che dall’intervallo di tempo τ . Fissando

la fase tra i due impulsi è possibile studiare la dipendenza temporale della

quadratura di campo: anche questa grandezza presenta le tipiche oscillazioni

per tempi successivi rispetto all’arrivo del pump.

Fissando invece il tempo otteniamo misure della quadratura in funzione della

fase tra il probe scatterato e l’oscillatore locale, che ci permettono di ricostrui-

re la funzione di Wigner al tempo fissato. Ripetendo questa operazione per

tutti gli intervalli temporali τ otteniamo l’evoluzione temporale dello stato

quantistico del probe. Da una prima analisi delle funzioni di Wigner notiamo

subito un’oscillazione del numero di fotoni (che equivale ad una variazione

della distanza dall’origine dello spazio delle fasi) e un leggero squeezing (la

figura risulta schiacciata lungo la direzione della variabile q). Per avere

un’analisi più quantitativa basta utilizzare le funzioni di Wigner ottenute

per calcolare il valore di aspettazione delle osservabili che ci interessano,

quali il numero di fotoni, le varianze e il parametro di squeezing. I primi

due riflettono il comportamento osservato nelle misure di Scattering Raman

risolto in tempo, mentre l’ultimo mostra oscillazioni alla solita frequenza di

circa 3.9 THz, ma i suoi valori, per quanto piccoli, non raggiungono mai lo zero.

Come anticipato non esiste una teoria quantistica che descriva l’interazio-

ne tra il campo vibrazionale e quello elettromagnetico. Pertanto se da un lato

è noto che i modi vibrazionali si mappano sull’intensità del fascio scatterato,

dall’altro non sappiamo come l’indeterminazione dei primi modifichi lo stato

quantistico dei fotoni.

Abbiamo quindi tentato di sviluppare un modello fenomenologico che descriva

questa interazione, basato sull’ipotesi che l’Hamiltoniana utilizzata per descri-

vere l’interazione tra il pump e il campione nello stato iniziale sia valida anche

per quella tra il probe ed il campione. Il processo totale è stato poi suddiviso

in più fasi (arrivo del pump sul campione, interazione con l’ambiente durante

l’intervallo tra pump e probe, arrivo del probe, misura e caratterizzazione

dello stato quantistico del segnale), per ognuna delle quali abbiamo ottenuto

l’operatore densità ρ. Da questa formulazione sembra evidente che lo stato

quantistico del probe sia influenzato da quello fononico, sebbene non sia

ancora chiaro quali possano essere le conseguenze.
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Scopo delle prossime simulazioni numeriche sarà capire quali siano gli effetti

di uno stato fononico coerente e squeezed sullo stato quantistico della luce in

questo tipo di esperimenti e se effettivamente informazioni sullo stato quanti-

stico vibrazionale possano essere accessibili con misure di ottica quantistica

risolte in tempo.
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