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Summary

In a classical description the displacement of the atoms along the vibrational
eigenmodes of a crystal can be measured with unlimited precision. Conversely, in
the quantum formalism positions and momenta of the atoms can be determined
simultaneously only within the boundary given by the Heisenberg uncertainty prin-
ciple. For this reason, in real materials, in addition to the thermal disorder, the
atomic displacements are subject to fluctuations which are intrinsic to their quan-
tum nature. Because a crystalline solid has symmetries, these vibrations can be
analyzed in terms of collective modes of motion of the atoms. These modes corre-
spond to collective excitations called phonons. The aim of this thesis is to study
the quantum fluctuations of the atoms involved in such collective vibrations.

The motivation of studying the quantum proprieties of phonons in crystals
comes from various evidences, recently reported in the literature, suggesting that
quantum fluctuations of the atoms in solids may be of relevance in determining the
onset of intriguing and still not completely understood material properties, such as
quantum para-electricity, charge density waves, or high temperature superconduc-
tivity.

The time evolution of phonons in crystals is usually addressed in the framework
of ultrafast optical spectroscopy by means of pump-probe experiments. In these
experiments the phonon dynamics is driven by an intense ultrashort laser pulse (the
pump), and then the collective excitation is investigated in time domain through
the interaction with a weaker pulse (the probe). Unfortunately this method typ-
ically provides information only about the average position of the atoms and an
intense scientific debate is on-going about the possibility to have access also to
the fluctuations of such positions measured with respect to a bound level for the
shot-noise limit (intrinsic quantum noise limit).

In this research activity a new approach to investigate quantum fluctuations
of collective atomic vibrations in crystals is proposed. It combines time resolved
optical spectroscopy techniques (pump and probe experiments) and quantum optics
techniques (balanced homodyne detection). The novel spectroscopic tool, pump-
probe quantum state tomography, consists in the time domain characterization of the
quantum state of probing light pulses after the interaction with the photo-excited
material. The approach has been tested by investigating quantum fluctuations
of the atomic positions in α-quartz, which serves as a case study for transparent
materials. However, it can be in principle generalized to the study any collective
excitations in crystals.
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Nobody said it was easy,
No one ever said it would be so hard,
I’m going back to the start...

The Scientist, Coldplay

1
Introduction

1.1 Invitation and historical remarks
Light-matter interaction belongs to our daily experience. It is the mechanism which
rules our perception of colors, our feeling of the sun on the skin in a spring day
outdoor, or the effects of the sunset over the sea when the air is clear.

Figure 1.1: Sunset over the sea in Trieste, Italy.

The wonder with respect to these so familiar but every time surprising natural
phenomena leads myself since I was a high school student, stimulating my curiosity
about the road that from Newton’s experiments about colors in the 17th century
brought to the modern comprehension of the light-matter interaction in the terms
of quantum mechanics. Although eight years passed from my final high school
exam (where I presented a short report about nature of light) and this PhD thesis,
in these years of study and research, I tried to let me guide by the same wonder of
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Chapter 1. Introduction

those early days.
My PhD research activity exploits light-matter interaction for studying quan-

tum proprieties of collective atomic vibrations in solids. In particular, quantum
proprieties of atoms in matter are investigated by measuring quantum proprieties
of interacting light pulses. Before going to the motivation of such a study, I would
like to give here a brief historical excursus citing the salient scientific achievements
that led to the present theoretical and experimental knowledge of light-matter in-
teraction. Such steps in the history of science intrigued myself since the first stage
of my studies. That’s why I am happy to briefly report them here in the hope of
leading the reader in the research field of this thesis.

The theory formulated by Isaac Newton in the 17th century for describing light-
matter interaction claimed that light was composed of a beam of particles able, for
example, to bounce back upon reflection from a mirror. Later, the necessity of
describing light phenomena like interference and diffraction, incompatible with the
Newton’s theory, led to profound investigations about the wave-like nature of the
light.

Almost two centuries of research in this field culminated in a complete descrip-
tion of light propagation in a mean, or in the vacuum, in terms of electromagnetic
radiation. This happened through what the physicists consider one of the most ele-
gant set of equations in science, the Maxwell’s equations, formulated in their whole
in 1861. The theory of the electromagnetism, developed due to the introduction of
the Maxwell’s equations, produced a unified interpretation of a set of phenomena
which were previously considered to belong to different domains: electricity, mag-
netism and optics1. A famous sentence of Richard Fayman summarizes the huge
impact of such a theory on the history of mankind: “from a long view of the history
of mankind there can be little doubt that the most significant event of the 19th
century will be judged as Maxwell’s discovery of the laws of electrodynamics”2.

However, at the beginning of 20th century the study of blackbody radiation
spectrum, which electromagnetic theory could not explain, led Max Plank to in-
troduce for the first time the quantization in the energy exchange between light
and matter (1900). He considered a simple model of matter as a collection of
one-dimensional charged harmonic oscillators each of them oscillating rather like a
weight at the end of a spring. He knew from Maxwell how exactly these charged
oscillators absorb and irradiate light and he could derive the observed radiation
frequency distribution only assuming a discrete energy exchange in multiples of
what he called quantum of energy3. It was the rise of quantum mechanics.
Later, Albert Einstein, in the annus mirabilis 1905, with the theory for the pho-
toelectric effect4, proposed the quantization of the light itself, claiming that the
electromagnetic field carries energy in discrete (quantized) packets, the photons.

In the successive years a scientific revolution impacted the intellectual commu-
nity, leading to the comprehension of many properties of nature at the microscopic
level which cannot be described with classical physics5. Quantum mechanics made
possible amazing scientific achievements, ranging from the invention of the first
transistor (1948)6, to the development of the first laser source7, whose countless
technological applications are at the basis of our modern society. The progresses in
the comprehension of light-matter interactions at the quantum level further devel-
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1.2. Motivations

oped with the advent of some experimental techniques able to isolate single atoms
by cooling or trapping them with laser light8, discovery awarded with the Nobel
prize in 1997. Such advancements made possible the measurement and the ma-
nipulation of single photons and single atoms without destroying their quantum
properties. Such experiments (Nobel prize in 20129) represent the most elementary
manifestations of the quantum interaction between single atoms and photons.

In this thesis, the atoms under investigation are not isolated systems but they
are arranged in lattice structures, crystalline solids, which contain a number of
atoms of the order of 1024 (Avogadro number) per cm3.

Although arranged in crystalline structures, atoms still manifest their quantum
nature, that is responsible for many intriguing material proprieties. In particular
atoms in solids can generate collective excitation, phonons, which manifest as quan-
tized lattice vibrations.

In this Chapter the motivations of studying quantum properties of collective
excitations in solids are reported (Section 1.2), then the typical time domain tech-
niques for the study of collective excitations are presented (Section 1.3) and an
introduction is given about how these standard techniques have been broadened
out in this thesis to address quantum fluctuations (Section 1.4). Finally a reading
guide is provided (Section 1.5).

1.2 Motivations
The aim of this thesis is to study the quantum proprieties of coherent vibrational
modes of the atoms in crystalline solids. The displacement of the atoms along the
vibrational eigenmodes of a crystal can be chaotic, due to thermal disorder, or
can be characterized by a precise correlation between all the atomic positions.
When all the atoms in a crystal vibrate in phase, they constitute a collective
excitation commonly dubbed coherent phonon. The motivation of studying the
quantum proprieties of phonons in crystals comes from various evidences reported
in literature suggesting that quantum fluctuations of the atoms in solids may be of
relevance in determining the onset of intriguing and still not completely described
material properties, such as quantum para-electricity, charge density waves, or high
temperature superconductivity10–17. In the following I am going to mention two
examples selected from the literature in which lattice quantum fluctuations are
shown to significantly contribute to peculiar material proprieties.

In Fig 1.2 the observations of Nosawa and co-workers11 about fluctuations of
Ti atoms in SrTiO3 are shown. In this work the authors perform X-rays absorb-
tion spectroscopy (XAS) measurements and observe quantum fluctuations of Ti
atoms along the Ti − O direction in presence of UV irradiation. Their results in-
dicates the excitation of specific phononic modes, observed only in the quantum
para-electric phase. Experimentally, quantum para-electricity is associated with
an anomalous behaviour of the dielectric susceptibility with respect to the typical
ferroelectric comportment. In this case11, the excitation of quantum fluctuations
of some specific lattice modes by UV irradiation is shown to be directly connected
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Chapter 1. Introduction

to the quantum para-electric phase.

Figure 1.2: Quantum fluctuations controlled by ultraviolet irradiation in SrTiO3. Figures
from 11. (a) X-rays absorbtion intensity of a specific peak in the pre-threshold Ti K-edge
XAS spectra. The x axis indicates the measurement time characterized by UV irradiation
started at 0 min and stopped at 30 min. The lifetime and behaviour with temperature
are characteristic only of the quantum para-electric phase. (b) Schematic representation of
thermal local vibrations (no UV irradiation) and (c) of vibrations excited by UV irradiation in
quantum para-electric phase.

The second example regards the key role of atomic fluctuations in understating
the origin of high-temperature superconductivity in copper oxide layered materi-
als. In this framework, Newns and Tsuei demonstrated12 that a fluctuating bound

Figure 1.3: Fluctuating Cu-O-Cu bond model of high-temperature superconductivity.
Figures from 12. (a) Frequency shift of the the out-of-plain oxygen mode in cuprate super-
conductors derived from the fluctuating bound model. Comparison with experimental results
(inset) for Raman experiments in 18. (b) Schematic representation of the z component of the
fluctuating bond field in CuO2 planes. Cu atoms (yellow), O atoms (red).

model of high temperature superconductivity can predict many experimental ob-
servations. Their model12 explicitly accounts for the lattice atomic fluctuations
which involve the CuO2 planes. It is characterized by a non linear coupling be-
tween the Cu-Cu bound and the in-plain and out-of-plain oxygen fluctuations. In
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1.3. Time domain ultrafast spectroscopy

Fig 1.3 it is reported the result about the qualitative reproduction of the universal
experimental softening of the out-of-plane oxygen-bend mode below TC in cuprate
superconductors18–21.

The two studies reported from the literature exemplify the motivations for
the investigation of the atomic collective fluctuations in solid state physics. They
represent two examples in a huge range of physical settings in which the intrinsic
atomic quantum fluctuations are important.

It important to note that, in addition to the the case of atomic vibrational
states, the problem of the quantum fluctuations can be also generalized to excita-
tions of different nature, like for example excitations of electronic origin22,23.

In this framework, this thesis could be considered as a seeding work in which
a new spectroscopic approach to address the quantum fluctuations of collective
excitations in solids is proposed. The thesis put at test such a new approach
by investigating quantum fluctuations of simple excitations, Raman active atomic
vibrational modes, in simple systems, transparent materials.

In the following I am going to introduce the tools adopted here to address
quantum fluctuations of lattice displacements. I will first present the typical spec-
troscopic technique for studying the time evolution of the average collective atomic
vibrations in solids: ultrafast spectroscopy. Then I will introduce the novel ap-
proach developed and tested in this thesis to investigate not only the average but
also the fluctuations of the atomic positions in time domain experiments.

1.3 Time domain ultrafast spectroscopy
In the research field of solid state physics, light matter-interaction is a fundamental
brick since the electromagnetic radiation scattered by a material carries a huge
amount of information which can be used for investigating different characteristics
of the material itself. This is the basis of all spectroscopies. From a historical
point of view, spectroscopy arose already after the famous experiment carried out
by Isaac Newton and published in 1672 in which, refracting sunlight in a glass
prism, he observed the dispersion of the colors of the rainbow, labelling this rainbow
spectrum 24. Solid state spectroscopy is today a wide research field that deals with
the study of the interaction between matter and radiation ∗ both at the equilibrium
and out-of-the-equilibrium25.

In equilibrium spectroscopies the external stimuli are either extremely weak or
their application lasts for a time much longer than the interaction time among the

∗Although, strictly speaking, the term radiation only deals with photons (electromag-
netic radiation), it should be noted that spectroscopy, in its general meaning, also involves
the interactions of other types of particles, such as neutrons, electrons, or protons, which
are also used to investigate matter24. Even limiting the analysis to the case in which
the adopted probe is the electromagnetic radiation, the research field is still vast, since
in function of the energy content of the used photons, different degrees of freedom of the
material can be probed. When the energy content of the electromagnetic radiation drops
in what is called optical range, which includes the ultraviolet (UV), the visible (VIS) and
the near infrared (NIR) energy regions, one speaks of optical spectroscopy.
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Chapter 1. Introduction

internal degrees of freedom of the system. With the advent of ultrafast laser sources,
the possibility of applying external perturbations faster than the typical relaxation
times led to dramatic advances in solid state spectroscopy26. This achievement
made possible the study of ultrafast dynamics with relatively cheap table-top lasers
which can easily deliver ultrashort coherent and tunable light pulses with a typical
duration ranging from a few to several hundreds of femtoseconds (1015 s)27,28. After
the first experiments, awarded with the Nobel prize in 199929, in the last 20 years
a dramatic development of the out-of-equilibrium version of most of the traditional
equilibrium optical spectroscopies has been achieved26.

In the framework of ultrafast spectroscopy, a single experiment, the so called
pump-probe experiment, can be applied to investigate an innumerable variety of dif-
ferent phenomena in extremely diverse physical regimes26. The experiment consist
in two steps: (i) the photo-excitation of the material through an intense ultrashort
laser pulse (the pump) which drives the system out of equilibrium, and (ii) the
time domain probing of the material through the interaction with a weaker pulse
(the probe) at different instants after the pump perturbation. The intensity of the
probe as a function of time is measured in order to observe how the optical propri-
eties of the material evolves from the excitation to the relaxation of the system. A
scheme of a typical pump-probe experiment is shown in Fig 1.4.

Figure 1.4: Scheme of a standard pump-probe optical experiment in transmission con-
figuration. A photodiode measures the intensity of the transmitted probe pulses at different
time delays between the pump and the probe arrivals on the sample. The intensity of the
transmitted light is indicated ad the average number of photons per pulse at each time: ⟨n̂⟩ (t).

This simple scheme can be adapted to investigate the non-equilibrium physics
of solid state systems in substantially different conceptual frameworks. One of
this is the study of coherent collective excitation in materials. Any kind of im-
pulsive excitation coupled to specific collective modes, such as lattice vibrations
or charge/spin order, can indeed trigger a coherent oscillation at the typical fre-
quency of the mode and with a relaxation time that is related to its de-phasing
time26. In this case, the pump-probe technique can be considered as a real time
domain technique, since the Fourier-transform of the time domain signal provides
the frequency and lifetime of the collective mode in the material.

The novel experimental approach adopted in this thesis to address quantum
fluctuations in condensed matter is rooted in the framework of ultrafast spec-
troscopy but also exploits techniques from quantum optics. An introduction to
such an approach is given in the following.
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1.4. A novel approach to atomic quantum fluctuations

1.4 A novel approach to atomic quantum fluctuations
Although standard pump-probe technique has been largely adopted to investigate
coherent vibrational modes in crystal30, the typically measured quantity, that is
the intensity of the output probe, provides information only about the average
of the atomic positions during the collective excitation. It is indeed possible to
follows the time evolution of the average position of the atoms, since it is linearly
mapped (through the modulation of the dielectric function) into the number of
probe photons scattered by the sample. Nevertheless one has no chances in this
way to directly measure the quantum fluctuations of the atomic positions around
their average. An intense scientific debate is indeed on-going about the possibility
to measure quantum fluctuations of atomic positions in time domain with respect
to a benchmark level for the shot-noise limit (intrinsic quantum noise limit).31.

Here this problem is addressed starting from the consideration that in a pump-
probe experiment the probing light contains much more information that just the
intensity, which is measured in standard pump-probe experiments. I give here and
introduction to the two experimental schemes designed and realized during my
PhD research activity and that will be presented in detail in the next chapters.

• The first experimental apparatus has been designed starting from a typical
pump-probe setup but adding the possibility of measuring the entire photon
number quantum statistics of the scattered probing light. This experimental
scheme, sketched in Fig 1.5, is based on the possibility to separately acquire
each single scattered probe pulse. Working with high repetition-rate laser

Figure 1.5: Scheme of the photon number quantum statistics experiment. For each time
delay between the pump and probe, several scattered probe pulses are singularly acquired and
the photon number statistics is measured.

sources allows to have access to a wide statistics in few seconds and to be
able to measure not only the average number of photons (⟨n̂⟩ (t)), related to
the average atomic positions, but also the higher photon number statistical
momenta (⟨n̂k⟩ (t)), into which the fluctuations of the atomic positions can be
mapped. In particular, by adopting a fully quantum mechanical theoretical
treatment, from the fluctuations of the photon number of the scattered probe
it is possible to extract information about the atomic quantum fluctuations.

• Following the same conceptual path, the second experimental apparatus in-
cludes the first one but at the same time expands its capabilities. In par-
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Chapter 1. Introduction

ticular, it allows not only to investigate the photon number quantum dis-
tribution, but also to have access to the maximum information about the
scattered probing light, i. e. its quantum state. This novel spectroscopic
tool combines time resolved optical spectroscopy techniques (pump-probe
experiments) and quantum optics techniques for the measurement of photon
quantum states. The experimental scheme, sketched in Fig 1.6, is similar to
a standard pump-probe experiment with the difference that the probe pulses,
after the interaction with the system, are sent to a quantum optics experi-
mental setup in order to study their quantum state. The method adopted for
the optical quantum state reconstruction is optical homodyne tomography.
With this experimental scheme, that we indicate as pump-probe quantum

Figure 1.6: Scheme of the pump-probe quantum state tomography. For each time delay
between the pump and probe, several scattered probe pulses are sent to the balance homodyne
detection apparatus for the measurement of the optical quantum state at each instant.

state tomography, the quantum states of the probing light pulses are com-
pletely characterized in the time domain. The aim of this experiment is to
have access to the quantum state of collective atomic vibrations in crystals
through the study of the quantum states of the probing light pulses after the
interaction with the material.

The proposed spectroscopic approach, which consists in the two just introduced
experimental schemes, has been tested here for the study of quantum fluctuations
of phonons in α-quartz which serves as a case study for transparent materials.
However, it can be in principle generalized to the study of quantum proprieties of
any collective excitation in solids.

1.5 Reading guide
Here I would like to contextualize the PhD research activity reported in this thesis
and give some guidelines for the reading.

This research project has been carried out in the T-ReX laboratory within the
Fermi project at Elettra Trieste’s synchrotron facility. Some of the preliminary
experiments have been performed at the LOA laboratory at ENSTA ParisTech
institute in Palaiseau. The development of the technological instrumentation has
been obtained in collaboration with the CAEN company. The theoretical part of
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1.5. Reading guide

the project has been developed in close collaboration with the “open quantum sys-
tems - theory research team” at the University of Trieste. The computational part
of the project saw a collaboration with the scientific computing team of the Elet-
tra synchrotron facility. The project included the participation of several students
putting into effects two master theses, one bachelor thesis and several national and
international internships.

The daily comparison with all the involved persons and an intense team work
constituted the motor of the project and for this reason I am convinced it is correct
to adopt for the rest of the thesis a writing style with the first person plural.

A flow diagram representing the scientific purposes of the project and the dif-
ferent experimental approaches adopted is shown in Fig 1.7.

Figure 1.7: Flow diagram of the research project.

The results obtained in this three years long research activity are presented
using the following scheme:

• Chapter 2 gives an introduction to the theoretical background needed for
the description of photon and phonon dynamics in quantum mechanics and
of their interaction. In particular, photons and phonons are described with
the formalism of the quantum harmonic oscillator; the standard classical
and semiclassical theoretical treatment of impulsive excitation of coherent
phonons in solids are reported and finally the proposal of a fully quantum
model for photon-phonon interaction in optical time domain experiments is
presented.

• Chapter 3 is dedicated to the measurement of quantum states of light in
pulsed regime. The optical homodyne tomography technique is described
and our experimental results are reported. Our investigation about the treat-
ment of the inefficiencies in homodyning experiments is also presented. We
approached this issue both by the tomographic point of view and by the
technological and experimental point of view.

9



Chapter 1. Introduction

• Chapter 4 reports our results about the investigation of quantum fluctuations
of lattice displacements by the photon number quantum statistics approach
in non-equilibrium experiments. The combination of shot-noise limited pump
probe experiments and a fully quantum description of the impulsive phonon
excitation in transparent materials allowed us to uncover the fluctuations in
non-equilibrium lattice dynamics.

• Chapter 5 describes the pump probe quantum state tomography technique.
The method has the aim to characterize, via optical homodyne tomography,
the quantum state of the probing optical pulses in time domain ultrafast
spectroscopy experiments. The technique has been tested by studying the
dynamics of photo-excited phonons in a sample of quartz. The preliminary
experimental results are reported.

• Chapter 6 reports the conclusions and the perspectives of the research project.
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2
Photon - Phonon interaction

The word “quantum”, from the Latin for “how much”, indicates a discrete and indi-
visible quantity of energy1. As photons are the quanta of the electromagnetic field,
phonons are the quanta of the atomic vibrational field in matter. This thesis aims
at the study of quantum fluctuations of phonons in crystals by exploiting ultrafast
optical spectroscopy. The leading idea of this work is to map the fluctuations of
the atomic positions into the fluctuation of the number of probing photons after
the interaction with the material. In this Chapter the problem of a theoretical
treatment for photon-phonon interaction in time resolved optical experiments is
addressed.

2.1 Introduction
At a finite temperature the atoms that form a crystalline solid vibrate around their
equilibrium positions, with an amplitude that depends on the temperature. Since
in crystals the atoms are arranged in lattice with precise symmetries, these vibra-
tions can be analyzed in terms of normal modes describing the collective motion
of the atoms with specific patterns2. The displacement of the atoms along such
vibrational eigenmodes of the crystal are characterized not only by thermal fluc-
tuations but also by intrinsic quantum fluctuations. Indeed, even at absolute zero
temperature, according to quantum mechanics, there will be zero-point vibrations3.

In this thesis a novel approach to access the quantum fluctuations of the atomic
positions in pump-probe experiments is proposed. In this kind of experiments an
intense pump laser pulse drives a collective atomic excitation in the crystal and
a less intense probe laser pulse interacts with the system out-of-equilibrium. We
developed two experimental schemes that allow for (i) the measurement of the
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photon number quantum statistics and (ii) the quantum state reconstruction of the
probe pulses in a pump-probe setup. In order to predict how the fluctuations of the
atomic positions in a lattice can be mapped onto the photon quantum fluctuations
of the probe field, we propose a novel theoretical approach to time domain studies.
This theoretical treatment describes quantum mechanically both the material and
the optical fields involved in the interaction process. The model has been developed
in close collaboration with the “open quantum systems - theory research team” at
the University of Trieste4.

Before going into the details of such a model it is necessary to introduce the
basic tools for the quantum description of both the electromagnetic fields and the
vibrational atomic fields. Both are typical examples of bosonic systems and can be
modelled as quantum harmonic oscillators.

This Chapter is organized as follows,

• The theoretical background necessary for the adoption of the quantum har-
monic oscillator formalism is provided (Section 2.2).

• The harmonic oscillator formalism is exploited to give an explicit description
of light pulses in terms of photons and collective atomic vibrations in terms
of phonons (Sections 2.3, 2.4 and 2.5 ).

• The photon-phonon interaction in pump probe experiments is described us-
ing two different theoretical approaches and focusing on the case of trans-
parent materials. In particular, the first approach is the standard non-linear
optical approach which, although treats both photons and phonons classi-
cally, is of fundamental importance to frame the physical context of our
experiments. The second treatment consists in the standard semi-classical
approach to phononic quantum states generation and describes quantum
mechanically only phonons while the optical fields are treated classically
(Section 2.6).

• Finally our fully quantum theoretical treatment for the description of phonon
excitation and detection in transparent materials is reported (Section 2.7).

2.2 The quantum state of a physical system
“State means whatever information is required about a specific system, in addition
to physical laws, in order to predict its behavior in future experiments”. With this
sentence Ugo Fano effectively introduces the concept of quantum state of a physical
system in his review paper5. A brief introduction to the basic concepts necessary
for the representation of a generic quantum state is now provided.

There are states, in quantum mechanics, which are characterized by the fact
that the information about the system under consideration is known in the most
deterministic way permitted by quantum mechanics itself5. Such states are called
pure states and the information about them is encoded in a normalized vector |Ψ⟩.
The latter belongs to a Hilbert space H, which contains all the possible states of
that system. These vectors can be conveniently represented in one of the bases for
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H and can therefore be expressed as a wavefunction Ψ(t, r̄). For pure states an
experiment exists, at least in principle, whose outcome is unique and predictable
with certainty when performed on a system prepared in that state. A measurement
of this kind is called “complete”, for it provides the maximum amount possible of
information about that variable of the system. In the formalism of vector states, the
expectation value of an observable, identified by an Hermitian operator Ô acting
on the Hilbert space H of the state, is given by

⟨Ô⟩ = ⟨Ψ|Ô|Ψ⟩ = Tr[Ô |Ψ⟩ ⟨Ψ|] , (2.1)

and it suggests that a state can also be identified by the projector |Ψ⟩⟨Ψ|.
However, systems also occur for which no complete experiment gives a unique

outcome predictable with certainty5. For this reason there exist a more general
description for quantum states in terms of density matrices acting on H: that is
by Hermitian, non-negative Hilbert-space operators of unit-trace,

ρ̂ =
∑
i

λi|Ψi⟩⟨Ψi| (2.2)

such that ∑
i

λi = 1, λi > 0, ⟨Ψi|Ψi⟩ = 1, ∀i. (2.3)

The density operator formalism is necessary in order to describe statistical ensem-
bles of quantum systems, which cannot be associated with a single vector in H. A
state is pure when ρ̂ becomes a projector on the Hilbert-space, i.e. when there is
only one coefficient λ different from zero and equal to one, otherwise it is mixed and
describes a statistical ensemble of physical systems in states |Ψi⟩ ⟨Ψi| with weight
λi. Note that, being (2.2) just one of the possible representations of ρ̂, the choice
of the set of |Ψi⟩ is not unique.

The expectation value of an observable Ô on the state identified by ρ̂ is given
by

⟨Ô⟩ρ = Tr[Ôρ̂] . (2.4)

This last equation offers a more general definition of the density matrix, by making
no reference to any particular set of pure states, as equation (2.2) instead does6.

From the definition of the density operator in (2.2) and the Schrödinger equa-
tion

∂

∂t
|ψ⟩ = − i

~
Ĥ |ψ⟩ , (2.5)

we can easily obtain the time evolution of ρ̂

∂ρ̂

∂t
=

∑
i

∂ |ψi⟩
∂t

λi ⟨ψi|+
∑
i

|ψi⟩λi
∂ ⟨ψi|
∂t

= − i

~
Ĥ
∑
i

|ψi⟩λi ⟨ψi|+
i

~
∑
i

|ψi⟩λi ⟨ψi| Ĥ

= − i

~

[
Ĥ, ρ̂(t)

]
17



Chapter 2. Photon - Phonon interaction

The previous relation is known as Liouville von Neumann equation7. In order to
describe the time evolution of the density operator one can also use the matrix
representation and study the time dependence of each matrix elements8.

The task of experimentally determining the quantum state of a system consists
in gathering all the information needed to perform the predictions about the future
behaviour of the system (like in (2.4)). One of the techniques to retrieve the state
of a system is the quantum tomography of the state, which will be discussed in
more detail in Chapter 3, where the problem of the tomographic reconstruction of
quantum states of light is addressed.

2.2.1 Wigner function

A useful object, which allows a direct visualization of the state of a system, is a
particular transform (the Wigner transform or Weyl anti-transform) of the density
matrix: the Wigner function, defined as follows

Wρ(q, p) =
1

2π~

∫
R
dy ⟨q + y

2
| ρ̂ |q − y

2
⟩ e−i y p/~ , (2.6)

or symmetrically in p9. It is a normalized and real function in the phase-space,
i.e. a space spanned by two conjugate variables, usually denoted with q and p.
The Wigner function univocally characterize the quantum state, however in this
respect infinite other functions satisfy this request10. The main advantage in rep-
resenting a quantum state in terms of its Wigner function is that it behaves like
a quasiprobability distribution for the state. This means that its marginal distri-
butions, that is the integrals of the functions over the two phase-space conjugate
variables, correspond to the probability densities of the state in the two variables:∫

R
dpWρ(q, p) = ⟨q| ρ̂ |q⟩ =

∣∣ ⟨q|Ψ⟩
∣∣2, (2.7)∫

R
dqWρ(q, p) = ⟨p| ρ̂ |p⟩ =

∣∣ ⟨p|Ψ⟩
∣∣2 , (2.8)

where the last equality in both the expressions is valid only in the case of a pure
state ρ̂ = |Ψ⟩ ⟨Ψ|.
Moreover, it is possible to express the expectation values of any observable Ô as
simple phase-space average of its Wigner transform, i.e., by taking the function

WO(q, p) =
1

2π~

∫
R
dy ⟨q + y

2
| Ô |q − y

2
⟩ e−i y p/~ , (2.9)

the expectation value of Ô will be

⟨Ô⟩ = 2π~
∫
R
dq dpWρ(q, p)WO(q, p) = Tr[Ô ρ̂]. (2.10)
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2.3. The quantum harmonic oscillator

This propriety derives from the so called overlap formula11 (or trace product rule10)
of the Wigner function, which in the case of two pure states, ρ̂1 = |ψ1⟩ ⟨ψ1| and
ρ̂2 = |ψ2⟩ ⟨ψ2|, reads

Tr [ρ1ρ2] = | ⟨ψ1|ψ2⟩ |2

= 2π~
∫
R
dq

∫
R
dpWρ1 (q, p)Wρ2 (q, p) . (2.11)

The latter represents the transition probability between the pure states |ψ1⟩ and
|ψ2⟩. Notice that, if the two states are orthogonal their scalar product is zero. From
the second line of relation (2.11) one can observe that in order to have a null inte-
gral, at least one of the two Wigner functions should assume some negative values
(excluding particular cases). This possibility of assuming negative values repre-
sents one of the main differences of the Wigner function with respect to classical
probability distributions8.

The advantages of the Wigner function representation becomes evident in the
treatment of the quantum harmonic oscillator.

2.3 The quantum harmonic oscillator
Both the kinds of systems which we deal with in this thesis, i.e. the modes of the
electromagnetic field and the vibrational modes in condensed matter lattices, can
be described as quantum harmonic oscillators.

In order to describe a system as a quantum harmonic oscillator one has to iden-
tify two variables which behaves like the conjugate position and momentum of the
harmonic oscillator6. In the case of the vibrational field these quantities are the
displacement and the linear momentum of a normal mode of the atomic lattice. In
the case of the electromagnetic field, instead, they are the real and imaginary parts
of the complex time-evolving electric field, also known as quadratures. In the first
case the mode excitations are called phonons, in the second case, photons. Once
this correspondence between the harmonic oscillator position and momentum and
the associated physical quantities of the system has been identified, the procedure
is a straightforward application of the standard quantization of the harmonic os-
cillator12. In the following a brief introduction to the quantum harmonic oscillator
formalism is reported and some examples of typical quantum states are given.

In classical mechanics an harmonic oscillator is a system that, when displaced
from its equilibrium position, experiences a restoring force which is proportional
to the displacement. The classical Hamiltonian of the harmonic oscillator is

H =
P 2

2m
+
mω2

2
Q2, (2.12)

where Q and P are the position and the linear momentum of an oscillator with
mass m. Such a system is characterized by an oscillating motion at the specific
frequency ω which identifies a so called normal mode. A normal mode of an
generic oscillating system is a pattern of motion in which all parts of the system

19



Chapter 2. Photon - Phonon interaction

move sinusoidally with the same frequency and with a fixed phase relation13. The
concept of normal mode is very important since the most general motion of a system
can be described as a superposition of its normal modes.

In quantum mechanics, given a specific mode characterized by the frequency
ω, the harmonic oscillator is described starting from the bosonic creation and an-
nihilation operators of the mode: â and â†. The hamiltonian for the free oscillator
is

Ĥ0 = ~ω
(
â†â+

1

2

)
. (2.13)

The position and momentum operators are defined as the following linear combi-
nation of â and â†,

q̂ =
â+ â†√

2
, p̂ =

â− â†

i
√
2
. (2.14)

The correspondence between the just defined position and momentum operators
and the position and linear momentum variables in the classical Hamiltonian in
(2.12) are the following:

p̂ → P√
m~ω

, q̂ →
√
mω

~
Q .

Throughout the rest of the thesis, we will use the natural units (i.e., ~ = 1) and
consider quantum harmonic oscillators of unity mass. With this convention, one
can verify, from the bosonic commutation relations ([â, â†] = 1), that the position
and momentum operators are canonically conjugated observables,

[q̂, p̂] = i, (2.15)

and satisfy the Heisenberg uncertainty principle,

∆q∆p ≥ 1

4
, (2.16)

where ∆q = ⟨q̂2⟩ − ⟨q̂⟩2 and ∆p = ⟨p̂2⟩ − ⟨p̂⟩2 are the variances of the operators q̂
and p̂.

2.3.1 Examples of quantum states

The most natural states of the quantum harmonic oscillator to work with are
the Fock states |n⟩, eigenstates of the Hamiltonian Ĥ0 and therefore also of the
number operator n̂ = â†â:

n̂ |n⟩ = â†â |n⟩ = n |n⟩ . (2.17)

They are also called number states and constitute an orthonormal basis of the
Hilbert space (number basis). The ground state of Ĥ0, known as vacuum state
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|0⟩, is defined by the following action of the annihilation operator,

â |0⟩ = 0, (2.18)

while the excited states are given by

|n⟩ = (â†)n√
n!

|0⟩ . (2.19)

The action of the creation and annihilation operators on these eigenstates of the
Hamiltonian is to create of destroy a quantum of excitation in the following way:

â† |n⟩ =
√
n+ 1 |n+ 1⟩ (2.20)

â |n⟩ =
√
n |n− 1⟩ .

The Wigner function of the Fock state with n = 1 is shown in Fig 2.1, together
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Figure 2.1: Number state |n⟩|n⟩|n⟩ with n = 1n = 1n = 1. Occupation probability distribution (a). Wigner
function bi-dimensional (b) and tri-dimensional (c) plot.

with its occupation probability distribution. The Fock states of the harmonic
oscillator are the simpler example of states for which the Wigner function assumes
also negative values. The number states describe states in which the oscillator is
populated with exactly n excitations. For this states the expectation value of the
position ⟨n| q̂ |n⟩ is time-independent and equals 0 whatever excited number state
the oscillator is in6. To get a time-dependent expectation value of q̂, a superposition
of number states must be taken. Out of these non-number states of the harmonic
oscillator the commonest are coherent states, which are the closest analogue to
classical coherent oscillations.

Coherent states are defined as eigenstates of the annihilation operator:

â |α⟩ = α |α⟩ , (2.21)

where α ∈ C, because â is not Hermitian. The vacuum state is a special case of
coherent state, since it satisfies (2.21) with α = 0. The Wigner function of the
vacuum state and that of a coherent state with α = 2 are shown in Fig 2.2 and
Fig 2.3 respectively. An important propriety of vacuum and coherent states is
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Figure 2.2: Vacuum state |0⟩|0⟩|0⟩. Occupation probability distribution (a). Wigner function
bi-dimensional (b) and tri-dimensional (c) plot.
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that a they are minimum uncertainty states, so that the equality sign in equation
(2.16) holds, as the uncertainties in the two conjugate variables results to be equal
(∆q = ∆p = 1

2 ). Moreover the occupation probability, i.e. the probability p(m) of
the state |α⟩ to be populated with m excitations, is given by a Poisson distribution,

p(m) = |⟨m|α⟩|2 = ⟨m|α⟩ ⟨α|m⟩ = e−⟨n̂⟩⟨n̂⟩m

m!
. (2.22)

The expectation value of the number operator on a coherent state is ⟨n̂⟩ = ⟨α|â†â|α⟩ =
|α|2. A generic coherent state can be also written starting from the vacuum in the
following way:

|α⟩ = D(α) |0⟩ , (2.23)

where
D(α) = exp(αâ† − α∗â) (2.24)

is the displacement operator. The term displacement describes the action of this
operator on the Wigner function of the vacuum state. Coherent states can be also
written in the number basis14 as

|α⟩ = e−
|α|2
2

∞∑
n=0

αn√
n!

|n⟩ . (2.25)

In this states the expectation value of the position ⟨α| q̂ |α⟩ with α ̸= 0 is time
dependent and oscillates at frequency ω. The time dependence of the expectation
values of q̂ and p̂ can be calculated starting from the coherent state’s definition
and the expression of q̂ and p̂ as a function of the mode operators. However,
the Wigner phase space approach provides a more intuitive way to visualize the
evolution of a state. In fact, the time evolution operator of Ĥ0 rotates the Wigner
function around the origin of the plane, analogously to the classical case, in which
a harmonic oscillator is described by a rotating vector in phase space6.

The vacuum and the coherent states satisfy the equality in the uncertainty rela-
tion in (2.16) in the most simple way possible, namely with both ∆q and ∆p equal
to 1/2. However, the Heisenberg relation does not make any request to the distri-
bution of the observables taken singularly but only to the product of the variances
of two conjugated observables. The fluctuations in one of the two can be therefore
reduced (or squeezed) at the price of the increasing of the fluctuation width of its
conjugate. States that display such noise properties are called squeezed states.
The term squeezed generally refers just to the unbalance in the noise between the
two observables, which can exist also for states that do not saturate the uncertainty
relation, such as thermal ones. In order to specify the case in which one of the un-
certainties falls below the vacuum limit (i.e. the Heisenberg relation is saturated)
one generally refers to vacuum squeezed state. Such a state can be defined starting
from the vacuum in the following way:

S(ξ) |0⟩ , (2.26)

23



Chapter 2. Photon - Phonon interaction

where
S(ξ) = exp[ 1

2
(ξâ†2 − ξ∗â2)] (2.27)

is the squeezing operator with ξ = reiψ ∈ C the squeezing parameter. An example
of Wigner function associated with such a state is shown in Fig 2.4. In Fig 2.5 is
shown a displaced - squeezed state.
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Figure 2.4: Vacuum squeezed state S(ξ) |0⟩S(ξ) |0⟩S(ξ) |0⟩, with ξ = 0.9ξ = 0.9ξ = 0.9. Occupation probability distri-
bution (a). Wigner function bi-dimensional (b) and tri-dimensional (c) plot.

0 5 10 15 20

Fock number n

0.0

0.2

0.4

O
cc

u
p

a
ti

o
n

 p
ro

b
a
b

il
it

y

4 2 0 2 4

q

4

2

0

2

4

p

q

4
2

0
2

4

p

4
2

0
2

40.2

0.0

0.2

(a) (b) (c)

Displaced - squeezed state D(α)S(ξ)|0>, ξ=0.9, α=1

Figure 2.5: Displaced squeezed state D(α)S(ξ) |0⟩D(α)S(ξ) |0⟩D(α)S(ξ) |0⟩, with ξ = 0.9ξ = 0.9ξ = 0.9 and α = 1α = 1α = 1. Occupation
probability distribution (a). Wigner function bi-dimensional (b) and tri-dimensional (c) plot.

An other important example among the quantum harmonic oscillator states
are thermal states. They are states of the harmonic oscillator which present a
thermal boson population. This means that the mean number excitations which
populates the state is given by

⟨n̂⟩ = 1

eβω − 1
. (2.28)

These states describe a harmonic oscillator at equilibrium at a temperature T . The
inverse temperature β is defined as β = 1/kBT , with kB the Boltzmann constant.
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2.3. The quantum harmonic oscillator

The density matrix of such a state can be written as

ρ̂β =
e−βωâ

†â

Tr[e−βωâ†â]
. (2.29)

Indicating with N the mean number of bosons in the thermal state (equation
(2.28)), the density matrix in (2.29) can be expressed as follows,

ρ̂β(N) =
1

(1 +N)

∞∑
n=0

( N

1 +N

)n
|n⟩⟨n| . (2.30)

The thermal state Wigner function is a Gaussian function centred on the origin of
the phase space, as the one of the vacuum state. An example of Wigner function
of a thermal state is given in Fig 2.6. It is a Gaussian function centered in the
origin of the phase space as for the vacuum state, However, one can easily notice
that a thermal Wigner function is broader than a vacuum one. Moreover, in the
case of the vacuum state, the number of bosons in the harmonic oscillator is zero,
while for the thermal state it is given by equation 2.28. A broad quasiprobability
distribution means also a larger variance, and hence, noise, in the measurement of
q̂ and p̂. In particular, the higher the temperature, the larger the noise.
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Figure 2.6: Thermal state ρ̂β̂ρβ̂ρβ, with ⟨n⟩ = 0.7⟨n⟩ = 0.7⟨n⟩ = 0.7. Occupation probability distribution (a).
Wigner function bi-dimensional (b) and tri-dimensional (c) plot.

Let us consider the case of the vibrational modes in crystals. There the atomic
oscillations have energies such that the thermal population of the mode is usually
relevant even at room temperature. In particular, being the energies of phonons
very small (tens of millielectronvolts), the vibrational modes are thermally pop-
ulated even at room temperature. Therefore, phonon modes at equilibrium must
generally be described with thermal states. For the electromagnetic modes instead
one usually works with photon energies much higher than the room temperature
energy (kBT = 25meV), and thus, the thermal photon population of the mode is
often negligible6.

Acting on a thermal state with a displacement operator produces a displaced
thermal state. Despite the term “thermal”, such a state does not describe a system
at equilibrium with its surroundings at a given temperature. As for a coherent
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Chapter 2. Photon - Phonon interaction

state, in a displaced thermal state the operators q̂ and p̂ have oscillating expec-
tation values. Their variance, instead, is larger than the one for a coherent state
and is determined by the original temperature of the “undisplaced” state. In the
same way, squeezed thermal states can also occur, which have the phase-dependent
variance characteristic of squeezed states. These states of the harmonic oscillator
are all characterized by Gaussian Wigner functions and for this reason they be-
long to the class of the so called Gaussian states. The most general single mode
Gaussian state can be given by:

ρ̂Gauss(α, ξ,N) = D(α)S(ξ) ρ̂β(N) S†(ξ)D†(α), (2.31)

where D(α) is the displacement operator defined in equation (2.24), S(ξ) the
squeezing operator in equation (2.27) and N the mean number of bosons in the
thermal state (equation (2.30)). For example, if ξ = 0 and N = 0, the Gaussian
state (2.31) is reduced to a coherent state (2.25) ρ̂ = |α⟩⟨α|, which is the vacuum
for α = 0; while, for α = 0, N = 0 and ξ ̸= 0 one obtains the squeezed vacuum.
The Gaussian states can be theoretically dealt with in a standard way. Indeed, it
is possible to define two quantities, the first-moments vector R̂ = (q̂, p̂)T and the
covariance matrix σσσ, that fully characterize such states15. The covariance matrix
elements are given by:

[σσσ]kj =
1

2
⟨{R̂k, R̂j}⟩ − ⟨R̂j⟩ ⟨R̂k⟩ , (2.32)

where {Â, B̂} = ÂB̂ + B̂Â is the anticommutator between two operators and
⟨Â⟩ = Tr[ρ̂Â] the expectation value of the operator Â on the state ρ̂. The explicit
expression for the covariance matrix for a generic quantum state is the following,

σσσ =

(
⟨q̂2⟩ − ⟨q̂⟩2 1

2 ⟨q̂p̂+ p̂q̂⟩ − ⟨q̂⟩ ⟨p̂⟩
1
2 ⟨q̂p̂+ p̂q̂⟩ − ⟨q̂⟩ ⟨p̂⟩ ⟨p̂2⟩ − ⟨p̂⟩2

)
. (2.33)

For the specific case of Gaussian states, equation (2.31), with displacement
parameter α = aeiϕ, squeezing parameter ξ = reiψ and thermal parameter N , the
covariance matrix elements can be expressed with the following general form:

σkk =
1 + 2N

2
[cosh (2r)− (−1)k sinh (2r) cosψ], (k = 1, 2)

σ12 = σ21 =
1 + 2N

2
sinh (2r) sinψ, (2.34)

while the first-moments vector is given by:

⟨R̂⟩ =
√
2(ℜe[α],ℑm[α])T =

√
2(a cosϕ, a sinϕ)T . (2.35)

With this notation, one can easily write the Wigner function of a generic single
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2.3. The quantum harmonic oscillator

mode Gaussian state (2.31):

WρGauss(X) =
exp{−1

2 (X − ⟨R̂⟩)Tσσσ−1(X − ⟨R̂⟩)}
π
√

det[σσσ]
, (2.36)

where X = (q, p)T ∈ R2.
Gaussian states are the typical phonon and photon states we deal with in our

experiments. Moreover, some of the interactions of a harmonic oscillator in a
Gaussian state with external degrees of freedom can be described as simple trans-
formations within the class of gaussian states. The interactions that fall into this
category are said to preserve the gaussianity of the state6.

2.3.2 Lowest order interactions for the harmonic oscillator
In the framework of the time evolution of quantum states of the harmonic oscil-
lator, those interactions which preserve the gaussianity of the state are associated
with interaction Hamiltonians which are linear or, at most, bilinear in the mode
operators âk and â†k 15 (the index k indicate a specific mode of the harmonic oscil-
lator). Considering the general case in which many different modes are involved,
the most general linear and bilinear interaction Hamiltonian has the form:

Ĥint =
[∑

k

λ â†k + h.c.
]

︸ ︷︷ ︸
displacement

+
[∑
k,l

β â†kâl + h.c.
]

︸ ︷︷ ︸
2 modes mixing

+
[∑
k,l

γ â†kâ
†
l + h.c.

]
︸ ︷︷ ︸

1 and 2 modes squeezing

, (2.37)

where h.c. indicates the hermitian conjugate. In equation (2.37) one can easily
identify three distinct components which are commented in the following.

1. The linear part contains terms like (âk+â†k). Each of these terms corresponds
to an evolution operator totally similar to the displacement operator defined
in (2.24), which acting on the vacuum generates a coherent state in the mode
k.

2. The second block contains terms of the form (â†kâl + h.c.). Each of these
terms describes an interaction that involves linear mixing of two modes, like
for example the interaction between two optical modes due to a beam splitter.

3. Finally the last block contains terms like [(a†k)2+h.c.] and [â†kâ
†
l+h.c.]. In this

case the degenerate form gives rise to an evolution operator totally similar
to the squeezing operator defined in (2.27), which acting on the vacuum
generates a vacuum squeezed state in the mode k. In the non degenerate
case, the associated evolution operator corresponds to the so-called two-
modes squeezing operator which can be expressed as

S2(ξ) = exp[ 1
2
(ξâ†kâ

†
l − ξ∗âkâl)]. (2.38)
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These considerations are particulary relevant for investigating the interaction
processes that occurs in time resolved experiments in which phononic quantum
states are created.

In the following we describe first the laser pulses in terms of photons, then
the collective atomic excitations in crystals in terms of phonons and finally the
photon-phonon interaction problem is addressed.

2.4 Multimode laser pulses, photons
A single mode of the electromagnetic radiation, i. e. an electromagnetic field
characterized by a precise frequency, polarization and propagation direction, can be
described with the quantum harmonic oscillator formalism by adopting a suitable
electromagnetic field quantization approach16. In particular one can demonstrate
that the conjugate operators q̂ and p̂ defined in (2.14) are associated with the
electric field operator in the following way,

Êx(z, t) = E0 [cos(ωt) q̂ + sin(ωt) p̂] sin(kz), (2.39)

where E0 has the dimensions of an electric field and we assumed here the single
mode electric field to be polarized along the x-direction and to propagate along
the z-direction with frequency ω and wavevector k. The position and momentum
operators of the quantum harmonic oscillator are indeed associated with the real
and the imaginary part of the electric field. Photons arise as the quanta of the
electromagnetic energy, such that the Fock states, defined in (2.17) as eigenstates
of the single mode Hamiltonian, correspond to the presence of a precisely defined
number of photons17.

The totally coherent light generated by an ideal monochromatic laser source is
however not associated to a defined number of photons but it is characterized by
a Poisson photon statistics. Thus, the quantum states associated with such a laser
light are coherent states, introduced in (2.21).

For pulsed laser sources, as the ones used for the experiments in this thesis,
the reasoning is the same with the difference that this kind of sources cannot be
approximated as monochromatic, since the short duration of the pulse in time is
necessarily followed by a certain broadening in frequency due to the contribution
of several active modes of the laser cavity. Classically, the electric field of a mode-
locked pulsed laser beam can be represented as a superposition of amplitudes:

E(t) =
J∑

j=−J

|αj | eiωjt , ωj = ω0 +Φj , (2.40)

where ω0 is the laser central frequency and the phases Φj are mode-locked by the
condition Φj = jδ with δ a constant depending on the repetition rate of the laser.
The total number of contributing modes (2J +1) is given by the ratio between the
laser cavity length and the pulse duration. Typically for a meter long laser cavity
producing a train of 100fs pulses, there are about 104 contributing optical modes.
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2.4. Multimode laser pulses, photons

Quantized pulsed laser light is described by associating to each monochromatic
component a coherent state |αj⟩, that is an eigenstate of the annihilation operator
âj of photons in the mode of frequency ωj , âj |αj⟩ = αj |αj⟩, and to the entire
pulse the tensor product

|ᾱ⟩ =
J⊗

l=−J

|αj⟩ , (2.41)

where ᾱ is the vector whose components are the amplitudes αj . By means of the
creation and annihilation operators âj and â†j each monochromatic coherent state
reads

|αj⟩ = D(αj) |0⟩ , D(αj) = eαj â
†
j−α

∗
j âj , (2.42)

where |0⟩ is the vacuum state and D(α) is the displacement operator defined in
(2.24). Since the creation and annihilation operators that pertain to different modes
commute, the pulsed coherent state in (2.41) can be conveniently recast as

|ᾱ⟩ = D(ᾱ) |0⟩ , D(ᾱ) = eÂ
†(ᾱ)−Â(ᾱ) , (2.43)

by mean of a displacement operator D(ᾱ) expressed in terms of multi-mode oper-
ators

Â†(ᾱ) =
∑
j

αj â
†
j , Â(ᾱ) =

∑
j

α∗
j âj . (2.44)

The reason for labeling the pulsed coherent state by |ᾱ⟩ can now be easily under-
stood. The state of one photon of frequency ωj is given by â†j |0⟩ = |1j⟩, while a
generic non-monochromatic superposition of frequencies ωj with amplitudes αj cor-
responds to the state |1ᾱ⟩ =

∑
j αj |1j⟩ that results from applying the multimode

operator Â†(ᾱ) to the vacuum state:

Â†(ᾱ) |0⟩ =
∑
j

αj â
†
j |0⟩ =

∑
j

αj |1j⟩ = |1ᾱ⟩ . (2.45)

Therefore, Â†(ᾱ) is the creator operator of a single photon in the (not normalized)
superposition state |1ᾱ⟩, while Â(ᾱ) destroys a photon in the same state; thus,
the quantum state of the pulsed laser is a coherent state associated not with a
single amplitude αj , but with the vector ᾱ of all the amplitudes contributing to
the pulse: in other words, we have a Poissonian distribution not with respect to
the number of photons in a monochromatic wave, but to the number of photons in
the superposition |1ᾱ⟩.
The normalized operators are defined as follows

Â =
Â(ᾱ)

|ᾱ|
, Â† =

Â(ᾱ)

|ᾱ|
, (2.46)

29



Chapter 2. Photon - Phonon interaction

where |ᾱ|2 = ⟨1ᾱ|1ᾱ⟩, and satisfy the canonical commutation relations[
Â, Â†

]
=

1

|ᾱ|2
∑
ij

α∗
iαj [âi, â

†
j ] = 1 . (2.47)

2.5 Collective atomic excitations, phonons
The quantum harmonic oscillator formalism not only applies to electromagnetic
waves, but also to collective atomic vibrations in a lattice.

The concept of “collective excitation” allows to describe a huge number of
interacting particles with a relatively simple approach. As the concept of “quasi-
particles” allows the description of the electronic motion in metals through the
Sommerfeld-Bloch theory18 (overcoming the problem of solving Schrödinger’s equa-
tion for ∼ 1023 interacting electrons), the concept of “collective excitation” allows
to easily treat a system of many particles which move coherently. Phonons are
collective excitations corresponding to the coherent motion of all the atoms in a
crystalline solid2.

In crystalline solids the atoms are arranged in regular three-dimensional peri-
odic lattices such that in 1 cm3 there is a number of atoms of the order of 1023

(Avogadro number)2. The lattice atomic composition and the geometry of the
crystal determine the frequency and the symmetry of the normal modes of the
system, i. e. the collective atomic vibrational modes.

Let us consider for example a simple one-dimensional crystal consisting in a
linear lattice with two different types of atoms per unit cell with an harmonic inter-
action between nearest neighbors. This model can be considered as the prototype
of a crystal with more than one atom per unit cell. A sketch of such a system is
given in Fig 2.7, m1 and m2 are the masses of the two atomic species and K is the
constant associated to the harmonic interaction. In the equilibrium configuration,
we assume that the atoms of mass m1 occupy the sublattice positions na, while
the atoms of mass m2 occupy the sublattice positions na + d. We denote by un
and vn the two variables associated to the displacement of the two atomic species
from the equilibrium position.

Figure 2.7: Linear chain with 2 atoms per unit cell with mass m1 and m2 and nearest
neighbors interaction. The atoms are shown in the equilibrium positions, the displacement
un and vn at a given instant are indicated with arrows.
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The classical equations of motion for un and vn are:

m1ün = −K[(vn − un) + (vn − un+1)]

m1v̈n = −K[(un − vn) + (un − vn−1)], (2.48)

and the solutions are of the form,

un = uei(qna−ωt)

vn = vei(qna−ωt). (2.49)

By substituting (2.49) into (2.48) one can easily find the following relation for the
frequency dispersion in the reciprocal space19,20,

ω2
± = K

( 1

m1
+

1

m2

)
±K

√( 1

m1
+

1

m2

)2
− 4 sin2(qa/2)

m1m2
. (2.50)

The two resulting ω vs. q curves are referred to as the two branches of the phonon
dispersion relation20,21 and are shown in Fig 2.8.

Figure 2.8: Dispersion relation for the diatomic linear chain. The upper branch is the
optical branch, the lower branch is the acoustic branch 19.

Any vibrational mode of the lattice is associated with a specific branch of the
dispersion relation and with a specific point in the reciprocal space. Going back
to the quantum harmonic oscillator formalism, each specific vibrational mode can
be described as a single mode of the harmonic oscillator (Section 2.3). Thus, the
Hamiltonian for the entire harmonic lattice in the most general three dimensional
case takes the form,

ĤL =
∑
q,m

~ωq,m
(
b̂†qmb̂q,m +

1

2

)
, (2.51)

where q is the lattice quasi-momentum (in the one-dimensional case −π/a < q <
π/a; in general q lies in the first Brillouin zone), and m indicates the mode index,
that is the dispersion branch the phonon is associated with. In particular, the mode
index will denote acoustic or optical branches and the corresponding polarization
for the three dimensional case: one longitudinal, two transverse modes19. Note
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that we indicated with b̂†q,m and b̂q,m the creation and a annihilation operators of
the quantum harmonic oscillator associated with each single phononic mode. Thus,
the general boson commutation relations are:[

b̂q′,m’ , b̂
†
q,m

]
= δqq′δmm′ . (2.52)

In the quantum formalism, a generic atomic displacement from the equilibrium
position Rn will assume the following form,

ûn ∝ Q̂m
q e

iq·Rn , (2.53)

where Q̂m
q is the single mode amplitude operator22,

Q̂m
q = b̂q,m + b̂†−q,m . (2.54)

Notice that the operator in (2.53) contains essential information on the lattice
dynamics and is the phonon analog of the electric field in the photon case22.

In the following, collective atomic modes in crystals are addressed in the frame-
work of ultrafast spectroscopy. We first report the typically adopted semi-classical
treatments for phononic excitations in time domain experiments, and we finally
present our fully quantum mechanical model for impulsive phonon excitation in
transparent materials.

2.6 Impulsive excitation and detection of phonon states
The possibility to impulsively generate phononic quantum states has been largely
investigated from both the experimental and the theoretical point of view22–38.

The physical mechanism for the generation of collective vibrational modes via
the interaction with ultrashort optical laser pulses depends mostly on the opti-
cal proprieties of the material under investigation. The main distinction is from
transparent and opaque materials. In the first case, the phonon excitation hap-
pens through a direct coupling between the electromagnetic field and the atomic
dipoles in the material39. In the second case, an important role is instead played
by the electronic carries: they are photo-excited by the impulsive electromagnetic
field and the consequent change in the electronic energy distribution mediates the
phononic excitation, giving rise in this case to an indirect coupling between the
electromagnetic field and the excited vibrational field40.

In this thesis we focus on the case of transparent materials. The project strategy
is indeed to test our novel experimental approach for the case of well characterized
systems, in which the photon-phonon interaction can be modelled in the simplest
way. For this reason we study here atomic quantum fluctuations of phonons in
transparent materials with the future prospective to generalize the method also to
more complex absorbing systems.

This section concerns the standard theoretical descriptions of impulsive phonon
states generation in transparent materials via pump-probe experiments. It is di-
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vided in two parts.

• Firstly, both the excitation and the detection process are described using the
formalism of non linear optics in which the light is treated as a classical field
and the material response is modelled through the non-linear susceptibility
tensors. Although this is a totally classical description, it allows to clarify
the basic aspects which are addressed in our fully quantum treatment.

• Secondly we present the standard semiclassical approach to quantum phonon
states generation. In this case the phononic field is treated quantum mechan-
ically while the light is treated classically. This means that this method have
no access to the quantum proprieties of the light scattered by the material.

In this thesis we use an experimental approach to investigate the quantum nature
of light in a pump-probe experiment. In this section, it will be evident that the
classical and semiclassical presented models would be not completely descriptive of
our experiments. This is the motivation that brought us to develop a fully quantum
model for impulsive phonon generation and detection in pump probe experiments.
This model is presented in the last section of the Chapter.

2.6.1 Impulsive Stimulated Raman scattering
In transparent materials, the phonon excitation by ultrafast optical spectroscopy is
a non-resonant process in which the energy of the light is not enough to allow real
electronic transitions. The mechanism which excites the phonons is the Impulsive
Stimulated Raman Scattering (ISRS) which is a non linear process and belongs to
the wide category of Raman scattering processes. The term Raman scattering is
historically associated with the inelastic scattering of light by optical phonons in
solids and molecular vibrations41. In a typical Raman scattering process an elec-
tromagnetic field impinges on the sample stimulating a vibrational mode such that
the energy difference between the incident and the scattered optical field matches
the energy of the activated lattice vibrational mode. The energy and momentum
conservation relations in the quantum mechanical treatment are,

~ωi = ~ωs ± ~Ω , (2.55)
~ki = ~ks ± ~q , (2.56)

where the indices i and s indicate the incident and the scattered optical field, while
Ω and q are the frequency and quasi-momentum of the phonon42. If a phononic
mode is generated (sing +) the process is called Stokes, while if it is absorbed (sing
-) the process is called anti-Stokes. A scheme of the conservation relations in a
Stoke Raman scattering process is reported in Fig 2.9.

ISRS is a particular case of Raman scattering in which the excitation mech-
anism of the collective lattice vibrations is due to a non linear interaction with
three ultrashort laser pulses. In general, the response of a medium to the inter-
action with an electromagnetic field consists in a polarization density due to the
redistribution of the inner electric dipoles. If the optical perturbation is weak, the
polarization is assumed to depend linearly on the electric field of the interacting
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Figure 2.9: Stokes Raman scattering scheme. Energy (a) and momentum (b) conservation
relations.

electromagnetic wave, P = ϵ0χE, where ϵ0 is the vacuum dielectric constant and χ
is the electric susceptibility of the material. However, if the electromagnetic field
is intense enough, also non-linear contributions to the polarization of the system
must be considered43,

PNL = P(1) +P(2) +P(3) + ...

The non linear response of the medium depends also on the direction in which the
optical fields are applied. In particular, the Cartesian components of the non-linear
polarization are given by

PNL
i (ω) = ϵ0

{ ∑
j

χ
(1)
ij [E1(ω1)]j

+
∑
jkl

χ
(2)
ijk [E1(ω1)]j [E2(ω2)]k

+
∑
jkl

χ
(3)
ijkl [E1(ω1)]j [E2(ω2)]k [E3(ω3)]l + ...

}
, (2.57)

where the nth order susceptibility χ(n) is a (n + 1)-rank tensor and the indexes
i, j, k, l can vary between the Cartesian axes x, y, z. Usually it is convenient to
define these axes so that they coincide with the principal symmetry axes of the
crystal.

In particular, ISRS is a non linear processes due to the induced polarization of
the third order, which is the lowest non linear order in centrosymmetric crystals. In
detail, the third order susceptibility tensor χ(3) connects the induced polarization
P (3) to three incoming fields, E1(ω1), E2(ω2) and E3(ω3)

44, and the interaction
results in a (fourth) scattered beam, called emitted field (EEF(ω)). The latter
contains the information on the excitation driven in the system.

Since four optical field are involved, the general phenomenon is called four-
wave mixing 43 (a simplified scheme is shown in Fig 2.10) and ISRS is one the
processes that belong to this category. In conventional two pulses (pump and probe)
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Figure 2.10: Simplified scheme of a four wave mixing process. Three optical pulses
interact with the material, in the most general case at different times, and the emitted field
is produced.

experiments, the fields E2(ω2) and E3(ω3) are two different frequency components
of the pump laser pulse. In particular, all photon pairs such that ω3 − ω2 = Ω,
where Ω is the frequency of the Raman active vibrational mode, contribute to
ISRS45. In Fig 2.11 this configuration is sketched. Since the pulse duration is

Figure 2.11: Pump pulse frequency envelope. Example of a pair of frequency components
which contribute to ISRS.

less than the vibrational period, the spectral bandwidth of the pulse necessarily
exceeds the vibrational frequency so that many frequency components are available
to play the roles of ω1 and ω2

46. Finally, interaction of the probe field E1(ω1) with
the photo-excited material induces an emitted field, EEF(ω) which depends on the
pump-probe delay and carries information about the specific Raman mode excited
in the crystal.
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2.6.2 Semiclassical models for phonon quantum states genera-
tion

Several semiclassical models describe the possibility of generating ”classical” (co-
herent states) and non classical vibrational states, like squeezed states, by photo-
excitation. In particular, for transparent materials, the most commonly used ap-
proach is to adopt Raman tensor models where the interaction between photons
and phonons is not mediated by dipole allowed electronic transitions. In this con-
ditions, interactions linear in the phonon operators allow for the generation of
coherent vibrational states, while high order interactions are required for the gen-
eration of non classical states like squeezed states. The first theoretical works in
this direction have been developed in the 1990s by Hu and Nori22,25,28,39. Here we
report the basic procedure adopted in these semiclassical models.

Generally, the Hamiltonian for the coupling of a dipole (which in our case is
the solid’s polarization) is in the following form:

Ĥ = −PµEµ , (2.58)

where we indicated with Pµ the polarization induced by the electric field Eµ. In
the specific case of stimulated Raman scattering, as we reported previously, we deal
with a non-linear polarization of the third order:

P (3)
µ = ϵ0 χ

(3)
µ,αβγ EαEβEγ , (2.59)

where χ(3) is the 3-rd order susceptibility and ϵ0 the vacuum dielectric constant.
The interaction Hamiltonian is therefore

Ĥ = ϵ0 χ
(3)
µ,αβγ EαEβEγEµ. (2.60)

We can now expand the susceptibility χ(3)
µ,αβγ in powers of the atomic displace-

ment amplitude Q̂m
q defined in (2.54). If we focus on a specific phononic dispersion

branch m we can drop the branch superscript,

Q̂q = b̂q + b̂†−q. (2.61)

Let us now analyze separately the first and the second order contribution in Q̂q.

• Taking the first order term, the Hamiltonian has the form

Ĥ1 ∝ Q̂qEαEβEγEµ (2.62)

where only the mode at momentum q = 0 is involved. We can write the
hamiltonian in (2.62) using the generic expression,

Ĥ1 = λ(t) b̂†q + λ∗(t) b̂q, (2.63)

where λ(t) contains the electric fields and other proportionality terms. It
can be shown that in the limit of impulsive interaction, that is the case in
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which the time dependence can be written as

λ(t) = l δ(t) , (2.64)

the time evolution operator associated with Ĥ1 becomes

Û1(t) = exp
[
Λ(t) b̂†q − Λ∗(t) b̂q

]
︸ ︷︷ ︸, Λ(t) = −i lt . (2.65)

One can easily notice that the highlighted block has the form of the displace-
ment operator D[Λ(t)] (defined in (2.24)) with the displacement parameter
Λ(t). Thus, starting from the vacuum state, the interaction Hamiltonian in
the first order in the atomic displacement generates a coherent phonon state.

• Considering now the second-order terms of the susceptibility expansion in Q̂
we obtain,

Ĥ2 ∝ Q̂q Q̂−qEαEβEγEµ , (2.66)

where we took only the modes at momenta +q and −q to contribute. Equa-
tion (2.66) can be written in a more compact way as

Ĥ2 = Z(t) Q̂qQ̂−q, (2.67)

where Z(t) contains the electric fields and the proportionality terms. There-
fore, the bilinear interaction Hamiltonian of the modes +q and −q becomes

Ĥ2 = Z(t)
(
b̂q + b̂†−q

) (
b̂−q + b̂†q

)
= Z(t)

(
b̂†qb̂q + b̂†−qb̂−q + 1

)
+ Z(t)

(
b̂†qb̂

†
−q + b̂qb̂−q

)︸ ︷︷ ︸ . (2.68)

In this case, the underlined term is of the kind needed to produce the a
phonon squeezed state (Section 2.3.2). Going, again, to the impulsive case,
i.e. the situation in which

Z(t) = z δ(t), (2.69)

the evolution operator Û2(t) is28

Û2(t) = exp
[
− izt (b̂†qb̂q + b̂†−qb̂−q)

]
exp
[1
2

(
ξ b̂†qb̂

†
−q − ξ∗ b̂qb̂−q

)]
︸ ︷︷ ︸

Ŝ2

(
ξ
) . (2.70)

Therefore, impulsive second-order Raman scattering produces a two-mode
squeezed state due to the squeezing operator Ŝ2[ξ(t)] with a squeezing pa-
rameter

ξ(t) = 2ize−iz t.

Summarizing, in this kind of semiclassical models, the optical fields are treated
classically and incorporated in the parameter associated to the impulsive inter-
action (δ(t)), while the vibrational field are treated quantum mechanically. This
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allows to predict the generation of non classical phonon states when second order
Raman processes are in play.

One should note that also for absorbing material several models of vibrational
quantum states generation have been proposed. In materials with allowed dipole
transitions, as in presence of excitons, different models based on electron-phonon
coupling Hamiltonians exist33,34. Even these models mainly adopt semiclassical
approaches where the optical fields are described classically47, and therefore are
unable to reproduce the quantum proprieties of the probe optical field that can be
measured with the kind of experiment presented in this thesis. Morover such semi-
classical approaches describes only the phonon generation and not the detection.
These motivations stimulated us to develop a fully quantum mechanical model for
ISRS description in pump probe experiments.

2.7 A fully quantum treatment
Here we report about our fully quantum model. It is based on the semiclassical
approach but it allows also the quantum description of the optical fields involved
in the ISRS process.

The key aspect of our model is to study both generation and detection of
phonon states using a fully quantum formalism through an effective photon-phonon
interaction, which is descriptive of pump-probe experiments in transparent sys-
tems4. Here we adopt the general convention, in which the operators â† and â
refer to the modes of the electromagnetic field, while b̂† and b̂ refer to the vibra-
tional ones.

Both the pump process and the probe process are described by photon-phonon
interaction Hamiltonian which is treated here in the simplified form

H =
J∑

j,j′=−J

[
g1j,j′ µd

(
â†xj âyj′ b̂

† + âxj â
†
yj′ b̂

)
+ g2j,j′ µs

(
â†xj âyj′ (b̂

†)2 + âxj â
†
yj′ b̂

2
) ]

, (2.71)

where µd and µs are coupling constants, 2J+1 is the total number of modes within
a mode-locked optical pulse, and the functions gℓj,j′ take into account the relations
between the frequencies of the involved fields,

gℓj,j′ =

{
1 if j′ = j + ℓΩ

δ
0 elsewhere, ℓ = 1, 2 .

The Hamiltonian includes two photon modes, indicated with the subscript x and
y, and one phonon mode at q = 0. The two photon modes will model, in the
pumping process, the two pump fields, and in the probing process, the probe and
the emitted field. It should be noted that while the linear term involves only
the creation of a phonon in a single mode at null momentum q, the quartic term
are in principle not limited to q = 0 and one should integrate over the entire
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optical phonon dispersion including processes where the momentum conservation
is guaranteed by the creation of optical phonons with opposite momenta48,49. In
our effective Hamiltonian we include only a single phonon mode at q = 0. This
assumption is made in view of the fact that, in the performed experiments, the
probing process is limited to the linear regime so that phonons at q ̸= 0 will not
affect the probe quantum fluctuations.

The proposed effective fully quantum mechanical approach to ISRS is descrip-
tive of all the experimental phases: the pump process, the subsequent dissipative,
irreversible phonon dynamics and the probe process, all of them treated by quan-
tum dynamical maps4. Here we describe all the phases step by step.

Pump process

Before being hit by the pump laser beam the state of the relevant phonon mode
at frequency Ω is appropriately taken to be a thermal state at inverse temperature
β

ρ̂β =
(
1− e−βΩ

)
e−βΩ b̂

†b̂ . (2.72)

The pump laser beam is instead described by photons in a multi-mode coherent
state |ν̄⟩ ⟨ν̄|.

The Hamiltonian in (2.71) generates an impulsive change of the initial photon-
phonon state |ν̄⟩ ⟨ν̄| ⊗ ρ̂β given by

ρ̂ν̄ = U (|ν̄⟩ ⟨ν̄| ⊗ ρ̂β)U† = |ν̄⟩ ⟨ν̄| ⊗ Uν̄ ρ̂β U†
ν̄ , (2.73)

where, because of the high intensity of the pump laser beam, we have adopted the
mean field approximation and substituted the photon annihilation and creation
operators by the scalar amplitudes ν and ν∗ and replaced U with

Uν̄ = exp{−i[c1 b̂† + c∗1 b̂ + c2 (b̂
†)2 + c∗2 b̂

2]} (2.74)

c1 = µd

J∑
j,j′=−J

g1j,j′ ν
∗
xj νyj′ (2.75)

c2 = µs

J∑
j,j′=−J

g2j,j′ ν
∗
xj νyj′ . (2.76)

The pump thus prepares the relevant phonon degree of freedom in a state ρ̂ν̄II which
is obtained from ρ̂ν̄ by tracing over the photon degrees of freedom:

ρ̂ν̄II = TrI( ρ̂
ν̄) = Uν̄ ρ̂β U†

ν̄ , (2.77)

where II and I refer to the phonon and photon system, respectively.
As it has been shown in the previous section, the linear contribution in the

phonon operators is responsible for the displacement of b̂ and b̂†, while the quadratic
one accounts for their multiplication by hyperbolic functions and thus for the pos-
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sible squeezing of the corresponding phonon quantum state16:

U†
ν̄

(
b̂

b̂†

)
Uν̄ = S

(
b̂

b̂†

)
+

1

2|c2|2
(S− 1)

(
c∗1c2
c1c

∗
2

)
(2.78)

S =

(
cosh(2|c2|) −ei(ϕ+

π
2 ) sinh(2|c2|)

−e−i(ϕ+
π
2 ) sinh(2|c2|) cosh(2|c2|)

)
, (2.79)

where c2 = |c2|eiϕ. In order to write the squeezing matrix S in the standard
formalism16, we can define for convenience a complex squeezing parameter

ξ = reiψ, (2.80)

where

r = 2|c2| = 2 |µs|
J∑

j,j′=−J
g2j,j′ ν

∗
xj νyj′ , and ψ = ϕ+

π

2
. (2.81)

Notice that the squeezing parameter amplitude r depends linearly on the intensity
of the pump pulse and on the squeezing coupling constant µs which weights the
non linear term in the interaction Hamiltonian and models the material properties
involved in the process.

The variance of the quadrature operator B̂ = b̂+b̂†√
2

with respect to the state
ρ̂ν̄II is given by

∆2
ρ̂ν̄II
B̂ = TrII

(
ρ̂ν̄IIB̂

2
)
−
(

TrII

(
ρ̂ν̄IIB̂

))2
=

1

2
coth

(
βΩ

2

)
[cosh(2r)− sinh(2r) cosψ] . (2.82)

Then, for ψ = 0 and r large enough, one can make ∆2
ρ̂ν̄II
B̂ smaller than 1/2 which is

the shot noise variance of B̂ with respect to the vacuum state |0⟩ such that b̂|0⟩ = 0.
Notice that up to this point the model is similar to the semiclassical ones, since,

considering the high intensity of the pump fields, they has been treated classically.
We indeed replace â with ν and â† with ν∗ for both pump modes involved in
equation (2.71).

Phonon dynamics

The photoexcited phonon state ρ̂ν̄II then undergoes a dissipative dynamics that
effectively takes into account the interaction of the phonons with their environment
until, after a delay time τ , the target is hit by the probe laser beam. The phonon
dynamics is considered to be that of an open quantum system in weak interaction
with a large heat bath that will eventually drive the time-evolving phonon density
matrix ρ̂ν̄II(t) = ρ̂b(t) to a thermal state ρ̂β′ at temperature T ′ larger than that of the
pre-pump phonon state: β′ ≤ β. Such a relaxation process is described by a master
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equation7,50 for the phonon density matrix ρ̂b(t) of the form ∂tρ̂b(t) = L[ρ̂b(t)],
where the generator of the time evolution is given by

L[ρ̂b(t)] = −i
[
Ω b̂†b̂ , ρ̂b(t)

]
+ λ (1 + n′)

(
b̂ ρ̂b(t) b̂

† − 1

2

{
b̂†b̂ , ρ̂b(t)

})
+ λn′

(
b̂† ρ̂b(t) b̂−

1

2

{
b̂b̂† , ρ̂b(t)

})
, (2.83)

where n′ = 1

eβ′Ω − 1
(> n = 1

eβΩ−1
), while λ is a coupling constant sufficiently

small so that the non-negligible presence of the environment can nonetheless be
accounted for, in the so-called weak-coupling limit regime50, by a master equation
of the above type.

The first term of L generates the rotation in time of the phonon mode phase at
its own eigenfrequency. The second two contributions consist of a so-called noise
term b̂ ρ̂b(t) b̂

†, respectively b̂† ρ̂b(t) b̂ that has the property of transforming pure
states into mixed states and of a dissipative term − 1

2

{
b̂†b̂ , ρ̂b(t)

}
, respectively

−1
2

{
b̂b̂† , ρ̂b(t)

}
. These terms counterbalance the noise by keeping the trace of

the time-evolving state ρ̂b(t), and thus the overall probability, constant in time.
The anti-commutators can be incorporated into the Hamiltonian as anti-Hermitian
contributions responsible for exponential time relaxation. The structure of L is
such that the generated time-evolution maps, formally γt = exp(tL), compose as
a forward-in-time semigroup: γt ◦ γs = γs ◦ γt = γt+s for all s, t ≥ 0. Moreover,
ρ̂b(t) = γt[ρ̂b] can be explicitly computed for any initial phonon state ρ̂b; all initial
states are eventually driven to a unique invariant state satisfying L[ρ̂b] = 0 that is
given by the thermal state ρ̂β′ .

Probe process

Finally, the probe process is again described by the Hamiltonian in equation (2.71).
However, the corresponding impulsive unitary operator U = exp (−iH) now acts on
a photon-phonon state of the form |ᾱ⟩ ⟨ᾱ| ⊗ ρ̂ν̄II(τ). Here, |ᾱ⟩ ⟨ᾱ| is the multi-mode
coherent state associated with the probe laser beam which contains x and y modes
and is much less intense than the pump one, while ρ̂ν̄II(τ) is the phonon state dissi-
patively evolved up to the delay time τ between pump and probe. Differently from
the pump process, the lower probe intensity allows one to neglect in H the quartic
terms responsible for the squeezing effects. Moreover, we can apply the mean field
approximation only to the field operators in the x mode which is associated to
the unscattered probe, since this probe component is much more intense than the
mode y, which is scattered by the phonon (emitted field). Then, by replacing âxj
and â†xj by αxj and α∗

xj the probe process is described by

Uᾱ′ = exp{−i∥ᾱ′∥
(
Â(ᾱ′) b̂† + Â†(ᾱ′) b̂

)
} , (2.84)
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where Â(ᾱ′) is the collective photon annihilation operator

Â(ᾱ′) =
1

∥ᾱ′∥

J∑
j=−J

(α′
j)

∗ âyj , α′
j = µd

J∑
j′=−J

g1j′,j αxj . (2.85)

Then, the probe process affects an initial state |ᾱy⟩ ⟨ᾱy| ⊗ ρ̂ν̄II(τ), where |ᾱy⟩ =
|αy−J ⟩ ⊗ · · · ⊗ |αy J⟩ is the coherent state involving only the y polarization com-
ponents such that âyj |ᾱy⟩ = αyj |ᾱy⟩.
Notice that, unlike in (2.73), Uᾱ′ acts on the photon-phonon state as a whole and
transforms it into

Uᾱ′ |ᾱy⟩ ⟨ᾱy| ⊗ ρ̂νII(τ)U
†
ᾱ′ . (2.86)

This allows for the quantum features of the phonon state and of its dynamics to
be transcribed onto the emitted photon state

ρ̂I(τ) = TrII

(
Uᾱ′ |ᾱy⟩ ⟨ᾱy| ⊗ ρ̂νII(τ)U

†
ᾱ′

)
. (2.87)

Unlike in the semi-classical theoretical approaches to pump and probe experiments
attempted so far, one can here confront the experimental data not only with the
scattered probe beam intensity, namely with the mean photon number ⟨N̂y⟩τ , where
N̂y = Â†(ᾱ′)Â(ᾱ′) and

⟨N̂y⟩τ = Tr
(
N̂y ρ̂I(τ)

)
, (2.88)

but also for example with its variance ∆2
τ N̂y = ⟨N̂2

y ⟩τ − ⟨N̂y⟩
2

τ , and in principle
with any observable of the emitted optical field.

We adopted such a model to describe the photon number statistics experiments
reported in Chapter 4.
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3
Measuring quantum states of light

The quantum state is what one knows about a physical system1. Light is the first
physical system of which scientists experimentally measured the quantum state2.
Light has indeed a notable propriety: it exhibits quantum features at room temper-
ature and for this reason it is relatively easy to prepare, measure and manipulate
quantum states of light. Nowadays Quantum Optics is one of the most promising
platform for new technologies ranging from information processing to communi-
cations, driving forward the quantum information revolution3. Estimating the
quantum state of optical fields is the basic tool of this research field. The main
experimental goal of this thesis is to measure the quantum states of light pulses
after the interaction with a photo-excited material. In this Chapter the problem
of the quantum state estimation of optical pulses in addressed.

3.1 Introduction
In Classical Mechanics, one can always fully recover the state of a system by a set
of multiple measurements on it. In Quantum Mechanics this is not always possible,
due to fundamental limitations imposed by the very nature of the theory. In fact,
the Heisenberg uncertainty principle forbids to perform an arbitrary sequence of
measurements on a single system without inducing on it modifications of some sort.
Moreover, the no-cloning theorem asserts that it is not possible to create a perfect
copy of the system without already knowing its state in advance. Thus, in general,
there is no way to infer the quantum state of a single system doing measurements
on it. Nevertheless, it is possible to estimate the unknown quantum state of a
physical system when many identical copies of it are available in the same state:
in this way independent measurements can be performed on each copy. Quantum
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state estimation typically consists in several measurements performed on identically
prepared copies of the system, each time modifying the measurement apparatus so
that different sets of data, associated with different observables of the system, can
be acquired4. Then, the data are combined using tomographic algorithms to finally
get the state of the system. The problem of quantum state determination through
repeated measurements on identical copies of a quantum system dates back to
the early days of Quantum Mechanics, it was studied for the first time in 1957
by Fano5, who recognized the need of measuring more than two non commuting
observables to achieve such goal. He called quorum a set of observables whose
measurements is sufficient to provide a complete determination of the state of the
system. However, Quantum Optics opened a new era for state reconstruction6.
The first experimental demonstration of a quantum state reconstruction was done
in the domain of Quantum Optics by Smithey et al. in 19932, on the basis of
the theoretical work of Vogel and Risken (1989)7. This 1993 paper introduced
the term tomography into Quantum Optics and its general scheme is still used
today for investigating quantum properties of continuous variable states of light1.
Nowadays, quantum tomography is applied to a variety of quantum systems4,8

and constitutes a standard tool especially in the experimental implementation of
Quantum Information protocols9. Quantum state reconstruction methods turn
out to be of paramount importance for quantum information, for they can reveal
the presence of quantum coherence and entanglement, not possible in a classical
setting10.

Here we focus on the problem of turning noisy data sets in reconstructed quan-
tum states. The problem of noisy data inversion for quantum homodyne tomog-
raphy has been and is largely addressed in the scientific debate11–22. We treated
this issue with two different but parallel roads. The first is addressed in this Chap-
ter and consists in using reconstruction algorithms suitable for treating very noisy
data obtained with low efficient commercial detection systems. The second ap-
proach is reported in the Appendix A of the thesis, in that case we address the
same problem of detection inefficiencies from the experimental and technological
point of view through the design and realization of a high efficient detection system
working in reduced noise conditions. This Chapter is organized as follows,

• We firstly trace a general description of homodyne detection, the experi-
mental technique for the measurement of quantum states of light involving
continuous variable, that is continuous degrees of freedom like field ampli-
tude and phase (Section 3.2).

• Secondly we introduce the Wigner function reconstruction problem, the to-
mographic procedure that, starting from the experimentally obtained bal-
anced homodyne detection data, retrieves the quantum state of the electro-
magnetic field under investigation (Section 3.3).

• Finally our contributions to the field are reported: a theoretical-experimental
research about optical Gaussian states reconstruction with low homodyne
detection efficiency (Section 3.4) and a study on the possibility of recon-
structing purely quantum interferences in the same low efficiency conditions
using simulated noisy data (Section 3.5)
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Our results about the design and realization of a low noise homodyne detection
apparatus are instead reported in the Appendix A of the thesis.

3.2 Balanced homodyne detection
Balanced homodyne detection is an experimental method that is used for the re-
construction of quantum states of monochromatic light. In this framework, the
quantum state is characterized by feeding to appropriate tomographic techniques
the results of repeated measurement of the optical field quadratures xΦ for differ-
ent phases Φ ∈ [0, π]2,7,8. The quadratures of the electromagnetic field have been
defined in the previous Chapter, in the quantum harmonic oscillator section. They
are continuum-spectrum observables and constitute a quorum, whose measurement
provides a complete information about the quantum state of a single mode of the
electromagnetic field. Denoting by â and â† the single mode annihilation and
creation operators, the quadrature operator is defined as,

x̂Φ =
âe−iΦ + â†eiΦ√

2
. (3.1)

Balanced homodyne detection allows for the measurement of such observables.
The schematic diagram of a balanced homodyne detector is reported in Fig (3.1).
The photon state under investigation, the signal, is mixed with a strong coherent

Figure 3.1: Schematic diagram of a balanced homodyne detector. The signal under
investigation (in the mode a) interferes with the local oscillator (in the mode (b) on a 50/50
beam splitter (BS). The phase difference between the two input optical modes is indicated
with Φ. The intensities of the output modes, c and d, are detected with two photodiodes and
the difference between the two photocurrents is measured.

reference state, the local oscillator (LO), by a 50/50 beam splitter BS, whence the
attribute balanced. The relative phase between the signal and the LO is indicated
with Φ. The BS outputs are collected by two photodiodes and the difference
photocurrent I (homodyne photocurrent) is measured. It can be proven that, under
appropriate experimental conditions, the homodyne photocurrent is proportional
to the signal quadrature defined in (3.1)9. We report now the guidelines of this
demonstration23.
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The signal mode a is in the state ρ̂ under investigation, it interferes with the
second mode b (LO) excited in a coherent state |z⟩ with z ∈ C. A beam splitter
is an optical device composed of a dielectric plate that produces the mixing of the
two incident optical modes a and b. In general, a beam splitter is described by a
unitary evolution operator:

UBS(κ) = exp(κâ†b̂− κ∗âb̂†), (3.2)

where κ = |κ|eiχ ∈ C is proportional to the interaction time and to the linear
susceptibility of the medium. The Heisenberg evolution of the modes a and b
under the action of UBS is:

U†
BS(κ)

(
â

b̂

)
UBS(κ) = B(κ)

(
â

b̂

)
(3.3)

where
B(κ) =

(
cos |κ| eiχ sin |κ|

−eiχ sin |κ| cos |κ|

)
. (3.4)

In particular, for a 50/50 BS, the parameters of the evolution operator in (3.2) are
χ = 0 and |κ| = π/4, so the action of a 50/50 BS on the incident modes a and b is
the following:  â −→ ĉ = (â+ b̂)/

√
2

b̂ −→ d̂ = (b̂− â)/(
√
2)

, (3.5)

where ĉ and d̂ are the output mode operators. After the BS, the two modes are
detected by two identical photodiodes, the two photocurrents are measured and
subtracted. The photocurrents Ic and Id are the measured values of the the photon
number observables n̂c = ĉ†ĉ and n̂d = d̂†d̂. The difference photocurrent Î can be
expressed as

Î = n̂c − n̂d = ĉ†ĉ− d̂†d̂, (3.6)

which, using the transformations in (3.5), becomes

Î = â†b̂+ b̂†â. (3.7)

The phase difference between the LO and the signal can be experimentally con-
trolled changing the length of the LO optical path; this means that the LO modes
are subjected to the following phase shift:

b̂ → b̂ eiΦ

b̂† → b̂† e−iΦ,
(3.8)

and the homodyne photocurrent operator can be defined as

ÎΦ = â†b̂ eiΦ + b̂†â e−iΦ. (3.9)

Now the natural question is: how, measuring the homodyne photocurrent ÎΦ, can
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3.2. Balanced homodyne detection

one obtain a value for the quadrature x̂Φ for a fixed phase shift Φ of the LO
mode? The answer comes from the fact that the expectation value of the homodyne
photocurrent ÎΦ on the total input state ρ̂⊗|z⟩⟨z| is proportional to the expectation
value of the field quadrature x̂Φ defined in (3.1):

⟨ÎΦ⟩ = Tr
[
ρ̂⊗ |z⟩⟨z| ÎΦ

]
= Tr

[
ρ̂⊗ |z⟩⟨z| (â†b̂ eiΦ + b̂†â e−iΦ)

]
= Tr

[
ρ̂⊗ |z⟩⟨z| (â†b̂ eiΦ)

]
+ h.c. =

(
Tr[ρ̂ â†] · Tr[|z⟩⟨z|b̂ eiΦ]

)
+ h.c.

=
(

Tr[ρ̂ â†] · ⟨z|b̂ eiΦ|z⟩
)
+ h.c. =

(
Tr[ρ̂ â†] · z eiΦ

)
+ h.c.

= Tr
[
ρ̂ (â† z eiΦ + â z∗ e−iΦ)

]
= |z|Tr

ρ̂ (â†eiΦ + âe−iΦ)︸ ︷︷ ︸
√
2x̂Φ


=

√
2 |z| ⟨x̂Φ⟩ , (3.10)

where Tr [ρ̂⊗ |z⟩⟨z|IΦ] is the expectation value of the photocurrent ÎΦ on the total
input state ρ̂ ⊗ |z⟩ ⟨z|, and we redefined Φ → Φ + θ where θ is the phase of z
(z = |z|eiθ). Balanced homodyne detection thus measures the field quadratures
x̂Φ calibrating the measured ÎΦ by a factor (

√
2 |z|). Redefining the homodyne

photocurrent ÎΦ including the calibration factor, its expectation value coincides
now with the quadratures’s one:

ÎΦ =
â†b̂ eiΦ + b̂†â e−iΦ√

2 |z|
. (3.11)

The reference phase Φ is provided by the LO phase shift and can be experimentally
controlled, providing the access to the outcome statistics of the measured homo-
dyne photocurrent ÎΦ for different values of Φ ∈ [0, π]. The scheme of a typical
experimental apparatus for balanced homodyne detection is show in Fig 3.2.

We stress that in order to ensure that the output statistics of ÎΦ coincides
with the one of the quadrature x̂Φ, it is not sufficient that their expectation values
coincide. Having the same expectation values does not guarantee indeed to have two
identical observables. In particular, two specific conditions must be verified. The
first originates from the observation that the operator ÎΦ has a discrete spectrum
while x̂Φ is a continuum-spectrum observable. This problem can be overcome if
the local oscillator is in a strong semiclassical state (high intensity coherent state)
such that to be treated classically, its quantum fluctuations can be neglected and
b̂→ z. In this case ÎΦ approaches to have a continuum eigenvalues spectrum. The
second condition deals with the fact that the expectation values of the statistical
momenta of order larger than one are different from the quadratures ones. Indeed,
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Figure 3.2: Scheme of balanced homodyne detection experimental apparatus. Mach-
Zehnder interferometer. The phase difference Φ between the signal and the local oscillator is
controlled by changing the length of the local oscillator optical path through a movable mirror
mounted on a piezo-electric translator.

for the second order momentum, one finds

⟨Î2Φ⟩ =
1

2|z|2
Tr[ρ̂⊗ |z⟩⟨z| (â†b̂ eiΦ + b̂†â e−iΦ)2]

= Tr[ρ̂⊗ |z⟩⟨z| (x̂2Φ +
â†â

2 |z|2
)]

= ⟨x̂2Φ⟩+ ⟨ â
†â

2 |z|2
⟩ . (3.12)

This result can be generalized9 to all the statistical momenta of the homodyne
photocurrent:

⟨ÎΦ⟩ = ⟨x̂Φ⟩ , ⟨Î2Φ⟩ = ⟨x̂2Φ⟩+ ⟨ â†â
2 |z|2 ⟩ ,

... ⟨ÎnΦ⟩ = ⟨ x̂2n−2
Φ (x2Φ + â†â

2|z|2 ) ⟩ .
(3.13)

One can notice that they tend to the quadrature momenta only if ⟨â†â⟩ ≪ |z|2. In
conclusion balanced homodyne detection achieves the measurement of the optical
field quadrature only in the high intensity local oscillator regime, defined by the
two following conditions:

i) |z| ≫ 1
ii) |z|2 ≫ ⟨â†â⟩ . (3.14)

The first condition guarantees the continuous spectrum of the homodyne pho-
tocurrent ÎΦ. The second neglects extra terms in the photocurrents statistical
momenta. In this regime the probability distribution of the output photocurrent
ÎΦ approaches the probability distribution p(x,Φ) = ⟨xΦ|ρ|xΦ⟩ of the quadrature
x̂Φ for the signal mode a at a given phase Φ. In the following subsection this
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3.2. Balanced homodyne detection

derivation is generalized to the case of pulsed light, which can not be describes as
a single mode optical field.

3.2.1 The pulsed regime: a multimode treatment

The balanced homodyne detection of single mode photon states of monochromatic
light need to be generalized when laser pulsed light is used24–31. In this case, the
optical pulses are equally prepared multi-mode coherent quantum states. For each
single pulse a quadrature measurement is performed. In such regime, the single
mode balanced homodyne detection description can still be used if the single mode
field operators are replaced by suitable multi-mode annihilation and creation oper-
ators. For this reason we present here a theoretical treatment for pulsed homodyne
detection which demonstrates that the single mode balanced homodyne detection
treatment can still be adopted in case of laser pulses, provided that appropriate
concerns are considered. Homodyne detection in pulsed regime requires a formal
generalization of its theoretical description with respect to the one-mode regime31

since the LO and the signal at the beam splitter are not monochromatic. We in-
troduced the formalism for the description of multimode quantum states of light in
Section 2.4. By means of that formalism we can now extend the state-tomography
techniques to the case in which the signal and the LO are pulsed.

In the monochromatic case, when the signal mode a interferes with the LO
mode b on the beam splitter, the photo-current operator is Î = â†b̂+ b̂†â9.
If more frequencies ωj are present both in the LO and in the signal, each one of
the corresponding mode operators will be subjected to the beam splitting transfor-
mation and the detectors will ideally register photons of all involved frequencies.
Then, the photo-current operator becomes Î =

∑
j â

†
j b̂j + b̂†j âj .

If the LO is in a pulsed coherent state |z̄⟩ = eB̂
†(z̄)−B̂(z̄) |0⟩, with generalized

creation and annihilation operators B̂†(z̄) =
∑
j zj b̂

†
j and B̂(z̄) =

∑
j z

∗
j b̂j , the

phase difference Φ between the LO and the signal is changed by the action of the
piezoelectric translator placed in the LO arm on all the LO modes:

b̂j → b̂j e
iΦ , b̂†j → b̂†j e

−iΦ . (3.15)

The photo-current operator which is measured by the pulsed homodyne setup is
thus given by

ÎΦ =
∑
j

(
â†j b̂j e

iΦ + âj b̂
†
j e

−iΦ
)
. (3.16)

Let us consider ρ̂ the quantum state (density matrix) of the signal field and |z̄⟩ ⟨z̄|
the projector onto the (coherent) state of the incoming pulse. Then, using that
b̂j |z̄⟩ = zj |z̄⟩ and the definition of the multimode field operators in (2.44), the
expectation value IΦ = Tr

[
ρ⊗ |z̄⟩ ⟨z̄| ÎΦ

]
of the photo-current is calculated as
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follows:

IΦ =
∑
j

(
Tr
[
ρ̂ â†j

]
· ⟨z̄|b̂j |z̄⟩ eiΦ + h.c.

)
=

∑
j

(
Tr
[
ρ̂ (â†j zj e

iΦ + âj z
∗
j e

−iΦ)
])

= Tr
[
ρ̂
(
Â†(z̄) eiΦ + Â(z̄) e−iΦ

)]
. (3.17)

Using (2.46) and comparing these results in the standard treatment of homodyne
detection for the single-mode case, one realizes that in the pulsed regime one mea-
sures a quantity IΦ,

IΦ =
√
2 |z̄|Tr

[
ρ̂ X̂Φ

]
, (3.18)

proportional to a quadrature which generalizes that in (3.1):

X̂Φ =
Â† eiΦ + Â e−iΦ√

2
. (3.19)

For this reason, we will refer to the simpler case of a single mode homodyne detec-
tion, with the proviso that whenever a quadrature is used, it actually refers to its
expression (equation (3.19)) in the pulsed regime. In particular, the measured data
can be used to reconstruct the expectation values of all signal observables that can
be expressed as functions of the operators Â and Â†. For instance, the mean value
of the second statistical momentum photo-current operator with respect to the LO
pulsed coherent state |z̄⟩ ⟨z̄| is

⟨z̄| Î2Φ |z̄⟩ = 2 |z̄|2 X̂2
Φ +

∑
j

â†j âj , (3.20)

and differs from the pulsed quadrature second moment X̂2
Φ by the number of pho-

tons in the pulsed signal which has to be taken much smaller than the intensity
|z̄|2 of the pulsed LO. A similar suppression by |z̄|−2 occurs for the correction
terms appearing in higher momenta so that the distribution of the outcomes of the
homodyne photocurrent is equal to that of the corresponding field quadratures.
As a final remark, notice that, in the case of only one frequency mode, the above
treatment reduces to the single mode one.

3.3 Optical homodyne tomography
The main goal of quantum state estimation is to answer to the following question:
given the experimental outcomes of the measurement of a set of observables, which
was the quantum state of the investigated system? This inversion problem is the
core of quantum state tomography. We focus here on quantum state tomography
of light in continuous variable. In particular, the tomographic procedure for light
quantum state estimation from balanced homodyne detection experimental data is
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known as optical homodyne tomography 1. Repeated homodyne measurements on
identically prepared light modes in the state ρ̂ provide an experimental histogram
which approaches the probability distribution of the quadrature outcome at a fixed
phase:

pρ(x, ϕ) = Tr[ρ̂ |xΦ⟩ ⟨xΦ|] = ⟨xΦ|ρ̂|xΦ⟩ . (3.21)

This is the probability of having outcome x when measuring x̂Φ. Once obtained
such histograms for different phases Φ ∈ [0, 2π], the actual optical homodyne to-
mography is the mathematical procedure that from such set of experimental data
leads to a complete characterization of the quantum state by reconstructing its
density matrix ρ̂ or equivalently its Wigner function Wρ. The Wigner function
(treated in detail in the previous Chapter) is a convenient representation of the
optical quantum state in the phase space since its marginals exactly correspond to
the quadratures probability distributions in (3.21).

The mathematical approaches to the problem of optical homodyne tomography
are divided in two categories, (i) the inverse linear transform techniques and (ii)
the statistical inference techniques1. The first category is based of the philoso-
phy of determining the state ρ̂ by directly inverting the linear relation in (3.21)
through back-projection algorithms32 usually adopted also in medical tomography.
The second category is instead based on looking for the most probable density ma-
trix that will generate the observed data my means of non linear algorithms like
maximum likelihood estimation 14 and Bayesian mean estimation 6. The two ap-
proaches have been very nicely summarized with two corresponding questions to
address: (i) “What quantum state is determined by that measurement?”and (ii)
“What quantum states seem to be most likely for that measurement?”4.

In this thesis we focused of the first approach, that is in retrieving the quantum
state of optical fields under investigation from an inverse linear transformation of
the (3.21). In particular we adopted specific quantum statistical methods based
on minimax and adaptive estimation of the Wigner function from homodyne data
with efficiency η < 121,22.

The scientific discussion about how to process homodyne data with low effi-
ciency is of crucial importance. The debate, started about twenty years ago, is
still vivid in the last few years and it is focused on the research of better and
better approaches for treating noisy data. In particular, an intense discussion de-
veloped about the existence or not of a lower homodyne efficiency bound (η = 0.5),
under which quantum state reconstruction is not achievable11–22,31. In this frame-
work, it has been mathematically demonstrated that the algorithms of minimax
and adaptive estimation of the Wigner function allow the tomographic reconstruc-
tion of quantum states of light for any homodyne detection efficiency keeping out
the possibility of any efficiency lower limit21,22, nevertheless in the same papers
no empirical applications to the case of η > 0.5 have been shown. We used such
mathematical algorithms to practically verify that the presence of very low homo-
dyne detection efficiency (< 0.5) does not prevent the tomographic reconstruction
of quantum states of light. We tested the cited algorithms21,22 for η < 0.5, empir-
ically demonstrating that such rigorous bound for loss compensation in homodyne
tomography does not exist. We also studied in details the role of the parameters of
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the algorithm in relation to the number of collected data. Specifically we applied
the minimax and adaptive technique both to real experiments and to simulated
ones, demonstrating its applicability for reconstructing Gaussian and non-Gaussian
states provided that a sufficiently large number of data is collected. These results
are presented in the following sections, here we report the principe of operation of
the adopted mathematical algorithms.

3.3.1 Minimax and adaptive estimation of the Wigner function

Let us consider a quantum state ρ̂, it can be completely characterised by the
associated Wigner function Wρ(q, p) on the phase-space (q, p) ∈ R2; namely, by
the non-positive definite quasiprobability density

Wρ(q, p) =
1

(2π)2

∫
R2

dudv ei(uq+vp) Tr
[
ρ̂ e−i(uq̂+vp̂)

]
, (3.22)

where q̂ and p̂ are the position and momentum operators of the quantum harmonic
oscillator which describes a single mode of the electromagnetic radiation. They
obey the commutation relations [q̂ , p̂] = i, ~ = 1. The quadrature probability
distribution in (3.21) can be conveniently related to the Wigner function by passing
to polar coordinates u = ξ cosϕ, v = ξ sinϕ, such that 0 ≤ ϕ ≤ π and −∞ ≤ ξ ≤
+∞:

Wρ(q, p) =

∫ π

0

dϕ

∫ +∞

−∞
dξ

|ξ|
(2π)2

eiξ(q cosϕ+p sinϕ) Tr
[
ρ̂ e−iξ(q̂ cosϕ+p̂ sinϕ)

]
=

∫ π

0

dϕ

∫ +∞

−∞
dξ

|ξ|
(2π)2

∫ +∞

−∞
dx eiξ(q cosϕ+p sinϕ−x) pρ(x, ϕ)

=

∫ π

0

dϕ

∫ +∞

−∞
dξ

|ξ|
(2π)2

∫ +∞

−∞
dx eiξ(q cosϕ+p sinϕ) F [pρ(x, ϕ)](ξ), (3.23)

where F [pρ(x, ϕ)](ξ) denotes the Fourier transform with respect to x of the prob-
ability distribution:

F [pρ(x, ϕ)](ξ) =

∫ +∞

−∞
dx e−ixξ pρ(x, ϕ) . (3.24)

In homodyne detection experiments, the collected data consist of n pairs of quadra-
ture amplitudes and phases (Xℓ,Φℓ). These can be considered as independent,
identically distributed stochastic variables. Since they are distributed according to
pρ(x, ϕ) in (3.21), one could reconstruct the Wigner function by substituting the
integration with a sum over the pairs for a sufficiently large number of data. How-
ever, the measured values x are typically not the eigenvalues of x̂ϕ, rather those
of

x̂ηϕ =
√
ηx̂ϕ +

√
1− η

2
y , 0 ≤ η ≤ 1 , (3.25)
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where y is a normally distributed random variable describing the possible noise
that may affect the homodyne detection data and η parametrizes the detection
efficiency that increases from 0 to 100% with η increasing from 0 to 121. We
consider the noise Gaussian and independent from the statistical properties of the
quantum state, that is y is considered as independent from x̂ϕ. It thus follows that
the eigenvalues of x̂ηϕ are distributed accordingly to the following convolution:

pηρ(x, ϕ) =

∫ +∞

−∞
du

e−u
2/(1−η)√
π(1− η)

pρ

(
x−u√
η , ϕ

)
√
η

. (3.26)

Its Fourier transform is connected with that of pρ(x, ϕ) according to

F [pρ(x , ϕ)](ξ) = eγξ
2

F [pηρ(x , ϕ)](ξ/
√
η) , γ =

1− η

4η
. (3.27)

By inserting F [pρ(x , ϕ)](ξ) into (3.24), one can finally write the Wigner function
in terms of the noisy probability distribution pηρ(x, ϕ):

Wρ(q, p) =

∫ π

0

dϕ

∫ +∞

−∞
dξ

|ξ|
(2π)2

∫ +∞

−∞
dx eiξ(q cosϕ+p sinϕ−x/

√
η) eγξ

2

pρ(x, ϕ) .

(3.28)
Then the Wigner function is reconstructed from a given set of n measured homo-
dyne pairs (Xℓ,Φℓ) by means of an estimator of the form21

W η,r
h,n(q, p) =W η

h,n(q, p)χr(q, p) , (3.29)

where

W η
h,n(q, p) =

1

n

n∑
ℓ=1

Kη
h

(
[(q, p),Φℓ]−

Xℓ√
η

)
, (3.30)

and

Kη
h

(
[(q, p),Φℓ]−

Xℓ√
η

)
=

∫ 1/h

−1/h

dξ
|ξ|
4π

eiξ(q cosΦℓ+p sinΦℓ−Xℓ/
√
η) eγξ

2

. (3.31)

The expression in (3.29) is an approximation of the Wigner function in (3.28) by
a sum over n homodyne pairs (Xℓ,Φℓ). The parameter h serves to control the
divergent factor exp(γξ2), while r, through the characteristic function χr(q, p) of a
circle Cr(0) of radius r around the origin, restricts the reconstruction to the points
(q, p) such that q2 + p2 ≤ r2. Both parameters have to be chosen in order to min-
imise the reconstruction error which is conveniently measured by the L2-distance
between the true Wigner function and the reconstructed one, ∥Wρ −W η,r

h,n∥2
22,33.

Since such a distance is a function of the data through W η,r
h,n, the L2-norm has to
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be averaged over different sets, M , of quadrature data:

∆η,r
h,n(ρ̂) = E

[
∥Wρ −W η,r

h,n∥
2

2

]
≡ E

[∫
R2

dqdp
∣∣∣Wρ(q, p)−W η,r

h,n(q, p)
∣∣∣2] , (3.32)

where E denotes the average over the M data samples. Each sample consists of n
quadrature pairs (Xℓ,Φℓ) corresponding to measured values of xϕ with ϕ ∈ [0, π].

An optimal dependence of the parameters r and h upon the number of data,
n, is obtained by minimizing an upper limit to ∆η,r

h,n(ρ̂). The minimum value of
such upper limit determines the optimal values of r and h.

In order to further optimize the expressions for the parameters h and r as
functions of the number of data n an auxiliary parameter β > 0 is considered.
This was introduced to characterise the localisation properties on R2 of the Fourier
transforms of the Wigner functions of the following class of density matrices22:

Aβ,s,L =

{
ρ :

∫
R2

dqdp |F [Wρ] (q, p)|2 e2β(w
2
1+w

2
2)

s/2

≤ (2π)2L

}
. (3.33)

We studied in details the role of the free parameter β in section 3.5. There it
appears explicitly in the optimal functional dependence of the parameters r and h
on the number of data n.

In the following we focus on the application of the minimax and adaptive algo-
rithm to the reconstruction of quantum states of light in low efficiency conditions
η < 0.5. We first consider Gaussian states, we prove, by both numerical and real
experiments, that an effective discrimination of different Gaussian quantum states,
in particular coherent and squeezed states, can be achieved. Then we consider non
Gaussian states, in particular a linear superposition of two coherent states, demon-
strating that, starting from simulated noisy homodyne data, quantum interferences
can be actually retrieved in very low efficiency conditions. In last case we focused
on the role of the parameter β on the reconstruction errors33.

3.4 Gaussian states tomography with low homodyne
efficiency

Pulsed homodyne quantum tomography usually requires a high detection efficiency,
along with ad-hoc designed apparatus34, limiting its applicability in Quantum Op-
tics. However, new methods capable of discriminating between different quantum
state of light, which demand lower detection capabilities typical of commercially
available components, would facilitate the experimental realization of such appa-
ratuses.

Here I report our recent results31 which demonstrate that the presence of low
detection efficiency (< 50%) does not prevent the tomographic reconstruction of
quantum states of light, specifically, of Gaussian type. This results are obtained
by applying the so-called minimax adaptive reconstruction of the Wigner func-
tion21,22 (presented in the previous section) to pulsed homodyne detection. In
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particular, we prove, by both numerical and real experiments, that an effective
discrimination of different Gaussian quantum states can be achieved. This would
make possible to apply quantum homodyne detection to study different physical
systems where high noise conditions are unavoidable, such as out of equilibrium
light matter dynamics35.

We developed a time-domain homodyne detection apparatus working with co-
herent ultra-short light pulses, built using commercial detectors and operating in
a regime of large electronic noise. By treating the shot-to-electronic-noise ratio
(about 2 dB) as a detector inefficiency20,32, we obtain an overall detection effi-
ciency of about 30%. We show that, even in these low efficiency conditions, it is
still possible to discriminate coherent and squeezed photon states with high accu-
racy.

3.4.1 Experiments
The laser source is a mode-locked Ti:Sapphire oscillator with 80MHz repetition
rate which generates a train of 100 fs pulses at a wavelength of 800nm. This
source is pumped by a solid state laser which produces 18W of monochromatic
continuous wave radiation at 532nm (Verdi V-18). The oscillator has an output
average power of 800mW, of which only few mW are used for our experiment. A
block representation of the laser system used in our experiment is given in Fig 3.3.

Figure 3.3: Block diagram of the laser sources system used in the experiment.

The experimental core of balanced homodyne detector is a Mach-Zehender
interferometer. Fig 3.4 shows the experimental set-up. A beam splitter divides
the incoming beam in two, the signal and the local oscillator, which then interfere
in a second beam splitter (NPBS in Fig 3.4). The outputs of the second beam
splitter are detected and subtracted by a commercial balanced amplified differential
photodetector. Two 100mm lenses focus the beam splitter output beams onto the
entrances of the photodetector. The phase difference Φ between the two arms of
the interferometer can be controlled by moving a mirror (M2 in Fig 3.4) set up on
a piezoelectric translator in the local oscillator arm (PZT in Fig 3.4). The latter
is a piezo linear stage (PI P622-ZCD) with a travel range of 250µm and a 1nm
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Figure 3.4: Scheme of the opto-mechanical setup for the balanced homodyne detection.

nominal resolution, connected to a piezo Servo-Controller (PI E625). A software
controls and reads the piezo stage position along the motion axis. The total laser
power can be varied by means of a half wave plate followed by a polarizer at the
beginning of the system. Other two pairs of half wave plates and polarizers are
put at the outputs of the second beam splitter, which is a (50/50) non polarizing
cube beam splitter (NPBS). In this case, they are used to compensate the different
efficiency of the photodiodes in the differential detector. The detection-acquisition
system, sketched in Fig 3.5, consists of a commercial balanced amplified differential

Figure 3.5: Block diagram of the acquisition system

photodetector (Thorlabs PDB430A) with a high bandwidth (from DC to 350 MHz)
which is able to measure the difference between the photocurrents generated by
the two beams in input. The latter is made up of two Si/PIN photodiodes with
nominal quantum efficiency ηpd = 0.85 at 800 nm wavelength and linear response
up to 0.6mW LO power. The detector subtraction efficiency is quantified by the
common mode rejection ratio (CMRR), defined as the ratio between the detector
output power when both photodiodes are illuminated and the power when one of
the two is screened29. For the present experiment CMRR> 36 dB. The homodyne
photocurrent is recorded by a digital oscilloscope (Tektronix TDS3000B) with a
bandwidth of 500 MHz and a sampling rate of 5 GSamples/s. The digitized output
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is numerically integrated over time intervals corresponding to the duration of the
pulse. The integrated voltage for each pulse is associated with a single quadrature
measurement. In Fig 3.6 a picture of the experimental opto-mechanical set up is
shown.

Figure 3.6: Experimental opto-mechanical set up

In the shot noise regime with the signal beam blocked, i.e. with the signal
in the vacuum state, the homodyne detector noise variance is expected to change
linearly with the LO power on the top of a constant offset representing the electronic
noise36. Fig 3.7 shows the detector noise variance of 8 × 103 pulses, for different
values of the LO power. The noise variance grows linearly up to 0.6 mW LO power,
instead at higher powers the photodiodes non-linear effects are significant. To have
the maximum shot-to-electronic noise ratio (≈ 2 dB) achievable in the linear regime,
the experiments have been performed at 0.6 mW LO power. Conversely, when the

Figure 3.7: Detector noise variance versus LO power in absence of signal (vacuum
state). Shot noise contribution (dashed curve); electronic noise background (dashed-dotted
curve).
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signal beam is not blocked, it can be attenuated with respect to the LO by neutral
density filter (F1 in Fig 3.4).

In the absence of electronic noise, the voltage V corresponding to the homodyne
photocurrent, namely the experimentally accessible quantity, is proportional to the
quadrature operator xΦ, V = γ xΦ, with an appropriate constant γ. The electronic
noise can be generically described by a classical stochastic process δ, that can be
assumed to be Gaussian distributed, with zero average and variance T/2. The value
of δ must be experimentally measured. Under these conditions the electronic noise
is independent from the quadrature and it contributes to the homodyne voltage as,

V = γ xΦ + δ . (3.34)

A homodyne trace is obtained by collecting a set of homodyne voltage values Vℓ,
corresponding to different phase values Φℓ, associated with a large number n of
piezo positions.

In the case of the vacuum state (absence of signal), these considerations are
outlined in Fig 3.7. The total vacuum homodyne variance for the chosen LO power
is indeed composed of two independent contributions. An intrinsic contribution
(A = γ2/2) is actually the shot noise, while an extrinsic contribution (B = T/2) is
due to the electronic noise. The electronic noise can be treated as an optical loss
channel20 with an equivalent transmission efficiency given by

ηeq =
A

A+B
=

γ2

γ′2
, (3.35)

where γ′ =
√
γ2 + T . Here we estimate ηeq = 0.37. Thus the total apparatus

efficiency is η = ηeq ηpd = 0.31.
Considering that the variances of independent stochastic variables are additive,

γ′ can be determined by using the vacuum state as reference and by assuming the
variance of the quadrature operator in the vacuum to be 1/2,

γ′ =
√
2 ⟨V 2⟩0 , (3.36)

where ⟨V 2⟩0 is the experimental voltage variance for the vacuum state. To con-
sistently apply the quantum state reconstruction to the collected experimental
homodyne data, it is convenient to rescale the raw data Vℓ by the constant γ′,

Xℓ = Vℓ/γ
′ , (3.37)

so that the new, calibrated quantities Xℓ have variance 1/2. Fig 3.8 shows the case
of two optical coherent states with different mean photon numbers, each homodyne
trace consisting of n = 8 × 104 experimental data. The data were collected using
two different optical density for the signal attenuator (F1 in Fig 3.4). Clearly even
with a very low mean photon number signal (Fig 3.8 (b)), the phase modulation
of the homodyne trace is detectable. These experimental homodyne data are used
for the Wigner function reconstruction.
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Figure 3.8: Calibrated homodyne traces of two optical coherent states. Each trace is
acquired using a different optical density OD of the filter F1. (a) OD = 4.5; (b) OD = 7. In
the inset of (a) we show the interference figure obtained by measuring the mean value of four
integrated pulses versus the piezo position. The homodyne traces are measured in the piezo
range corresponding to the central optical cycle of the interference figure.

3.4.2 The Wigner function reconstruction

The experimental data are analyzed using the technique of minimax estimation
of the Wigner function presented in section 3.3.1. For each experiment, the n
homodyne data pairs (Xℓ, Φℓ) are used in the equations (3.31) in order to estimate
the Wigner function in (3.30) for each point of the phase space. We put here
the truncation parameter h equal to the optimal adaptive value obtained in21,
h = hadap, with

hadap =

(
2η log n

1− η
−

√
2η log n

1− η

)−1/2

. (3.38)

Notice that the optimally adapted cutoff depends both on the detector efficiency η
and the number n of collected data. When the efficiency becomes small, in order
to have a good estimator of the Wigner function, a larger number n of data is
needed. However, we stress that no inferior bound on η exists that prevents the
convergence of the algorithm.

Once the Wigner function is reconstructed, the expectation value of any ob-
servable Ô of the system can be estimated as follows,

Eh
Ô
=

∫
R2

dq dp O(q, p)W η
h,n(q, p) =

1

n

n∑
ℓ=1

Rh,η
Ô

(Xℓ,Φℓ) , (3.39)

where the corresponding kernel function is given by

Rh,η
Ô

(Xℓ,Φℓ) =

∫
R2

dq dp O(q, p)Kh,η
Xℓ,Φℓ

(q, p) . (3.40)
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For testing the effectiveness of reconstruction approach under our experimental
conditions, we first analyze sets of numerically generated data that simulate the
quadratures of a known pure quantum state |ψ⟩. By knowing in advance the quan-
tum state, it is possible to verify whether the minimax technique allows a proper
reconstruction. The generation of the fictitious data starts by using the quadrature
probability distribution with η = 1 associated with a quantum state, and afterwards
in adding to each numerically generated state quadrature a Gaussian noise which
exactly simulates the electronic noise associated with the efficiency, i.e. η = 0.31,
of our set-up. The analysis of the simulated data proceeds, as for experimental
data, through a calibration using the vacuum noise as reference. In particular, we
perform two numerical experiments. The first with a coherent state |ψ⟩ = D(α) |0⟩
and another one with a displaced-squeezed state |ψ⟩ = D(α)S(ξ) |0⟩, where

D(α) = eαâ
†−α∗â , S(ξ) = e1/2(ξâ

†2−ξ∗â2) , (3.41)

are the displacement and squeezing operators, respectively. Each data set consists
of n = 8× 104 quadrature measurements Xℓ with the relative phase Φℓ ranging in
the interval [0, 2π]. Following the algorithm sketched in the previous section, we
reconstruct the Wigner function of the two quantum states. They are shown in
Fig 3.9 (a) and (b) for the coherent and the squeezed state respectively. To remove

Figure 3.9: Reconstructed Wigner function from simulated data using the adaptive
minimax estimation. Reconstruction from n = 8 × 104 quadratures of (a) a coherent state
(α = 3) and (b) a displaced-squeezed state (α = 3, ξ = 0.8). The used detector efficiency is in
both cases η = 0.31. The insets show representative two-dimensional cuts of the reconstructed
Wigner function.

the artifacts resulting by the numerical integration, the reported Wigner functions
have been filtered by an image processing algorithm (low pass Gaussian convolution
filtering). The blue and red curves are bidimensional cuts of the Wigner functions
in correspondence of the expectation value of the position and momentum operator,
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respectively. The fidelity of the Wigner function reconstruction has been calculated
as follows,

f =

∫
R2

dq dp 2π We(q, p)Wr(q, p) , (3.42)

where We(q, p) is the exact Wigner function and Wr(q, p) is the reconstructed one.
We obtained a fidelity of 0.97 and 0.92 for the coherent and the squeezed state
respectively. The results prove that the squeezed and coherent states can be dis-
criminated under high noise conditions. Indeed, the features of the reconstructed
Wigner functions clearly reflect the different nature of the two quantum states.
From the reconstructed Wigner function, it is possible to compute the expecta-
tion values of relevant observables with respect to the coherent and the displaced-
squeezed state. In particular, the number operator n̂ = â†â and the position q̂ and
momentum p̂ operators. For q̂ and p̂ it also possible to derive the variances, σ2[q̂]
and σ2[p̂], and to estimate the squeezing parameter,

ξ =
1

4
ln (σ2

p̂/σ
2
q̂ ) . (3.43)

The results are summarized in Table 3.1. For the errors evaluation we have used
the standard expression for the mean average error relative to a data set (Xℓ,Φℓ)
(recall the definitions in (3.39) and (3.40)),

ϵÔ =

√√√√∑n
i=1

[
Rh,η
Ô

(Xℓ; Φℓ)− EÔ
]2

n(n− 1)
. (3.44)

Table 3.1: Estimate of different expectation values from simulated data. Estimate for
n = 8×104 simulated quadratures associated to the coherent state (α = 3) and the displaced-
squeezed state (α = 3, ξ = 0.8).

Ô ⟨Ô⟩D(α)|0⟩ Eh
Ô

⟨Ô⟩D(α)S(ξ)|0⟩ Eh
Ô

n̂ 9 9± 1 9.89 9.9± 0.8

q̂ 4.24 4.2± 0.5 4.24 4.3± 0.3

p̂ 0 0.00± 0.06 0 0.0± 0.2

σ2q̂ 0.5 0.4± 0.2 0.1 0.1± 0.2

σ2p̂ 0.5 0.5± 0.2 2.48 2.3± 0.4

ξ 0 0.0± 0.1 0.8 0.78± 0.02

The averages computed using the Wigner function estimated from the data set
fully agree with those analytically calculated from the known quantum states. In
particular, even the estimated value of the squeezing parameter agrees with the
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expected one. This reveals that the minimax reconstruction method is effective in
discriminating different quantum states even under low efficiency conditions.

The real data in Fig 3.8 can now be treated in the same way. In this case, the
collected homodyne traces are two coherent states with very different mean photon
number. The first step in the reconstruction procedure and determination of rel-
evant observables is to use the estimator in (3.30) to obtain the Wigner functions
associated with the two states. The results are shown in Fig 3.10; as in the previ-
ous numerical experiments, in order to minimize artifacts related to the numerical
integration in (3.31), a low pass Gaussian filter has been applied to the raw images.
With these results, one can then estimate the mean values of relevant observables,

Figure 3.10: Reconstructed Wigner function from experimental data using the adaptive
minimax estimation. Reconstruction from n = 8×104 quadratures of attenuated laser states
with (a) OD = 4.5 and (b) OD = 7. The insets show representative two-dimensional cuts of
the reconstructed Wigner function.

as number, position and momentum operators together with the squeezing param-
eter, obtained from the computation of the variances of position and momentum.
The results are summarized in Table 3.2. The obtained expectation values for the
number operator explicitly exhibit the three order of magnitude difference between
the two states. Furthermore, these results show that the analyzed experimental
states are indeed minimum uncertainty states, with vanishing squeezing parameter.

These results demonstrate the effectiveness of the minimax statistical tech-
niques in the reconstruction of Gaussian quantum states of light in presence of
large electronic noise.

These methods allow to circumvent convergence problems that arise when us-
ing pattern function methods in estimating observable averages with low detection
efficiency, namely η < 50%12–19,37. Nevertheless, it is interesting to investigate the
possible relations between these two approaches, by replacing the cutoff truncation
in the integration with respect to ξ in 3.31 with a suitable Gaussian regulariza-
tion. In particular we consider the following alternate kernel functions instead of
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Table 3.2: Estimate of different expectation values form experimental data. Estimate for
the experimental coherent states with optical density OD = 4.5 and OD = 7, respectively.

Ô Eh
Ô

(OD = 4.5) Eh
Ô

(OD = 7)

n̂ 51± 7 0.2± 0.3

q̂ 10± 1 0.7± 0.2

p̂ 0.1± 0.2 0.0± 0.2

σ2q̂ 0.7± 0.3 0.5± 0.2

σ2p̂ 0.6± 0.3 0.5± 0.3

ξ 0.0± 0.2 0.0± 0.2

Rh,η
Ô

(Xℓ,Φℓ),

Rε
Ô
(Xℓ,Φℓ) =

∫
R2

dq dp Ô(q, p) e−ε(q
2+p2)

∫ +∞

−∞
dξ

|ξ|
4π
e
−ıξ(q cosΦℓ+p sinΦℓ−

Xℓ√
η )
eξ

2 1−η
4η ,

(3.45)
where ε is a positive regularization parameter. In principle, this allows for a more
direct estimate of the expectation values of any observable, provided 0 < ε <
η/(1− η). For instance, in the case of position, momentum and number operators,
one finds:

Rεq̂(Xℓ,Φℓ) =

∫ +∞

−∞
dξ

cosΦℓ
8ε2

ξ |ξ| sin
(ξ Xℓ√

η

)
e−ξ

2 η−ε(1−η)
4ηε , (3.46)

Rεp̂(Xℓ,Φℓ) =

∫ +∞

−∞
dξ

sinΦℓ
8ε2

ξ |ξ| sin
(ξ Xℓ√

η

)
e−ξ

2 η−ε(1−η)
4ηε , (3.47)

Rεn̂(Xℓ,Φℓ) =

∫ +∞

−∞
dξ

1

32ε3
|ξ| cos

(ξ Xℓ√
η

)
e−ξ

2 η−ε(1−η)
4ηε [4ε(1− ε)− ξ2] . (3.48)

Notice that these quantities converge to functions R0
Ô
(Xℓ,Φℓ) in the limit ε→ 0:

R0
q̂(Xℓ,Φℓ) =

2
√
η
Xℓ cosΦℓ , (3.49)

R0
p̂(Xℓ,Φℓ) =

2
√
η
Xℓ sinΦℓ , (3.50)

R0
n̂(Xℓ,Φℓ) =

(Xℓ√
η

)2
− 1

2η
. (3.51)

These expressions coincide with the so-called kernel functions of the standard pat-
tern function based tomographic techniques37. Unfortunately, the limit ε→ 0 can
not be taken in the case of more general observables with higher powers of q̂ and
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p̂ since the integrals diverge as powers of 1/ε. This fact may be related to the
mentioned convergence problems of the standard pattern function method. It is
important to note that the estimation of the mean values of q̂, p̂ and n̂ through
the use of the limit kernel functions (3.49)-(3.51) is not sufficient to completely
characterize any quantum states, like coherent and squeezed states.

In conclusion, we reported the characterization of a time domain balanced ho-
modyne detection apparatus operating in presence of large electronic noise corre-
sponding to an overall detection efficiency η = 0.31. We used the detector combined
with tomographic reconstruction techniques for discriminating between different
quantum states of light. A minimax adaptive reconstruction of the Wigner func-
tion has been adopted. This approach allows us to circumvent possible convergence
problems arising from low detector efficiency in the standard pattern function based
quantum tomography. The effectiveness of such a method has been verified in two
ways. At first, we calculated the Wigner function for simulated data of coherent and
squeezed states and, then, for real experimental homodyne data of coherent states
with different mean photon numbers. In all cases it is proved that it is possible
to efficiently reconstruct the associated Wigner function, asserting the Gaussian
character of the quantum states, and evaluating their relevant parameters. The
present study demonstrates that even low efficient (∼ 30%) homodyne detectors
can be usefully employed to study the nature of quantum states of light provided
that non-standard statistical tools as the minimax methods are used to reconstruct
their Wigner functions. These results may be important whenever quantum optics
techniques are employed to investigate the dynamics of out of equilibrium states
and the presence of quantum coherence in condensed matter.

We stress that the experimental detection-acquisition system presented here
has been developed at the beginning of this PhD project by using commercial
available components. The latter are characterized by a low efficiency detection
that we compensated with suitable data processing algorithms. In the course of
the PhD project we improved the detection-acquisition system by designing and
realizing a custom highly efficient differential detector. The latter is reported in
the Appendix A of the thesis.

3.5 Quantum interference reconstruction with low ho-
modyne efficiency

In the previous section we considered the issue of reconstructing Gaussian states.
We here show that even non Gaussian states can be efficiently reconstructed in
noisy conditions. In particular, we report our results about quantum interferences
reconstruction in low homodyne efficiency conditions33.

We address again the problem of the existence or not of a lower homodyne ef-
ficiency bound (η = 0.5), under which quantum state reconstruction is not achiev-
able12–22,31. While in the previous section we considered the specific case of quan-
tum Gaussian states (characterized by Wigner functions of Gaussian type), here
we focus on the reconstruction of purely quantum proprieties like quantum inter-
ference effects that typically spoil positivity of the Wigner function. These effects
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have been claimed not to be accessible by homodyne reconstruction in presence of
efficiency lower than 0.513,17. However, in21 it is theoretically shown that η < 1/2
only requires increasingly larger data sets for achieving small reconstruction errors.
To the best of our knowledge, this claim was not put to test in those studies as the
values of η in the considered numerical experiments were close to 1.

In order to pave the way for quantum state reconstruction in high noise condi-
tions, we consider here values η < 0.5 and reconstruct the Wigner function of the
following superposition of coherent states

|Ψα⟩ =
|α⟩+ | − α⟩√
2
(
1 + e−2|α|2

) , |α⟩ = e−|α|2/2 eαa
†
|0⟩ , (3.52)

with α any complex number α1+iα2 ∈ C. Such a state is usually called “Schrödinger’s
cat” state. The Wigner function corresponding to the pure state ρ̂α = |Ψα⟩⟨Ψα|
is shown in Fig 3.11 for α ∈ R. The analytic expressions for the Wigner function

Figure 3.11: Wigner function of a “Schrödinger’s cat” state. The represented Wigner
function corresponds to the pure state ρ̂α = |Ψα⟩⟨Ψα| (α1 = 3/

√
2; α2 = 0)

and its Fourier transform are the following,

Wα(q, p) =
1

2π
(
1 + e−2|α|2

) (e−(q−
√
2α1)

2−(p−
√
2α2)

2

+ e−(q+
√
2α1)

2−(p+
√
2α2)

2

+2 e−q
2−p2 cos

(
2
√
2(qα2 + pα1)

))
, (3.53)

F [Wα](w1, w2) =
1

2
(
1 + e−2|α|2

) (e− (w1+2
√

2α2)2+(w2−2
√

2α1)2)
4

+e−
(w1−2

√
2α2)2+(w2+2

√
2α1)2)

4 + 2 e−
w2

1+w2
2

4 cos
(√

2(w1α1 + w2α2)
))

. (3.54)

For a generic Wigner function Wρ(q, p) one computes the quadrature probability
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density pρ(x, ϕ) in (3.21) by means of the so-called Radon transform:

⟨x|ρ̂|x⟩ =
∫
R
dpWρ(x cosϕ− p sinϕ, x sinϕ+ p cosϕ) . (3.55)

It follows that the probability density pρ(x, ϕ) and the noise-affected probability
density pηρ(x, ϕ) in (3.26) are given by:

pα(x, ϕ) =
1

2
√
π
(
1 + e−2|α|2

) (e−(x−
√
2α(ϕ))2 + e−(x+2

√
2α(ϕ))2

+e−x
2−2α2(−ϕ) 2 cos

(
2
√
2xβ(−ϕ)

))
; (3.56)

pηα(x, ϕ) =
1

2
√
π
(
1 + e−2|α|2

) (e−(x−
√
2ηα(ϕ))2 + e−(x−

√
2ηα(ϕ))2

+2 e−x
2−2|α|2+2η|β(−ϕ)|2 cos

(
2
√

2ηxβ(−ϕ)
))

, (3.57)

where
α(ϕ) = α1 cosϕ+ α2 sinϕ , β(ϕ) = α2 cosϕ− α1 sinϕ .

Once known the expression for the noisy-affected probability distribution, we
generated M = 10 samples of n = 16 × 106 quadrature data (Xℓ,Φℓ) distributed
according to the (3.57), namely by considering an efficiency (η = 0.45). Starting
from each set of simulated quadrature data we reconstructed the associated Wigner
function by means of (3.29) and (3.31). In this case we adopted a deeper analysis
for the choice of optimal value of the parameter h and r in (3.29) and (3.31). We
provided a derivation of the L2-errors and of the optimal dependence of h and r
on the number of data n and on a parameter β that takes into account the fast
decay of both the Wigner function and its Fourier transform for large values of
their arguments. The following upper bound to the mean square error in (3.32) is
derived:

∆η,r
h,n(ρ̂α) ≤ ∆ , ∆ =

r2

nh
e2γ/h

2

∆1(γ) + e−βr
2

∆2(β) + e−β/h
2

∆3(β) , (3.58)

with 0 < β < 1/4 and γ as given in (3.27). The quantities ∆1,2,3 do not depend on
h, r and n and will be discussed in detail afterwards. The key point of this analysis
is that by taking the derivatives with respect to r and h, one finds that the upper
bound to the mean square deviation is minimised, for large n, by choosing

r =
1

h
=

√
log n

β + 2γ
. (3.59)

The complete derivation of this result and the discussion about the rose of the extra
parameter β is reported in Appendix A. We now report the results of the Wigner
function reconstruction using the condition in (3.59) for the free parameters.
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3.5. Quantum interference reconstruction with low homodyne efficiency

The averaged reconstructed Wigner functions E
[
W η,r
h,n(q, p)

]
for η = 0.45 over

M = 10 simulated experimental data set are shown in Fig 3.12 for two different
values of the parameter β. The mean square error of the reconstructed Wigner

Figure 3.12: Averaged reconstructed Wigner functions. E
[
W η,r

h,n(q, p)
]

over M = 10

samples of n = 16× 106 noisy quadrature data (efficiency η = 0.45). Two different values of
β are considered.

functions has been computed as in (3.32) and compared with the mathematically
predicted upper bounds ∆. The dependence of the upper bound reconstruction
error from the parameter β is discussed afterwards. In the following table 3.3,
we compare the reconstruction errors ∆η,r

h,n(ρ̂) with their upper bound ∆ for two
significant values of β. One can notice the interference features clearly appear

β ∆η,r
h,n(ρ̂) ∆

0.05 0.081 2.39

0.1 0.076 26.07

Table 3.3: Calculated reconstruction errors. ∆η,r
h,n(ρ̂) for M = 10 samples of noisy quadra-

ture data (η = 0.45) for two different values of β. Comparison with the mathematical
prediction of the upper bound ∆.

in the reconstructed Wigner function also for efficiencies lower than 50% and the
reconstruction errors are compatible with the theoretical predictions. In the next
subsection, we make a quantitative study of the visibility of the interference effects.
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3.5.1 Witnessing the interference terms

The interference effects in the state |Ψα⟩ can be witnessed by an observable Ôα of
the form

Ôα =
|α⟩⟨−α| + | − α⟩⟨α|

2
(
1 + e−2|α|2

) . (3.60)

With respect to an incoherent mixture of the two coherent states,

ρ̂αλ = λ |α⟩⟨α| + (1− λ) | − α⟩⟨−α| , 0 ≤ λ ≤ 1 , (3.61)

its mean value is given by

Tr
(
ρ̂αλ Ôα

)
=

e−2|α|2

1 + e−2|α|2 . (3.62)

Therefore, from (2.9) it follows that the phase-space function Oα(q, p) associ-
ated to Ôα is

Oα(q, p) =
e−q

2−p2 cos
(
2
√
2(qα2 + pα1)

)
√
π
(
1 + e−2|α|2

) , α = α1 + iα2. (3.63)

Let us denote by Wα
j,rec(q, p), the estimated Wigner function W η,r

h,n(q, p) in (3.29)
for the j− th set of collected quadrature data. It yields a reconstructed mean value

< Ôα >j,rec=

∫
R2

dq dpOα(q, p)W
α
j,rec(q, p) , (3.64)

of which one can compute mean, Av(< Ôα >rec), and standard deviation, Sd(<
Ôα >rec), with respect to the M sets of collected data:

Av(< Ôα >rec) =
1

M

M∑
j=1

< Ôα >j,rec , (3.65)

Sd(< Ôα >rec) =

√√√√ 1

M

M∑
j=1

((
< Ôα >j,rec

)2
−
(

Av(< Ôα >rec

)2)
. (3.66)

We computed Av(< Ôα >rec) and Sd(< Ôα >rec) with M = 10 simulated sets
of noisy data with η = 0.45 for two different numbers of simulated quadrature data
(see the caption in Fig 3.13). We repeated the procedure for different values of the
parameter β. The results are presented in Fig. 3.13, where the error bars represent
the computed Sd(< Ôα >rec).

In order to be compatible with the interference term present in |Ψα⟩, the recon-
structed Wigner functions should yield an average incompatible with the incoherent
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3.5. Quantum interference reconstruction with low homodyne efficiency

Figure 3.13: Study of the visibility of the reconstructed interference features. Av(<
Ôα >rec) − e−2|α|2

1+e−2|α|2 as a function of β. The error bars represent Sd ( < Ôα >rec ). For
each β, M = 10 set of n noisy quadrature data have been considered. The square markers
refer to η = 0.45 (n = 16× 106 blue marker and n = 5× 105 green markers) while the round
ones refer to η = 0.95 (n = 16 × 106). The error bars for η = 0.95 have been multiplied by
20 in order to make them more visible.

mean value in (3.62), namely such that∣∣∣∣∣Av(< Ôα >rec) − e−2|α|2

1 + e−2|α|2

∣∣∣∣∣ > Sd(< Ôα >rec) . (3.67)

We thus see that the condition in (3.67) is verified for η = 0.45, that is the re-
constructed Wigner functions are not compatible with incoherent superpositions
of coherent states, if enough data are considered. We also notice that the same
behavior is valid for the high efficiency η = 0.95.

The dependence of the errors on β can be understood as follows: when β de-
creases the integration interval in (3.31) becomes larger and approaches the exact
interval [−∞,+∞]. Nevertheless this occurs at the price of increasing the recon-
struction error. This can be noted both in Fig 3.13 (larger error bars) and in
Fig 3.12 (increasingly noisy effects in the reconstructed Wigner function). This
problem can be overcome with a larger number of data samples M , that would
reduce the reconstruction noise and compensate the effect of decreasing β.

In conclusion we have numerically shown that quantum interference effects
can be reconstructed by means of homodyne tomography also in low efficiency
conditions. In particular, we simulated quadrature data affected by high electronic
noise associated with a detection efficiency lower than 50% and, based on the
tomographic techniques developed in21, we reconstructed the Wigner function of
a linear superposition of two coherent states. Then, taking into account the decay
properties of the Wigner function and its Fourier transform, we have checked that
the reconstruction errors conform with the theoretical error bounds computed via
L2 norms. In order to clearly exhibit the interference effects, both qualitatively
in the graphic reconstruction of the Wigner function, and quantitatively in the
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variance of an interference witness, larger sets of homodyne data are necessary as
the detection efficiency gets smaller.

The mathematical derivation for the optimal free parameters values is reported
in Appendix B of the thesis.
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4
Non-equilibrium photon number quantum

statistics

Fluctuations of the atomic positions are at the core of a large class of unusual
material properties ranging from quantum para-electricity to high temperature su-
perconductivity. Their measurement in solids is the subject of an intense scientific
debate focused on seeking a methodology capable of establishing a direct link be-
tween the variance of the atomic displacements and experimentally measurable
observables. In this Chapter we address this issue by means of non-equilibrium op-
tical experiments performed in shot-noise limited regime. The variance of the time
dependent atomic positions and momenta is directly mapped into the quantum
fluctuations of the photon number of the scattered probing light. The fully quan-
tum description of the non-linear phonon-photon interaction, presented in Section
2.6, is benchmarked by unveiling the squeezing of thermal phonons in α-quartz.

4.1 Introduction

The time evolution of atomic positions in materials is usually addressed by means of
non-equilibrium optical spectroscopy. An ultrashort light pulse (the pump) impul-
sively perturbs the lattice and a second one (the probe), properly delayed in time,
measures a response that is proportional to the spatially-averaged instantaneous
atomic positions. In those experiments, the time dependent atomic displacements
are often revealed by an oscillating optical response at frequencies characteristic
of the vibrational modes of the material. The latter is commonly dubbed with
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Chapter 4. Non-equilibrium photon number quantum statistics

the improper expression of coherent phonon∗ response1–11. In this framework, it
has been shown that a non-linear light-matter interaction can prepare non classical
vibrational states12,13 such as squeezed states, where the fluctuations of the lattice
position (or momentum) can fall below the thermal limit. A reduction below the
vacuum limit is known as vacuum squeezing14.

Here we propose a joint experimental and theoretical approach to access the
fluctuations of the atomic positions in time domain studies. An experimental appa-
ratus that allows for the measurement of the photon number quantum fluctuations
of the scattered probe pulses in a pump and probe setup is adopted. The connec-
tion between the measured photon number uncertainty and the fluctuations of the
atomic positions is given by a fully quantum mechanical theoretical description of
the time domain process. Overall we prove that, under appropriate experimen-
tal conditions, the fluctuations of the lattice displacements can be directly linked
to the photon number quantum fluctuations of the scattered probe pulses. Our
methodology, that combines non-linear spectroscopic techniques with a quantum
description of the electromagnetic fields, is benchmarked on the measurement of
phonon squeezing in α-quartz15.

This Chapter is organized as follows,

• The impulsive excitation of Raman active vibrational modes in a crystal of
quartz is described and some preliminary standard pump-probe experiments
are reported (Section 4.2).

• The shot-noise limited pump-probe experiments are described and the ex-
perimental results about the photon number statistics to uncover the atomic
fluctuations are shown (Section 4.3).

• The comparison with the fully quantum model presented in Section 2.7 is
reported (Section 4.4).

4.2 Stimulated Raman scattering on α-quartz
Quartz can be considered as a benchmark material for the dynamic excitation of
phonons via stimulated Raman scattering and it represents the ideal playground
to test our approach to study atomic quantum fluctuations. Quartz undergoes a
phase change at about 848 K. The low-temperature phase, with trigonal symmetry,
is called α-quartz while the high-temperature phase, with hexagonal symmetry,
β-quartz. Here we investigate the case of α-quartz. The latter has a trigonal
crystal structure with D3 symmetry and N = 9 atoms per unit cell (see Fig 4.1
(a)). Group-theory calculations show that the 3 ×N = 27 degrees of freedom are
divided into 2 acoustic vibrations of A2+E symmetry and 16 optical vibrations of
4A1 + 4A2 + 8E symmetry17. In particular, the quartz Raman-active vibrational
modes are are 4 totally symmetric modes of species A1, and 8 doubly degenerate

∗The term coherent in this context indicates a the temporal periodicity of the material
response but does not imply the photo-excited vibrational mode to be in a coherent state
of the quantum harmonic oscillator.
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4.2. Stimulated Raman scattering on α-quartz

Figure 4.1: Atomic arrangement in quartz. (a) Crystal structure of α-quartz 16 and (b) its
projection on the plane perpendicular to the c-axis.

modes of species E. In Fig. 4.2 the Raman spectra of alpha-quartz are reported17.

Impulsive stimulated Raman scattering (ISRS) is a non resonant excitation
mechanism of lattice vibrations in transparent materials by ultrashort laser pulses.
As reported in Section 2.6, it is a four-wave mixing process due to third order polar-
ization effects. The Cartesian components of the third order non-linear polarization
are given by

P
(3)
i (ω) =

∑
jkl

χ
(3)
ijkl [E1(ω1)]j [E2(ω2)]k [E3(ω3)]l, (4.1)

where χ(3)
ijkl is the susceptibility tensor, E1 is the probe field and E2 and E3 are the

pump fields. In conventional two pulses pump and probe experiments, the fields
E2(ω2) and E3(ω3) are two different frequency components of the pump laser pulse.
In particular, all photon pairs such that ω3 − ω2 = Ω, where Ω is the frequency of
the Raman active vibrational mode, contribute to ISRS18. The interaction of the
probe field E1(ω1) with the photo-excited material induces an emitted field, EEF(ω)
which depends on the pump-probe delay and carries information about the specific
Raman mode excited in the crystal. In our experiments, the sample is a 1mm
thick α-quartz, oriented in order to have the principal symmetry axis parallel to
the probe propagation direction. A scheme of the chosen experimental geometry is
shown in Fig 4.3.
The probe propagates parallel to the c-axis of the crystal which corresponds to z-
axis in our coordinates system. In this configuration, the only accessible vibrational
modes are those of a system with C3 rotational symmetry (with the c-axis as
principal axis) such as a triatomic molecule with 3 atoms at the corner of an
equilateral triangle. The normal vibrational modes for such kind of system are
illustrated in Fig. 4.4. They consist of the A1 breathing mode and two degenerate
E-symmetry modes. The excited phonon state is detected via the scattering of
the probe pulse which arrives on the sample with time delay τ with respect to the
pump. The transmitted light undergoes a polarization selection through a polarizer
positioned after the sample.

The pump direction is almost collinear with the probe one. Assuming that all
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Figure 4.2: Room-temperature Raman spectra of α-quartz from 17. Polarization assign-
ments (L =longitudinal, T =transverse). (a) A1 modes. (b) E modes. The arrows indicate
intense A1 modes being transmitted due to imperfect alignment.

Figure 4.3: Experimental geometry for impulsive stimulated Raman scattering on α-
quartz. The sample is depicted at the origin of the coordinates. The polarization configuration
of pump, probe and emitted field is indicated on top-left. After the interaction with the sample
the probe undergoes a polarization selection in order to detect the emitted field only.
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Figure 4.4: Normal mode vibrations for a system with C3 symmetry. A symmetric A1

breathing vibrational mode and a doubly-degenerate E-symmetry vibrational mode 19.

the involved optical fields propagate along the z direction, we can limit our analysis
to the xy plane. In this case the quartz Raman tensors assume the form20

A =

(
a 0

0 a

)
ET =

(
c 0

0 −c

)
EL =

(
0 −c
−c 0

)
. (4.2)

Following the notation in21, the susceptibility tensor can be expressed as:

χ
(3)
ijkl = Aij Akl + ETij E

T
kl + ELij E

L
kl, (4.3)

where each index can assume the values 1, 2 associated to the direction x and y

respectively. Thus, the susceptibility tensor χ(3)
ijkl gives rise to a 4× 4 block-matrix

(
a2 + c2 0

0 a2 − c2

) (
0 c2

c2 0

)
(
0 c2

c2 0

) (
a2 − c2 0

0 a2 + c2

)
 . (4.4)

The first two indexes refer to the outer matrix elements and describe the polar-
ization components of the emitted field (i index) and of the probe field (j index),
while the last two indexes (k and l) indicate the inner matrix elements and describe
the polarization components of the two pump fields.

In particular, we are interested in selecting the excitation of an E symmetry
Raman mode. For this purpose we use a probe linearly polarized along x and we
perform a polarization selection after the sample in order to detect the emitted
field component orthogonal to the probe (along y). This polarization configuration
allows the selection of the susceptibility matrix elements χ(3)

21kl associated with the
involved E phononic mode. Notice that such elements vanish when k = l that is
when the two pump fields are both polarized along x or along y. Thus, in order to
activate the process, we need the two pump fields (two frequency components of
the same laser pulse) to have orthogonal polarizations. This is possible when the
pump pulse is linearly polarized along a direction in between x and y. In particular,
the efficiency of the ISRS is maximal when the pump polarization is at 45 ◦ with
respect to the x axis. This is indeed the configuration we chose and consequently the
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matrix elements involved in our experiment are χ(3)
21kl(k ̸=l) = c2, getting an emitted

field almost collinear with the unscattered probe photons and with polarization
orthogonal to the probe one. We configure a polarizer after the sample in order to
transmit the emitted field polarization only. The global polarization configuration
is sketched in Fig 4.3.

Ideally, only the emitted field is selected after the polarizer. This is called
homodyne configuration and the detected signal will be in the form,

Isignal ∝ |EEF|2. (4.5)

Note that a full extinction of the unscattered probe is experimentally not achiev-
able (polarizer extinction rate 105). The residual probe acts as a local oscillator
amplifying the emitted field within the total signal22. The configuration in which
the emitted field is amplified by an other optical field, called local oscillator, is
dubbed heterodyne configuration. In this case the total intensity detected by the
photodiode is,

Isignal ∝ |EEF + ELO|2 ∝ |EEF|2 + |ELO|2 + ELOE
∗
EF + E∗

LOELO . (4.6)

4.2.1 Preliminary standard pump-probe experiments
The preliminary experimental results adopting standard pump-probe optical spec-
troscopy are now presented. Such preliminary data have been recorded at the LOA
laboratory in Paleseau. The pump and probe beams are generated by pulsed laser
source with 1 kHz repetition rate, 800nm central wavelength and almost 150 fs
pulse duration. The spot radius respectively used for pump and probe is 60µm
and 30µm. Both the pump and the probe are focused on the sample by a lens
and after the interaction a second lens collimates the transmitted beam. The pulse
passes through a polarizer in order to select the emitted field and finally reaches
the photodiode. The output of the photodiode is sent to a lock-in amplifier, which
amplify a specific frequency component of the signal integrated over different sub-
sequent pulses. In standard optical pump-probe experiments the signal is indeed
modulated by using a mechanical chopper generally in the pump path. The fre-
quency at which the chopper modulates the pump is sent in input to the lock in
amplifiers in order to amplify the appropriate signal. The result of the experiment
is the intensity of the transmitted probe as a function of the delay between the
pump and probe. It is important to note that in this configuration the response
is integrated over a large number of pulses determined by the lock-in acquisition
time. This configuration allows for a very precise measurement of the mean pho-
ton number transmitted by the sample as a function of the pump-probe delay, but
doesn’t allow for the measurements of intrinsic noise due to pulse to pulse intensity
fluctuation. A scheme of the setup is shown in Fig 4.5.

A set of measurements for different pump fluences is shown in Fig 4.6.
The results have been obtained with the polarizer, shown in Fig 4.3, set in order to
minimize the transmission of the probe in absence of the pump. This should ideally
correspond to the homodyne configuration. The probe energy per pulse is fixed at
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Figure 4.5: Standard pump-probe optical experiments setup. The lock-in acquisition
configuration in sketched.

Figure 4.6: Standard pump-probe experimental results. Measurement on α-quartz for
different values of the pump fluence.
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50nJ which corresponds to ∼ 1mJ/cm2 fluence (probe spot radius ∼ 30µm). The
oscillating response has been fit with a dumped-sin function A sin (ωt+ ϕ) e−t/τ .
The best fit amplitude A parameter is plotted in Fig 4.7 as a function of the pump
fluence.

Figure 4.7: Oscillation amplitude vs pump fluence. Amplitude of the oscillating signal
∆T/T as a function of the pump fluence.

As it is expected from the theory, the results show the linear dependence of the
amplitude of the emitted field vs the intensity of the pump. The Fourier transform
of the oscillating part of the data is shown in Fig. 4.8. It confirms the excitation
of the E-symmetry mode with frequency νE = 128 cm−1 = 3.84THz.

Figure 4.8: Fourier transform of the standard pump-probe signal. FT of the oscillating
part of the measurements showed in Fig. 4.6

Concluding, the presented data have been obtained using standard pump-probe
optical experiments and served as characterization measurements to design the
experimental layout which allows to excite E-symmetry Raman optical modes in
α-quartz at room temperature and get an emitted field with polarization orthogonal
to the probe one.

In this as in all standard apparatuses we have access only to the mean number
of photons of the emitted field, in the following we present a novel experimen-
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tal approach which allows us to measure the complete photon number statistical
distribution.

4.3 Shot-noise limited pump-probe experiments
We propose here a new approach to time domain studies. The experimental layout
is similar to standard pump and probe experiments. The sample is excited by
an ultrashort pump pulse and the time evolution of the response is measured by
means of a second much weaker probe pulse, that interacts with the photo-excited
material at a delay time τ . Both pump and probe come from the same laser source,
a 250 kHz mode-locked amplified Ti:Sapphire system. The pulse duration is 80 fs,
the fractional change in the probe transmission due to the pump is of the order of
5% for a pump fluence of 25mJ cm−2.

The unique characteristics of our setup are:

• i) unlike standard experiments, where the response is integrated over many
repeated measurements, our system can measure individual pulses;

• ii) the apparatus operates in low noise conditions allowing for the measure-
ment of intrinsic photon number quantum fluctuations.

In detail, we adopt a differential acquisition scheme where each probe pulse is
referenced with a second pulse which has not interacted with the sample. A sketch
of this configuration is shown in Fig 4.9.

Figure 4.9: Scheme of the experimental setup. Each single pulse transmitted from the
sample is detected using a single pulse differential acquisition system and referenced with a
second pulse which has not interacted with the sample.

For each measurement the differential voltage is digitized and integrated, giving
the transmittance ∆T i for the ith measurement (ith transmitted pulse).

The acquisition system is made of a balanced amplified differential photode-
tector and a fast digitizer (Spectrum M3i.2132-exp) with sampling rate 1 GS s−1.
The differential photodetector, described in details in Appendix A, consists of two
Hamamatsu S3883 Silicon PIN photodiodes with 0.94 quantum efficiency connected
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in reverse bias and followed by a low-noise charge amplifier. The photo-currents
generated by the two photodiodes in response to a single optical pulse impinging
on them (transmitted probe pulse on the first photodiode and reference pulse on
the second photodiode) are physically subtracted and the resulting charge is am-
plified using CAEN custom designed electronic components. Note that we use here
the convention of expressing the voltage acquired for every single differential pulse
acquisition, ∆Ti , as the sum of the voltages digitized for 500 points at 1 GS s−1.
For reference, the digitized measurement of a pulse with a 1 V voltage peak cor-
responds to a value of 300 V. The shot-noise characterization of the detector is
reported in Appendix A. We chose a probe power within the shot-noise linearity
interval (2.5 mW, 0.2 mJ cm−2 on the sample; note that this corresponds roughly
to 106 photons per pulse scattered in cross polarization on the detector). This pro-
vides a reference for the shot noise value of about 1 V2 which is used to benchmark
the noise in time domain experiments and avoid additional noise sources.
The detector shot-noise linearity test (Fig A.5) demonstrates that we are sensible
to quantum fluctuations of the photon number. In particular, the shot-to-electronic
noise at the maximum probe intensity in the linear regime is approximately 10 dB.

Going back to the actual experiment, for every pump and probe delay τ , we
repeat this single pulse measurements for N = 4000 consecutive pulses. Fig. 5.1
(a) gives a useful visual representation of the obtained data. For one pump and
probe scan l the normalized histogram of N = 4000 acquired pulses for each delay
time is shown. Each histogram represents the distribution of the measured ∆T i
for a specific delay time τ . For a clearer visualization of the physically meaningful
information in the time evolution of the statistical distribution, Fig. 5.1 (b) reports
the histogram centered at zero.
The pump and probe scan is repeated several times and each lth scan provides
∆T (l)

mean = 1
N

∑
i∆T i, and ∆T (l)

var =
1
N

∑
i [∆T i −∆T (l)

mean]
2. Finally the averages

of these two quantities are calculated over allM scans as ∆Tmean = 1
M

∑M
l=1 ∆T

(l)
mean

and ∆T var =
1
M

∑M
l=1 ∆T

(l)
var.

The time domain response, averaged over M = 10 scans, is shown in Fig. 5.2 (a)
for a representative pump fluence of 14mJ cm−2 (a pump fluence dependent study
is reported later). The blue curve depicts the time evolution of the mean value of
the transmittance ∆Tmean, whereas the red curve shows the time evolution of its
variance ∆T var. The Fourier transform of the mean (Fig. 5.2 (c), blue curve) has
a single peak which is ascribed to the E-symmetry quartz vibrational mode with
frequency Ω = 128 cm−1 = 3.84THz17. The same frequency component is observed
in the Fourier transform of the variance (Fig. 5.2 (c), red curve). In addition, a
second peak at twice the phonon frequency appears exclusively in the variance. A
wavelet analysis of the variance oscillations allows for a time domain study of the
two frequency components (Fig. 5.2 (b)): one notices that, while the fundamental
frequency survives for roughly 7ps, the 2Ω component vanishes within the first
2ps. The different lifetimes between the Ω and 2Ω components of the variance are
seen also by a close inspection of the raw data distribution plotted in Fig. 5.2 (b).

Note that the 2Ω in our data is visible only in experimental conditions where
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Figure 4.10: Time domain transmittance histogram plot. ∆T i distribution as a function
of pump-probe delay for a representative scan l. (a) For each time delay a color plot of the
normalized histogram of N = 4000 acquired pulses is shown. (b) Histogram plot of ∆T i

centered at zero. The data shown are obtained with the largest pump fluence used in the
experiments (25mJ cm−2).
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the noise is dominated by the quantum uncertainty, a situation which is known as
shot-noise regime. In such conditions ∆T var measures the quantum variance of the
scattered probe photon number. In order to assure the absence of classical noise
contribution, a full characterization of the classical noise sources has been done.
The latter is reported in the Appendix.

It should further be stressed that in experimental conditions where the noise is
larger and dominated by classical sources the 2Ω contribution to the noise becomes
unmeasurable.

The presence of the 2Ω frequency component is suggestive of phonon squeezing,
as it has been indicated by Raman tensor models13,23,24, presented in Section
2.6.2. Nevertheless, the experimental evidences up to date lack a direct comparison
with a reliable quantum noise reference12,25–27. Hence, in these experiments the
observation of the 2Ω frequency in the optical noise is considered as an indication of
phonon squeezing, but not an unequivocal proof. In details, a 2Ω oscillating optical
noise was reported in12, but later ascribed to an artifact28 due to the experimental
amplification process. In particular, it has been demonstrated that amplification
artifacts become more relevant when, using a lock-in amplifier based acquisition,
the time constant of the lock-in increases with respect to the time between steps in
the pump-probe delay. This gives rise to maxima in the noise where the derivative
of the mean signal is maximal28. Here we use a pump power density which is almost
3 orders of magnitude higher than in12,28. In addition, we observe a 2Ω frequency
component in the optical variance which exhibits maxima in correspondence with
the minima of the derivative of the mean signal, hence ruling out possible artifacts
of the kind described in28.

4.4 Comparison with the model
In order to predict how the fluctuations of the atomic positions in a lattice can
be mapped onto the photon number quantum fluctuations of the probe field, we
develop a novel theoretical approach to time domain studies which treats quantum
mechanically both the material and the optical fields involved in the non-linear
processes. Several semiclassical models describe the possibility of generating ”clas-
sical” (coherent states) and non classical vibrational states by photo-excitation.
In particular, for transparent materials like quartz, the most commonly used ap-
proach is to adopt Raman tensor models where the interaction between photons and
phonons is not mediated by dipole allowed electronic transitions. In this condition,
interactions linear in the phonon operators allow for the generation of coherent vi-
brational states, while high order interactions are required for the generation of non
classical squeezed states11,23,24. In materials with allowed dipole transitions, as in
presence of excitons, different models based on electron-phonon coupling Hamil-
tonians have been proposed. In those models it has been shown that squeezed
phonon states can result only by successive excitations with a pair of pulses14,29.
All these models mainly adopt semiclassical approaches where the optical fields are
described classically22, and therefore are unable to reproduce the quantum propri-
eties of the probe optical field that can be measured with the shot-noise limited
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pump and probe setup presented here. The key aspect of our approach, allowing us
to bridge this gap, is to study both generation and detection of phonon states using
a fully quantum formalism through an effective photon-phonon interaction, which
is descriptive of experiments in transparent systems, such as α-quartz. The basic
tool is a quantum Hamiltonian able to describe both pump and probe processes.
Being linear and bilinear in the photon and phonon operators, this Hamiltonian ac-
counts for the possible generation of coherent and squeezed phonon states through
the pump process. In particular, it models also the detection of the photo-excited
phonon states, describing the probing process by a fully quantum approach, pro-
viding in this way a direct comparison with the experimentally measured photon
number quantum fluctuations of the scattered probe pulses30.

This fully quantum approach has been reported in detail in Section 2.7. Here
we will report only the main ingredients of the model in order to obtain guide the
reader in the comparison with the experimental results.

The first step is to adopt a quantized description for the mode-locked pulsed
laser fields (Section 2.4). Each mode of frequency ωj = ω0 + jδ, where ω0 is the
pulse central frequency, δ is a constant depending on the laser repetition rate and j
is an integer, is quantized and described by single mode creation and annihilation
operators â†j and âj . In this framework ISRS can be modelled by means of an ef-
fective impulsive interaction Hamiltonian which is descriptive of both the pumping
and the probing processes. In both processes two optical fields with orthogonal
polarizations (denoted with subscript x or y) are involved: two pump fields in the
pumping process and the probe and the emitted field in the probing process. The
interaction Hamiltonian has the form

H =
J∑

j,j′=−J

[
g1j,j′ µd

(
â†xj âyj′ b̂

† + âxj â
†
yj′ b̂

)
+ g2j,j′ µs

(
â†xj âyj′ (b̂

†)2 + âxj â
†
yj′ b̂

2
) ]

, (4.7)

where 2J + 1 is the total number of modes within a mode-locked optical pulse,
b̂ and b̂† are the phonon annihilation and creation operators, µd and µs are cou-
pling constants and the functions gℓj,j′ take into account the relations between the
frequencies of the involved fields,

gℓj,j′ =

{
1 if j′ = j + ℓΩ

δ

0 elsewhere, ℓ = 1, 2 ,

with Ω the phonon frequency. A complete interaction Hamiltonian should contain
also second order processes involving phonons with opposite momenta. However,
since the probe detects only the k ≃ 0 optical transition, we can make use of an
effective Hamiltonian that accounts only for this kind of process.

The whole theoretical description of the experiment can be rationalized in a
four step process as sketched in Fig. 4.12: (i) generation of phonon states in the
pumping process, (ii) evolution of the produced vibrational state, (iii) probing
process and (iv) read out of the emitted photon observables.
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4.4. Comparison with the model

Figure 4.12: Sketch of the four steps effective theoretical model. The steps are indicated
with roman numbers. The details of the theory for each step are reported in the text. The
photon and phonon system are denoted with I and II, respectively.

• (i) Initially, the sample is in thermal equilibrium and it is described by
a thermal phonon state ρ̂β , at inverse temperature β. The laser pump
pulse is described by a multimode coherent state of high intensity |ν̄⟩ =
|ν−J ⟩ ⊗ · · · ⊗ |νJ ⟩, where |νj⟩ are single mode coherent states associated
with all the frequency components within the pulse. Each |νj⟩ is an eigen-
state of the annihilation operator âj of photons in the mode of frequency
ωj , âj |νj⟩ = νj |νj⟩. We indicate with ν̄ the vector whose components
are the amplitudes νj . The equilibrium (pre-pump) photon-phonon state
ρ̂ = |ν̄⟩ ⟨ν̄| ⊗ ρ̂β is instantaneously transformed into ρ̂ν̄ = U ρ̂U† by means
of the unitary operator U = exp{−iH}. Since the pumping operator U acts
on a high intensity photon coherent state ν̄, we can use the mean field ap-
proximation for the photon degrees of freedom and replace â with ν and â†

with ν∗ for both pump modes involved in equation (4.7), thus replacing U
by

Uν̄ = exp
{
−i

J∑
j,j′=−J

[
g1j,j′ µd

(
ν∗xj νyj′ b̂

† + νxj ν
∗
yj′ b̂

)
+ g2j,j′ µs

(
ν∗xj νyj′ (b̂

†)2 + νxj ν
∗
yj′ b̂

2
)]}

. (4.8)

The evolution operator generates coherent and squeezed phonon states, re-
spectively, through the linear and quadratic terms in the phonon operators
b̂ and b̂†. The initial state ρ̂ν̄ contains information about both photons and
phonons. Tracing over the photon degrees of freedom, the resulting state ρ̂ν̄II
describes the excited phonons brought out of equilibrium by the impulsive
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pump process.

• (ii) The time evolution of the excited phonons is described by using an open
quantum systems approach, namely by means of a suitable master equation
of Lindblad form31,32 that takes into account, besides the quantum unitary
evolution, also the dissipative and noisy effects due to the interaction with a
thermal environment.

• (iii) The incoming probe pulses are in the multimode coherent state |ᾱ⟩.
The probing process at time τ is described by the same impulsive unitary
operator U used for the pump. However, in this case we can apply the mean
field approximation only to the probe photon operators with x polarization,
which correspond to a much more intense field than those with y polarization.
Moreover, since the probe field is much weaker than the pump field, the
quadratic terms in the interaction Hamiltonian in equation (4.7) can now be
neglected. The resulting unitary operator is

Uᾱ′ = exp{−i∥ᾱ′∥
(
Â(ᾱ′) b̂† + Â†(ᾱ′) b̂

)
} , (4.9)

where Â(ᾱ′) is the collective photon annihilation operator,

Â(ᾱ′) =
1

∥ᾱ′∥

J∑
j=−J

(α′
j)

∗ âyj ,

such that
[
Â(ᾱ′), Â†(ᾱ′)

]
= 1, and ᾱ′ is the vector with components

α′
j = µd

J∑
j′=−J

g1j′,j αxj′ .

The unitary operator in equation (4.9) acts on a state of the form |ᾱ⟩ ⟨ᾱ| ⊗
ρ̂ν̄II(τ). The information about the phonons are extracted by measuring the
emitted field photons. In particular, the emitted photon state ρ̂I(τ) is ob-
tained by tracing away the phonon degrees of freedom.

• (iv) The possible quantum features of the phonon state, e.g. squeezing, can
be read off as they are imprinted into ρ̂I(τ). In particular for each time delay
τ we can compute the quantities

⟨N̂y⟩τ = ⟨Â†(ᾱ′)Â(ᾱ′)⟩τ

and
∆2
τ N̂y = ⟨N̂2

y ⟩τ − ⟨N̂y⟩
2

τ ,

which correspond to the observables measured in the experiment, that are
the mean value and the variance of the number of photons of the emitted
field.

94



4.4. Comparison with the model

In particular, one uses that

U†
ᾱ′ N̂y Uᾱ′ = A†(ᾱ′)Â(ᾱ′) cos2(∥ᾱ′∥) + b̂†b̂ sin2(∥ᾱ′∥) +

+
i

2
sin(2∥ᾱ′∥)

(
A(ᾱ′)b̂† +A†(ᾱ′)b̂

)
, (4.10)

where, given the experimental conditions effectively described by the model,
it is plausible to set all amplitudes αxj = αx and αyj = αy = |αy|exp(iθy),
in which case

α′
j = µdαx = |µdαx|eiθ

′
, and ∥ᾱ′∥ =

√
K|µdαx| , (4.11)

where K = 2J+1 is the total number of modes within a mode-locked optical
pulse.
By denoting with Iy = K|αy|2 the pulse intensity for the y polarization and
using that

Â(ᾱ′) |ᾱy⟩ =
√
Iye

−i(θ′−θy) |ᾱy⟩ , (4.12)

one explicitly computes:

⟨N̂y⟩τ = Iy cos
2(∥ᾱ′∥) + sin2(∥ᾱ′∥) ⟨b̂†b̂⟩τ

+
i

2

√
Iy sin(2∥ᾱ′∥)

(
e−i(θ

′−θy) ⟨b̂†⟩τ − ei(θ
′−θy) ⟨b̂⟩τ

)
,(4.13)

where ⟨Ô⟩τ = TrII

(
ρ̂ν̄II(τ) Ô

)
is the expectation value of any phonon opera-

tor Ô with respect to the phonon state ρ̂ν̄II(τ).

Despite its complicated expression, we report also the number variance ∆2
τ N̂y

predicted by the model, as ⟨N̂y⟩τ and ∆2
τ N̂y are the quantities compared with

the experimental data:

∆2
τ N̂y = Iy cos

4(∥ᾱ′∥) + sin4(∥ᾱ′∥)
(
⟨(b̂†b̂)2⟩τ − ⟨b̂†b̂⟩

2

τ

)
+ sin2(∥ᾱ′∥) cos2(∥ᾱ′∥) ⟨b̂†b̂⟩τ
− Iy sin

2(∥ᾱ′∥) cos2(∥ᾱ′∥)
[
e−2i(θ′−θy)

(
⟨(b̂†)2⟩τ − ⟨b̂†⟩

2

τ

)
+ e2i(θ

′−θy)
(
⟨b̂2⟩τ − ⟨b̂⟩

2

τ

)]
+ Iy sin

2(∥ᾱ′∥) cos2(∥ᾱ′∥)
(
2 ⟨b̂†b̂⟩τ + 1− 2 ⟨b̂†⟩τ ⟨b̂⟩τ

)
+ i

√
Iy sin(∥ᾱ′∥) cos3(∥ᾱ′∥)

(
e−i(θ

′−θy) ⟨b̂†⟩τ − ei(θ
′−θy) ⟨b̂⟩τ

)
+ i

√
Iy sin3(∥ᾱ′∥) cos(∥ᾱ′∥)

[
2e−i(θ

′−θy)
(
⟨(b̂†)2b̂⟩τ − ⟨b̂†b̂⟩τ ⟨b̂

†⟩τ

+
1

2
⟨b̂†⟩τ

)
− 2ei(θ

′−θy)
(
⟨b̂†b̂2⟩τ − ⟨b̂†b̂⟩τ ⟨b̂⟩τ +

1

2
⟨b̂⟩τ

)]
.

(4.14)
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The theoretical results for µs = 0 and µs ̸= 0 are shown in Fig. 4.13 together
with the corresponding wavelet analysis for the variance of the number of emitted
photons. The calculations reproduce the experimental results in Fig. 5.2, revealing
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Figure 4.13: Model predictions. Theoretical calculations of the mean value and the variance
of the number of photons of the emitted field. The left axis is related to the mean while the
right axis is related to the variance. Comparison between the case with squeezing coupling
constant µs = 0 (a) and µs ̸= 0 (b). A wavelet analysis (Morlet power spectrum) of the
variance is reported in the inset for both cases.

a 2Ω frequency component in the variance, only when the pump creates squeezed
phonon states (µs ̸= 0). In particular, for µs ̸= 0, the model reproduces the
different lifetimes between the Ω and 2Ω components in the variance observed in
the experiments.

The proposed effective interaction model is further validated by a pump fluence
dependence study. Fig. 4.14 shows the amplitude of the 2Ω peak in the Fourier
transform of the variance, ∆T var, as a function of the pump fluence. The functional
behaviour obtained from the model predictions (continuous line in Fig. 4.14) agrees
with the experimental data only in presence of a pump-induced squeezing of the
phonon mode (µs ̸= 0).

One can observe that in equation (4.14) the phononic correlation functions
involving b̂ and b̂† contribute with oscillations at frequency Ω while those involving
b̂2 and b̂†2 give rise to 2Ω oscillations. Collecting the corresponding coefficients one
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finds the following amplitude for the 2Ω oscillating components:

|A2Ω(τ)| =
Iy(1 + 2n′)

8
e−λτ sin2(2∥ᾱ′∥) sinh(2r) , (4.15)

where the amplitude of the squeezing parameter r = 2|c2| = 2K|µs||ν|2 is obtained
from (2.80) and (2.76) by putting all pump amplitudes equal to ν. Moreover we
take λ to comply with the observed oscillation time-scale and the time τ > 0 such
that λτ ≪ 1. In particular, in Fig. 4.14 we show a fit of the experimental results
for different pump intensities with the functional behaviour of A2Ω predicted by
the model in equation (4.15). We find an optimal value of the coupling parameter
µs for which the model agrees with the experiments. We used such a value for
computing the amplitude r of the squeezing parameter (defined in equation (2.76))
for all the experimental pump fluences. In particular |ν|2 is the number of photons
per unit cell per pulse. We then computed the uncertainties in the position and
momentum phonon operators as in equation (2.82). The results reported in the
inset of Fig. 4.14 unveil photo-excited thermal squeezed vibrational states. For
high pump fluences the uncertainty on one of the phonon quadratures falls indeed
below the thermal limit at the equilibrium, indicating the squeezed nature of the
photo-excited thermal vibrational states.

The experimental amplitude of the Ω peak in the Fourier Transform of the
mean, ∆Tmean, and of the variance, ∆Tvar, as a function of the pump fluence are
shown in Fig 4.15.
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Figure 4.15: Amplitude of the Ω peak of the Fourier transform. Fourier transform Ω
peak of the time dependent mean, ∆Tmean, (blue points) and of the time dependent variance,
∆Tvar, (red points). The dashed lines are a guide for the eyes. The error bars indicate the
standard deviation over 10 scans.

For completeness we also report the explicit time evolution of ∆2
τ N̂y in terms

of both the amplitude A2Ω of the 2Ω frequency component and the amplitude AΩ

of the fundamental frequency component:

∆2
τ N̂y = A0(τ) +AΩ(τ)e

iΩτ +A∗
Ω(τ)e

−iΩτ +A2Ω(τ)e
2iΩτ +A∗

2Ω(τ)e
−2iΩτ , (4.16)

where the explicit expression for |AΩ(τ)| is:

|AΩ(τ)| =
1

2

√
Iy |z| e−λτ/2

×
∣∣2e−λτ sin(2∥ᾱ′∥) sin2(∥ᾱ′∥)

[
(1 + n′ + n− (1 + 2n′) cosh(2r)) eiθr cosh(r)

+ (n′ − n+ (1 + 2n′) cosh(2r)) e2iθz sinh(r)
]

− sin(2∥ᾱ′∥)
(
1 + 2n sin2(∥ᾱ′∥)

) (
eiθr cosh(r)− e2iθz sinh(r)

)∣∣ ,
(4.17)

where |z| is the corresponding photo-exited displacement in the phonon and θz its
phase.

We stress that, if the pump pulse does not generate squeezed phonons, vanishing
squeezing parameter (r → 0), the amplitudes of the two frequency components
become,

|AΩ(τ)| =
1

2

√
Iy z e

−λτ/2 |sin(2∥ᾱ′∥)

+ 2 sin(2∥ᾱ′∥) sin2(∥ᾱ′∥)
(
n− (n− n′)e−λτ

)∣∣ , (4.18)

|A2Ω(τ)| = 0 , (4.19)
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indicating the absence of the 2Ω frequency component in the variance in absence
of phonon squeezing.

From equations (4.17) and (4.15) one can notice that the damping constant λ,
characterizing the dissipative phonon time evolution between the excitation and the
probing process, contributes differently to A2Ω and to AΩ, giving rise to different
decay times for the two components and reproducing the experimental results.

4.5 Conclusions
Our novel experimental approach allows for the direct measurement of the photon
number quantum fluctuations of the probing light in the shot-noise regime and
our fully quantum model for time domain experiments maps the phonon quantum
fluctuations into such photon number quantum fluctuations, thereby providing
an absolute reference for the vibrational quantum noise. The comparison of the
predicted noise with the experimental photon number quantum uncertainty, mea-
sured in shot-noise conditions, allows us to unveil non classical vibrational states
produced by photo-excitation. A future extension of the model taking into account
the role of the electronic degrees of freedom would allow to extend such a study
from transparent materials to complex absorbing systems.

In conclusion, a Raman active phonon mode has been impulsively excited via
ISRS in a α-quartz by means of a pump and probe transmittance experiment with
single pulse differential acquisition in noise conditions limited by intrinsic probe
photon number fluctuations. A fully quantum mechanical effective model where
both phonons generation and detection are studied through the same effective cou-
pling Hamiltonian establishes a direct connection between the measured photon
number quantum fluctuations of the emitted probe field and the fluctuations of
the atomic positions in a real material. Our novel approach is used here to re-
veal distinctive quantum properties of vibrational states in matter, in particular
the squeezed nature of photo-excited phonon states in α-quartz. Finally, we stress
that our innovative approach paves the way for future studies addressing the role
of unconventional vibrational states in complex systems33,34, and the thermody-
namics of vibrational states35,36 possibly in the quantum regime.
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5
Non-equilibrium quantum state

tomography

Studying the quantum state of collective excitations, like lattice atomic vibrations,
in solid state physics is a fundamental tool to understand the microscopic origin
of macroscopic material proprieties. In the recent years the development of laser
cooling technologies allowed to control, manipulate and measure1 non-classical
quantum states associated with the lowest energy vibrations of few single atoms
artificially trapped. However, even when a large number of atoms, of the order
of 1023, are arranged in a real crystal, they can still manifest their quantum na-
ture. Quantum fluctuations of collective atomic vibrations in crystals play indeed
a leading role in the onset of many intriguing material proprieties2–8. We pro-
pose an experimental method to access non-classical phonon quantum states in
crystals through the measurement of the photon quantum state of probing light9.
The method, that we called “pump probe quantum state tomography”, allows to
study the evolution on the probing photon quantum state after the interaction
with the photo-excited material10. In this Chapter the preliminary results of this
experimental approach are reported.

5.1 Introduction
Optical homodyne tomography is a method extensively used in quantum optics
to reconstruct quantum states of light11. Here we exploit such a technique in
the framework of pump-probe spectroscopy for the study of ultra-fast dynamics
of phonons in condensed matter. In the previous Chapter we demonstrated that
the measurement of the quantum statistical distribution of the number of probing
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photons can reveal the squeezed nature of the photo-excited phonons in transparent
materials.

Here we extend such a study, adopting an experimental apparatus which com-
bines quantum optics techniques with ultrafast solid state spectroscopy. In this
case we have access not only to the photon number statistics, but also to the sta-
tistical distribution of any observable of the scattered light, since a fully optical
quantum state reconstruction is performed.

The conceptual step to do is to connect the single pulse acquisition pump-
probe experiment (Section 4.3) is series with the balanced homodyne detection
experiment (Section 3.2) for optical quantum state tomography. Such a conceptual
passage easily turns into an “hybrid” experimental approach, that we call pump-
probe quantum state tomography. A scheme of this experimental combination is
shown in Fig 5.1.

Figure 5.1: Pump probe quantum state tomography setup. The combination between
the experimental schemes in (a) (single pulse acquisition pump-probe experiments) and in (b)
(Mach-Zehnder interferometer for balance homodyne detection experiments) gives rise to the
experimental set up in (c) for the pump-probe quantum state tomography.

The experiment can be divided in two consecutive parts.
(i) The sample under investigation is driven out of the equilibrium by an intense

laser pulse, the pump. At a precise delay time after the perturbation a second laser
pulse, the probe, interacts with the material and is scattered carrying information
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about the photo-excited system.
(ii) Each transmitted probe pulse, that here we call signal pulse, is made in-

terfere with a local oscillator (LO) pulse through a 50/50 beam-splitter. Finally
the two beam-splitter output pulses are acquired with two photodiodes and the
difference between the two generated photo-voltages, homodyne photo-voltage VΦ,
is measured. This acquisition can be repeated for different phase values Φ, which
represents the phase difference between the signal and the local oscillator. The
second part of the experiment constitutes the balanced homodyne detection part.
In particular, it can be proven that, when the LO is significantly more intense than
the signal, the homodyne photo-voltage VΦ is proportional to the signal quadra-
ture (Section 3.2). Denoting by Â and Â† the photonic annihilation and creation
operators associated with the signal, the quadrature operator is defined as,

x̂Φ =
Âe−iΦ + Â†eiΦ√

2
, (5.1)

where Φ is the relative phase between the signal and the LO. The passage from
the measured VΦ to the field quadratures xΦ happens through a calibration with
respect to the vacuum state12. The continuum set of quadratures with Φ ∈ [0, π]
provides a complete characterization of the signal quantum state. This means
that by processing the results of repeated VΦ measurements for different Φ ∈ [0, π]
through appropriate tomographic technique the quantum state of the signal can be
retrieved.

With this approach we can really monitor the evolution of the signal quantum
state after the interaction with the material at different temporal distances from
the pump perturbation.

Notice that in the experiment presented in the previous Chapter, sketched in
Fig 5.1 (a), at a given pump-probe delay time, several consecutive probe transmit-
ted pulses are singulary acquired. In this case, Fig 5.1 (c), they are not only simply
acquired, but each pulse undergoes a balanced homodyne detection measurement.

Here we test this novel experimental approach considering a prototype trans-
parent material, quartz.

The Chapter is organized as follows,

• The experiment is described in detail and the raw homodyne data are pre-
sented (Section 5.2).

• The analysis of the raw homodyne data which allows to pass from the mea-
sured photovoltage VΦ to the field quadratures xΦ in equation (5.1) is re-
ported (Section 5.3).

• The procedure that from the field quadrature data allows to retrieve the
quantum state of the scattered probing light as a function of time is presented
and the results are shown (Section 5.4).

• The preliminary comparison with the model predictions is reported (Section
5.5).
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5.2 Experiment
The experiment has been performed on 1 mm thick α-quartz sample at room tem-
perature. Both pump and probe pulses are generated from the same pulsed laser
source and are characterized by 800 nm wavelength, 250 kHz repetition rate and
80 fs pulse duration. In order to excite the E-symmetry Raman active mode in
α-quartz we adopt a suitable configuration for the sample orientation and for the
pump and probe polarizations13. In particular, the pump and probe are linearly
polarized at 45◦ one with respect to the other. In this way, through the process of
impulsive stimulate Raman scattering (ISRS), the phonon excitation generates an
emitted field with polarization orthogonal to the probe one.

The emitted field carries information about the photo-excited material and the
adopted symmetries configuration allows us to discriminate the unscattered probe
from the emitted field by exploiting the orthogonality of the polarizations. Such a
configuration is shown in Fig 5.2.

Figure 5.2: Experimental polarization configuration. The sample is depicted at the origin
of the coordinates. The c-axis of the crystal correspond to the z-axis of the coordinate system.
The polarization configuration of pump, probe and emitted field is indicated on top-left. After
the interaction with the sample the probe undergoes a polarization selection in order to have
in output the emitted field only.

This configuration for α−quartz guarantees the excitation via ISRS of the E-
symmetry Raman mode with frequency νE = 3.84THz (see Section 4.2).

A detailed scheme of the opto-mechanical setup is shown in Fig 5.3. One can
notice that the setup is divided in two parts.
The first consists in a typical pump-probe opto-mechanical scheme. The beam
coming from the laser source is split in two beams, the pump beam and the probe
beam and a delay line (mechanical slit) is mounted on one of the paths in order to
control the delay time τ between the pump and probe pulses at the arrival on the
sample.
The second part consist in a Mach-Zehnder interferometric scheme. In this case
the pump beam plays no role since it is blocked after the sample. It is the probe
beam that, before the interaction with the sample, is splitter in two parts which
constitute the two arms of the interferometer. The sample is placed in one of
the arm of the interferometer, the probe transmitted by the sample undergoes a
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Figure 5.3: Scheme of the opto-mechanical setup. Combination between pump-probe and
homodyne detection experiments.

polarization filtering in order to select only the emitted field generated from the
non-linear interaction with the material.

The emitted field takes thus the role of the signal in the homodyne detection,
while the beam which travels through the second arm of the interferometer rep-
resents the LO. The phase difference Φ between the two fields can be controlled
with a piezo linear stage (PI P622-ZCD) mounted in the LO arm. The signal and
the LO interfere on the last beam-splitter and the homodyne photo-vaoltage can
be measured. Due to the low efficiency of the ISRS process, the emitted field (the
signal) is much weaker than the LO. This condition guarantees that the measured
homodyne photo-voltages can be related to the signal quadrature as VΦ = γ′xΦ,
where γ′ is the vacuum calibration constant12 (see Section 3.4.1).

In this framework there are two main experimental quantities that can be
controlled, the delay time τ between the pump and the probe pulses, and the
phase difference Φ between the signal transmitted through the sample and the
local oscillator in the Mach-Zehnder interferometer. For a specific time delay τ
and a given phase Φ, N = 800 measurements of homodyne photo-voltages [VΦ(τ)]i
are acquired (each measurement correspond with a single acquired pulse).

The acquisition system is made of a balanced amplified differential photode-
tector and a fast digitizer (Spectrum M3i.2132-exp) with sampling rate 1 GS s−1.
The differential photodetector consists of two Hamamatsu S3883 Silicon PIN pho-
todiodes with 0.94 quantum efficiency connected in reverse bias and followed by a
low-noise charge amplifier. The photo-currents generated by the two photodiodes
in response to a single optical pulse impinging on them are physically subtracted
and the resulting charge is amplified using CAEN custom designed electronic com-
ponents. The photo-voltage acquired for every single differential pulse acquisition,
[VΦ]i, is the sum of the voltages digitized for 500 points at 1 GS s−1. Details about
the detection-acquisition system are reported in Appendix A.
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5.2.1 Raw data
A typical experimental result is shown in Fig 5.4. A color-plot of the average of
the N acquired photo-voltages, V Φ(τ) =

∑N
i

1
N [VΦ(τ)]i, is shown as a function of

the homodyne phase Φ, on the vertical axis, and of the pump-probe delay time τ ,
on the horizontal axis. The displayed data are the result of the average of M = 5
repeated scans. This measurement has been obtained with a pump fluence on the
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Figure 5.4: Photo-voltages average. V Φ(τ) as a function of the homodyne phase Φ, on
the vertical axis, and of the pump-probe delay time τ , on the horizontal axis.

sample of about 25mJcm−2 (700mW pump power for 60µm pump spot radius)
and a probe fluence on the sample of about 0.2µJcm−2 (2µW probe power for
40µm probe spot radius).

In Fig 5.5 the behaviour of V Φ(τ) for a specific phase Φ = π is shown. This
correspond to an horizontal cut in the data-set shown in Fig 5.4. The zero time
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Figure 5.5: Average homodyne photo-voltage for Φ = π. (a) V Φ=π(τ). (b) Fourier
transform of the oscillating part (signal in green); the dashed line indicates the value of the
phonon frequency Ω.

represents the instant in which pump and probe arrives simultaneously on the
sample. The response around time zero is not physically meaningful since it is due
to saturation effects of the acquisition systems in presence of a high intensity due
to scattering effects of the pump. What is indeed meaningful is the behaviour at
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positive times. It is characterized by an oscillating response at the frequency of the
photo-excited phonon Ω = 3.84THz. The Fourier transform of the oscillating part
of the signal (green in Fig 5.5) displays a peak at Ω.

Since for a given phase Φ and a given time τ we acquire the photo-voltage
for N = 800 repeated pulses, we have enough statistics to be able to calculate in
addition to the mean also the variance. In Fig 5.6 a color-plot of the variance of
the N acquired photo-voltages, V var

Φ (τ) =
∑N
i

1
N

[
[VΦ(τ)]i − V Φ(τ)

]2
, is shown as

a function of the homodyne phase Φ, on the vertical axis, and of the pump-probe
delay time τ , on the horizontal axis. The displayed data are again the result of the

Figure 5.6: Photo-voltages variance. V var
Φ (τ) as a function of the homodyne phase Φ, on

the vertical axis, and of the pump-probe delay time τ , on the horizontal axis.

average of M = 5 repeated scans. In detail, for each scan we calculate V var
Φ (τ) and

the average over all the scan is performed.
In Fig 5.7 the time dependent behaviour of V var

Φ (τ) for a specific phase Φ = π
is shown. In particular, since the variance is more noisy than the average, in Fig
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Figure 5.7: Variance homodyne photo-voltage for Φ = π. (a) V var
Φ (τ) for Φ = π (average

of 16 rows in Fig 5.6). (b) Fourier transform of the oscillating part (signal in green); the
dashed line indicates the value of the phonon frequency Ω and of the frequency 2Ω.

5.7 we consider the average of several adjacent phases. In detail we averaged 16
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Chapter 5. Non-equilibrium quantum state tomography

phases around the value Φ = π corresponding to the range of rows indicated by
the black arrow in Fig 5.6.

The results show that even in the variance of the signal a modulation in time
is present. In particular the Fourier transform of the variance homodyne photo-
voltage for Φ = π presents a peak at the phonon frequency and also a smaller but
significant frequency component at twice the phonon frequency.

5.2.2 A phase sensible technique
Another information one can extract directly from the raw data is the phase of the
optical field as a function of the pump-probe delay time. The homodyne detection
is indeed a phase-sensible technique that allows for the measurement not only of
the field amplitude but also of its phase.

In Fig 5.8 the phase Φ0 as a function of the pump-probe time delay is shown.
It is calculated as the best fit parameter obtained from the fit of the homodyne
data with a function of the kind: A sin(ωt+Φ0).
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Figure 5.8: Phase Φ0 of the emitted field as a function of the pump-probe time delay.
The Fourier transform of the signal at positive times (signal in green) is reported on the left;
the dashed line indicates the value of the phonon frequency Ω.

One can notice that the phase Φ0 presents an oscillating component at the phonon
frequency Ω.

5.3 Homodyne data analysis
In this section we focus on the procedure we adopt for the analysis of the raw
homodyne data. The data analysis is divided in two subsequent steps:

1. the correction of the experimental artifacts;

2. the calibration of the corrected raw data with respect to the vacuum.

5.3.1 Correction of the experimental artifacts
The main experimental artifact to be corrected is associated with the fact that
the variance in Fig 5.7 is phase dependent at negative times (before the arrival
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of the pump). This behaviour is present even in absence of the sample, when in
principle the analyzed light should be in a coherent state with no phase dependence
of the photo-voltage variance. For this reason we attributed this behaviour to an
experimental artifact. A deeper analysis of this effect is shown in Fig 5.9, where
the average of the first 20 columns in Fig 5.6 is shown (the considered columns are
indicated in Fig 5.6 with the red arrow).
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Figure 5.9: Photo-voltages variance at negative times. Average of the first 20 columns in
Fig 5.6. The involved phases are indicated with a red arrow in Fig 5.6.

The phase dependence of the photo-voltage variance even at negative times is due
to an experimental artifact. The error in the phase value, due to the error associate
with the read piezo position, is mapped indeed in an error on the photo-voltage
which is maximum at the maxima of the derivative of the signal. This causes
the photo-voltage variance to be maximum in correspondence of the maxima of
the derivative of the photo-voltage mean. We partially correct this experimental
artefact with a proper data treatment. In detail, for each phase Φ, the photo-
voltages are shifted of a quantity ∆Φ which is the difference between the mean
value V Φ and the value of a best fit sin function at Φ. This correction serves to
exclude the classical noise which occurs between different phases, keeping only the
intrinsic quantum noise between consecutive pulses. The effects of classical slow
noise have been analyzed in detail in Appendix A, Fig A.6, where the noise increase
as a function of the number of detected pulses is studied.

At the end of the procedure we redefine the photo-voltages VΦ including the
correction for the slow noise.

5.3.2 Vacuum calibration
As already discussed in Section 3.2, in order to calibrate the acquired homodyne
data, one needs to consider a homodyne acquisition for the vacuum state as refer-
ence. In particular, indicating with [V|0⟩]i the homodyne photo-voltage for a single
pulse i obtained keeping blocked the signal beam (vacuum homodyne detection),
one can calculate the calibration constant as in equation (3.36) by assuming the
variance of the vacuum quadrature to be 1/2. In this way the calibration constant
results

γ′ =
√
2V var

|0⟩ , (5.2)
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where V var
|0⟩ =

∑N
i

1
N

[
[V|0⟩]i − V |0⟩

]2
is the variance of N = 80000 vacuum photo-

voltages.
Thus, the quadrature calibration is the following:

xΦ =
VΦ
γ′

, (5.3)

where the photo-voltage VΦ already includes the correction for the experimental
artifacts.

5.3.3 Corrected and calibrated homodyne data
Here we report the homodyne data after the correction for the experimental arti-
facts and the vacuum calibration.

In Fig 5.10 the average of the homodyne quadrature data is shown and in Fig
5.11 the time dependent behaviour is reported for a specific phase Φ = π.
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Figure 5.10: Quadratures average. xΦ(τ) as a function of the homodyne phase Φ, on the
vertical axis, and of the pump-probe delay time τ , on the horizontal axis.
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Figure 5.11: Average homodyne quadrature for Φ = π. (a) xΦ(τ) for Φ = π. (b) Fourier
transform of the oscillating part (signal in green); the dashed line indicates the value of the
phonon frequency Ω.
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One can notice that the behaviour of the quadratures average is similar to the
one of the uncorrected and uncalibrated photo-voltages average in Fig 5.4 and 5.5.

On the contrary, the result of the data analysis is noticeable in the variance.
In Fig 5.12 the variance of the calibrated quadrature data is shown.
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Figure 5.12: Quadrature variance. x var
Φ (τ) as a function of the homodyne phase Φ, on the

vertical axis, and of the pump-probe delay time τ , on the horizontal axis.

One can notice that, after the correction for the classical noise sources, the artifact
of the phase dependence of the quadrature variance at negative times is now less
evident than in Fig 5.6.

The time dependent behaviour for a specific phase Φ = π is reported in Fig
5.13.

Figure 5.13: Variance homodyne quadrature for Φ = π. (a) xvar
Φ (τ) for Φ = π. (b) Fourier

transform of the oscillating part (signal in green); the dashed line indicates the value of the
phonon frequency Ω and of the frequency 2Ω.

The results indicate that after the homodyne data analysis the Ω component in the
variance homodyne quadrature for Φ = π is repressed while probably the frequency
component at 2Ω is still contributing to the signal.

We stress that the reported preliminary results are still not conclusive since
work about the possibility of improving the data analysis and the experimental
artifacts correction is still in progress.
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5.4 Time domain Wigner function reconstruction

In the previous sections we presented the the experimental procedure and the out-
put data in terms of the statistical proprieties like the average and the variance.
This section is about the tomographic method that from the homodyne data allows
for the optical quantum state reconstruction. For each delay time τ , we acquire
the homodyne photo-voltages, VΦ, as a function of the homodyne phase Φ. In
particular, for each phase value we measure N = 800 subsequent pulses. In Fig
5.4 and 5.6 we have shown the average and the variance associated with these 800
measurements. Here we consider instead the entire distribution of the measure-
ments.

In Fig 5.14 the histogram plot of the 800 measurements is shown for each phase
value and for a specific time delay τ = 0.5 fs. The average V Φ =

∑N
i

1
N [VΦ]i is also
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Figure 5.14: Histogram plot of the measured homodyne photo-voltages at delay time
τ = 0.5 ps. For each phase value Φ the histogram is representative of N = 800 acquired
pulses. The average V Φ =

∑N
i

1
N
[VΦ]i is shown in red.

shown in red. The latter represents a vertical cut in the data-set shown in Fig 5.4.
The homodyne photo-voltages after the data analysis described in Section 5.3

become homodyne quadratures. In Fig 5.15 the analyzed and calibrated homodyne
quadrature data correspondent to the raw data in Fig 5.14 are shown.

The data in Fig 5.15 represent a typical data-set in balanced homodyne de-
tection. The peculiarity of our experiment is that we perform repeated homodyne
experiments for each pump probe time delay.

The homodyne data in Fig 5.15 are fed to a quantum tomographic algorithm
which allows the reconstruction of the quantum state (in terms of the Wigner
function) of the emitted optical field for the delay time value τ = 0.5 ps. This
procedure is repeated for each pump-probe delay time.

The Wigner functions are thus reconstructed for each time delay τ starting
from the homodyne quadrature data. The reconstruction is obtained by exploiting
a tomographic method based on the inverse Radon transform algorithm11. The
specific algorithm adopted here is the one developed in reference14 and optimized
for homodyne efficiencies lower than one.
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Figure 5.15: Histogram plot of the measured homodyne quadratures at delay time
τ = 0.5 ps. For each phase value Φ the histogram is representative of N = 800 acquired
pulses. The average xΦ =

∑N
i

1
N
[xΦ]i is shown in red.

The homodyne efficiency depends on the noise performances of the differential
detector. In our case, from the detector shot-noise characterization reported in
Section A.1, we estimate a homodyne equivalent efficiency ηeq ≈ 0.85 in correspon-
dence of a single channel pulse peak of about 1.2V (Fig A.5). The tomographic
method for the Wigner function reconstruction has been presented in detail in
Section 3.3.1.

In Fig 5.16 the reconstructed Wigner functions for a single scan at different
pump-probe delay times are reported. The Wigner function provides the maximum
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Figure 5.16: Reconstructed Wigner functions (a) Reconstructed Wigner function of the
vacuum state. (b), (c), (d) Reconstructed Wigner functions of the emitted field for different
delay times τ .
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information about the quantum state of the emitted field. Once known the Wigner
function one can indeed calculate the expectation value of any observable of the
system (see Section 2.2.1).

In Fig 5.17 we show the expectation values as a function of pump-probe time
delay of significant observables of the emitted field, the position and the momentum
operators, q̂ and p̂ (see definition in equation (2.14)), their variances, σ2

q̂ and σ2
p̂,

and a quantity associated to the ratio between the two variances, 1
4 log(σ

2
p̂/σ

2
q̂ ).

The latter gives an indication of the squeezing of one uncertainty with respect to
the other∗.
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Figure 5.17: Expectation values of meaningful observables of the emitted field. Expec-
tation values as a function of the delay times τ of the position operator, momentum operator
and of their variances. The Fourier transform of the signal at positive times (signal in green)
is reported on the left; the dashed line indicates the value of the phonon frequency Ω and of
the frequency 2Ω. The signal is averaged over 5 scans and the FT is the average of the FTs.

The reported results are still preliminary and much can still be done to improve
the correction for the experimental artifacts. In particular, it is possible to note
a slow drift in the position and momentum operator which can be attributed to
a slow shift in the phase of the emitted field due to thermal instabilities of the

∗The expression 1
4
log

(
σ2
p̂

σ2
q̂

)
becomes the correct definition of the squeezing parameter

only when σ2
p̂ and σ2

p̂ the eigenvalues of the covariance matrix in (2.33).
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opto-mechanics.
However what emerges from Fig 5.17 at this stage is an oscillation of the posi-

tion and momentum operator at the phonon frequency. This observation, together
with the oscillation of the phase of the emitted field (Fig 5.8) suggests a rotation
of the Wigner function around a point in the phase space at the phonon frequency.

The variances of the position and momentum operators do not present instead
significate behaviours in time, at least at this stage of the analysis. The values of σ2

q̂

and σ2
p̂ are almost stable around the value 0.5, expected for a coherent optical state.

However, the fact that the variance of the homodyne data before the tomographic
process (Fig 5.13) presents instead a 2Ω oscillating component stimulate us in
improving the data analysis with the aim to obtain consistent results from the
unprocessed homodyne data and from the result of the tomographic process.

5.5 Comparison with the model
The core of the experiment presented in this Chapter is the quantum state recon-
struction of probing light after the interaction with a photo-excited material.

In order to properly describe the experiment it is thus necessary to adopt a
quantum description of the electromagnetic fields involved in the process. The
effective fully quantum model for ISRS presented in Section 2.7 satisfies such a
requirement15. It allows indeed to describe both the excitation and the detection of
phonon states via impulsive stimulate Raman scattering experiments. In particular,
the model maps the quantum state of the photo-excited phonon into the quantum
state of the transmitted probing optical pulses. This quantity is exactly what we
measure in the experiment presented in the previous section. The model describes
first the pump process, then the phonon dynamics and finally the probe process.

The analysis of our preliminary experimental results in comparison with the
model are still under investigation. For this reason here we report only the main
ingredients necessary to describe the experiment through the model15.

We focus on the description of the probe process and on the analysis of the
quantum state of the transmitted probing optical pulses. In particular, we present
the model predictions for the time dependent behaviour of significant observables
of the emitted field which have been experimentally obtained from the Wigner
function reconstruction. The details of the model are reported in Section 2.7.

The probe process is described by the impulsive unitary operator

Uprobe = Uᾱ′ = exp{−i∥ᾱ′∥
(
Â b̂† + Â† b̂

)
} , (5.4)

where Â is the collective photon annihilation operator defined in (2.85) and b̂
the annihilation phonon operator of the photo-excited vibrational mode (see also
equation (2.84)).

The evolution operator in (5.4) affects the collective photon-phonon initial state
|ᾱy⟩ ⟨ᾱy| ⊗ ρ̂phonon(τ) ρ̂

ν̄
II(τ), where |ᾱy⟩ = |αy−J ⟩⊗· · ·⊗|αy J⟩ is the optical coher-

ent state involving only the y polarization components of the probe and ρ̂phonon(τ)
ρ̂ν̄II(τ) is the phonon state at the instant τ after the photo-excitation.

119



Chapter 5. Non-equilibrium quantum state tomography

The quantum state of the emitted optical field is then given by

ρ̂I(τ) = TrII

(
Uprobe |ᾱy⟩ ⟨ᾱy| ⊗ ρ̂νII(τ)U

†
probe

)
, (5.5)

where we indicate with I and II the photon and the phonon subsystem respectively.
The quantum state of the emitted field is exactly what is measured in the experi-
ment through the reconstruction of the Wigner function for different pump-probe
time delays.

Once calculated the expression for the quantum state of the light pulses scat-
tered by the phonon, ρ̂I(τ), the expectation values of the significant observables
can be computed. In particular we report here the expressions for the expectation
values of the optical field quadrature operator in (5.1) and of the corresponding
variance in terms of the time dependent phonon correlation functions ⟨(b̂†)m(b̂)n⟩τ :

⟨x̂Φ⟩ (τ) =
1√
2

[
2
√
Iy cos(Φ + θ′ − θy) cos(∥ᾱ′∥)

−i
(
e−iΦ ⟨b̂⟩τ − eiΦ ⟨b̂†⟩τ

)
sin(∥ᾱ′∥)

]
, (5.6)

σ2
x̂Φ

(τ) =
1

2
− sin2(∥ᾱ′∥)

2

[ (
⟨b̂2⟩τ − ⟨b̂⟩

2

τ

)
e−2iΦ +

(
⟨(b̂†)2⟩τ − ⟨b̂†⟩

2

τ

)
e+2iΦ

−2
(
⟨b̂†b̂⟩τ − ⟨b̂†⟩τ ⟨b̂⟩τ

) ]
. (5.7)

By substituting the phase Φ with 0 or π one gets the predictions of the model
for the position and momentum operator (equation (5.6)) and for their variances
(equation (5.7)).

This allows to put in relation the photonic observables, which are directly
measured in the experiment, with the phononic observables that are in this way
indirectly explored. By substituting the explicit expressions for the time dependent
phonon correlation functions ⟨(b̂†)m(b̂)n⟩τ 15 it is possible to relate the expectation
values of the phononic observables to the characteristics of the phonon quantum
state, for example the phonon displacement parameter and the phonon squeezing
parameter.

In particular, it is possible to show that the predicted quadrature variance
in (5.7) presents an oscillating component at twice the phonon frequency (2Ω)
only when the interaction Hamiltonian, which mimics the photo-excitation process,
generates a squeezed phonon state. Moreover, in this condition, the position and
momentum operator are predicted to oscillate at the phonon frequency together
with the phase of the emitted field.

We stress that the work of comparison of the preliminary experimental results
with the model prediction is still in progress. However, the indications in the
experimental data of the presence of a 2Ω oscillating component in the quadrature
variance (see Fig 5.13 and Fig 5.7) and of the Ω component in the position and
momentum expectation values (Fig 5.17) and in the phase (Fig 5.8) are suggestive
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of a meaningful description of the experiment through the proposed effective model.
Further analysis are needed and work is in progress in this direction.

5.6 Conclusions
In this Chapter the preliminary results about the pump-probe quantum state to-
mography experiments have been reported. The technique has been tested by
studying an impulsive stimulated Raman scattering process in a sample of quartz.
In particular, the pump-probe polarization configuration has been chosen in order
to excite the E symmetry Raman active mode in quartz at room temperature. In
this configuration, the probe, interacting with the photo-excited material, gives
rice to an emitted field scattered by the phonon with a linear polarization orthog-
onal to the probe one. The emitted field, after a polarization selection, is sent to a
balanced homodyne detection apparatus in order to reconstruct its quantum state.
The emitted field quantum state is reconstructed for each pump-probe delay time.
In particular the Wigner function associated with the quantum state is retrieved.

The main information extracted from the time domain quantum state recon-
struction is the presence of a oscillatory dynamics at the phonon frequency Ω not
only in the expectation value of the number of photons, but also of the field quadra-
tures, in particular of the position and momentum operators. We have access in-
deed not only on the amplitude of the emitted field (as in standard pump-probe
experiments) but also to its phase. The preliminary experimental results show an
oscillation of the emitted field phase at the frequency of the phonon.

Beyond to be a phase-sensible technique, pump probe quantum state tomogra-
phy is overall a quantum state-sensible technique. In this respect, the preliminary
experimental results suggest the presence of an oscillating component at the fre-
quency 2Ω in the quadratures quantum fluctuations of the emitted field. This
founding goes in the direction of the model predictions.

The effective fully quantum model presented in Section 2.7, forecasts indeed
an oscillating response of the quadrature quantum noise of the emitted field at 2Ω.
In particular, the model predicts such a behaviour for the emitted field provided
that the vibration state it has interacted with has been photo-excited in a squeezed
phonon state.

Concluding, even if the reported results are still preliminary and need to be
deeper analyzed in the future, they represents a first step towards the investigation
of the quantum proprieties of photo-excited phononic states in crystals through the
measurement of the photon quantum state the probing pulses.
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6
Conclusions and perspectives

The research presented in this thesis places in between the fields of solid state
physics and quantum optics. In detail, we propose a new approach to access the
quantum fluctuations of the atomic positions in solids.

The scientific motivation that drives our research is to develop a unique tool
to study the microscopic quantum mechanisms at the basis of intriguing macro-
scopic material proprieties, like for example quantum para-electricity, charge den-
sity waves, or high temperature superconductivity. In these systems it has been
shown that the quantum nature of collective excitations, like lattice atomic vibra-
tions, may be the key player in determining the onset of the exotic phenomena
observed1,2. It is in this perspective that the new tool which is used here to mea-
sure directly the fluctuations on a simple material may become a fundamental tool
to understand the microscopic origin of exotic macroscopic proprieties (Chapter 1).

The leading idea of this project is to address the quantum state of collective
atomic vibrational excitation in solids through the measurement of the quantum
state of ultrashort light pulses subsequently to their interaction with the material.

In order to prepare and probe vibrational states in crystals we exploit optical
ultrafast spectroscopy techniques. In this kind of experiments an intense pump laser
pulse drives a collective atomic excitation in the crystal and a less intense probe
laser pulse interacts with the system out-of-equilibrium. Standard pump-probe
techniques measure the intensity of the output probe, providing information in
real time about the average of the atomic positions during the collective excitation.
However, in this kind of experiments one has no chances to directly measure the
quantum fluctuations of the atomic positions around their average. In this thesis
we propose a new spectroscopic approach to fill this gap.

We developed two experimental schemes that allow for the measurement of (i)
the photon number quantum statistics and (ii) the quantum state reconstruction
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Chapter 6. Conclusions and perspectives

of the probe pulses in a pump-probe setup. Moreover, in order to predict how the
fluctuations of the atomic positions in a lattice can be mapped onto the photon
quantum fluctuations of the probe field, we propose a fully quantum theoretical
approach to time domain studies (Chapter 2).

In order to characterize from the quantum mechanical point of view the light
pulses after the interaction with the material, we adopted a well known technique
in quantum optics, that is optical homodyne tomography (Chapter 3).

Our approach has been tested by investigating quantum fluctuations of the
atomic positions in α-quartz, which serves as a case study for transparent materi-
als. In particular, the quantum proprieties of photo-excited phonon states in quartz
have been investigated by both the photon number quantum statistics (Chapter 4)
and pump-probe quantum state tomography (Chapter 5).
In the first case (Chapter 4), our novel experimental approach allows for the direct
measurement of the photon number quantum fluctuations of the probing light in
the shot-noise regime. The comparison of the experimental results with the pre-
dictions of the model allows us to unveil non classical vibrational states (squeezed
states) produced by photo-excitation.
In the second case (Chapter 5), the experiment allows not only to investigate the
photon number quantum distribution, but also to have access to the maximum
information about the scattered probing light, i. e. its quantum state, which is
completely characterized in the time domain. Chapter 5 should be seen as a re-
port of some preliminary results demonstrating that quantum state reconstruction
in time domain experiments is feasible. The data analysis is representative of a
summary of a work in progress.

We stress once more that this thesis had the main aim to test the proposed
approach by studying simple materials and simple excitations. However, our ap-
proach can be in principle generalized to the study of any collective excitation both
in simple and in complex systems.

There are indeed imminent steps in the perspectives of the project.
• The addition of a second pump pulse in the experimental set up. The idea

is to configure the second pump in order to excite the phononic mode in
anti-phase with the respect to the first photo-excitation. This will in princi-
ple repress the average atomic oscillation allowing the study of the intrinsic
atomic quantum fluctuations without the artifacts due to the average dis-
placements.

• The application of our experimental approach to study atomic quantum fluc-
tuations in systems where they are particulary relevant for some material
proprieties as quantum para-electricity in systems like SrTiO3. In this mate-
rial indeed the quantum fluctuations of Ti atoms along the Ti−O direction
are strictly connected to the anomalous behaviour of the dielectric suscepti-
bility in the quantum para-electric phase (Section 1.2). The characterization
of the quantum state of such vibrational states could be of great interest in
a deeper comprehension of the quantum para-electricity phenomena.

Further, we stress that the techniques is applicable to any excitation obeying
Raman selection rules. This open the new avenue, which will be explored in the
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near future, of studying by this techniques fluctuations of electronic origin such as
superconducting gaps3.
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A
Low noise acquisition - detection system

In this appendix we present the characteristics of the detection-acquisition system
realized and improved in the course of the whole PhD period and adopted for the
experiments presented both in Chapter 4 and in Chapter 5.

We substantially improved the detection system presented in section 3.4.1 by
designing and realizing a custom highly efficient differential detector. The latter
is adapted to detect laser pulses generated by a 250 kHz mode-locked amplified
Ti:Sapphire system∗. A block representation of the complete laser system used in
our experiments is given in Fig A.1. We also made faster the acquisition system by

Figure A.1: Block diagram of the laser sources system.

∗While for the homodyne detection experiments in section 3.4.1 we used a laser source
composed of only an oscillator (Fig 3.3), for the composite experiments reported in in
Chapter 4 and in Chapter 5 (pump-probe and homodyne detection combined experiments)
an amplified laser source is needed.
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Appendix A. Low noise acquisition - detection system

substituting the oscilloscope in Fig 3.5 with high speed digitizer PC plug-in card
(Spectrum M3i.2132-exp) with 8 bit resolution and 1 GS/s sampling rate1. A block
diagram of the acquisition system is shown in Fig A.2.

Figure A.2: Block diagram of the acquisition system

In the following we report the details of the custom differential photodetector.

A.1 Highly efficient time domain balanced homodyne
detector

The custom differential photodetector has been realized in collaboration with the
CAEN company and with the fundamental help of dr. Giovanni Franchi with
whom it has been really a pleasure to work. This detector has been adopted for
the experiments presented both in Chapter 4 and in Chapter 5.

The detector consists of two Hamamatsu S3883 Silicon PIN photodiodes with
0.94 quantum efficiency at 800 nm connected in reverse bias and followed by a
low-noise charge amplifier. The photo-currents generated by the two photodiodes
in response to a single optical pulse impinging on them are physically subtracted
and the resulting charge is amplified using CAEN custom designed electronic com-
ponents. The preamplifier sensitivity is 5.2 mV/fC with a linear response up to
about 2 V of pulse peak voltage. The output voltage of the photodetector for each
single pulse is digitize at 1 GS/s, the sampling rate of the Spectrum digitizer.

The first test we performed on the photodetector is to verify the linear response
of the two photodiodes. In order to do this we block the entrance of one of the diodes
per time and we acquire several consecutive pulses. Note that we use the convention
of expressing the voltage acquired for every single differential pulse, Vi, as the sum
of the voltages digitized for 500 points at 1 GS/s (pulse integral). For reference, the
digitized measurement of a pulse with a 1 V voltage peak (V peak

i = 1V) corresponds
to a value of the pulse integral Vi = 300 V. We then repeat the procedure for
different intensities of the local oscillator beam. The results are shown in Fig A.3.
The pulse integral is shown as a function of the pulse peak displaying a linear
behaviour. Each point is obtained averaging the values of N = 2000 subsequent
pulses (Vmean =

∑N
i Vi, V peak

mean =
∑N
i V

peak
i ). Since the amplification specifics

are known one can calculate how many photons for each pulse correspond to a
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A.1. Highly efficient time domain balanced homodyne detector

given voltage peak intensity. For reference, 1V of peak value correspond to about
1.38× 106 photons per pulse on the single photodiode.

Figure A.3: Photodiodes linearity test. (a) Measured pulse integral vs pulse peak for the
two photodiodes. in (b) and (c) the two experimental configurations are sketched.

Once verified the range of linearity of the photodiodes, we performed the shot-
noise linearity test. In this case both the entrance of the photodiodes are open and
the two input beams are perfectly balanced in order to have the difference signal
averaged at zero voltage. The experimental configuration for such a test is reported
in Fig A.4 (b). The results are shown in Fig A.4 (a).

Figure A.4: Shot-noise linearity test. (a) Noise of 4000 consecutive pulses vs the average
voltage peak value. (b) Sketch of the experimental configuration.

For each intensity of the local oscillator beam N = 4000 consecutive pulses are
acquired and the variance of the pulse integrals is measured, Vvar =

∑N
i (Vi −

Vmean)
2, this corresponds to what we call homodyne detection noise. In order

to distinguish the intrinsic quantum noise (shot-noise) from other classical noise
contributions to the homodyne detection noise, we repeated the measurement for
different intensities of the local oscillator. In Fig A.4 (a) the homodyne detection
noise is reported versus the voltage peak absolute value detected if one of the
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Appendix A. Low noise acquisition - detection system

photodiode is obscured, the latter is proportional to the local oscillator intensity.
The noise result linear with a constant offset representing the electronic noise. This
behavior is characteristic of the shot-noise regime2.

The detector shot-noise linearity test demonstrates that we are sensible to
quantum fluctuations of the photon number. In particular, the shot-to-electronic
noise ration at the maximum local oscillator intensity in the linear regime is ap-
proximately 8 dB. This correspond to an equivalent efficiency, defined in (3.35),
ηeq ≈ 0.85. This result represents a relevant improvement with respect to the
performance of the commercial photodetector used in the experiment reported in
section 3.4.1, whose shot-to-electronic noise ratio was approximately 2 dB.

A.2 Detector noise characterization

In the experiments reported in Section 4.3 (shot-noise limited pump-probe experi-
ments), we adopt a differential acquisition scheme where each probe pulse transmit-
ted through the sample is referenced with a second pulse which has not interacted
with the sample (see Fig 4.9). Adopting the notation of Section 4.3, the differential
photo-voltage for a single pulse acquisition is indicated with ∆Ti. In this case, the
shot-noise characterization test consists in the measurement of the variance ∆Tvar
of 4000 differential pulses for different powers of the probe. The shot-noise test as
a function of the probe power is shown in Fig A.5.
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Figure A.5: Shot-noise characterization of the detection apparatus in Fig 4.9. Variance
of 4000 acquired differential pulses as a function of the probe power. The vertical error
bars indicate the standard deviation over 10 repeated measurements, the horizontal error bars
indicate the instrumental error of the power-meter 3.

For the experiments in Section 4.3 we chose a probe power within the linearity in-
terval (2.5 mW on the sample). Note that this corresponds roughly to 106 photons
per pulse scattered in cross polarization on the detector (see Fig 4.9).

In the following we report two further characterization measurements per-
formed in order to select a work configuration in which classical noise sources
are negligible allowing for the measurement of the intrinsic optical shot noise.
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A.2. Detector noise characterization

• The first characterization consists in the measure of the variance, ∆Tvar, in
absence of the pump, as a function of the number of acquired pulses. The
results are shown in Fig A.6. We observe that the variance increases when
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Figure A.6: Noise characterization as a function of the number of acquired pulses.
Variance, ∆Tvar, in absence of the pump, as a function of the number of acquired successive
pulses. The dashed line indicates the shot-noise level. The grey area represents the region
in which classical slow noise sources contributes to the variance. The error bars indicate the
standard deviation over 10 repeated measurements 3.

the number of acquired successive pulses increases, this means that for long
acquisitions a slow noise contribution makes higher the measured variance
(grey area in Fig A.6). Thus, we chose to acquire N = 4000 successive
pulses per step in order to guarantee the statistical meaningfulness of the
data but at the same time avoiding contributions of classical slow noises.
Note that the time to time noise in the mean number of photons reported in
the main text is larger than the value of the variance. This is explained by
considering that the fluctuations in the mean values are made large by slow
noise of classical nature (the differences between the measurements scan by
scan). On the contrary the variance is dominated by intrinsic fluctuations
and, as discussed in the main text, it is calculated for every scan separately
and then averaged. The results reported in Supplementary Fig A.6 show
that acquiring up to about 104 pulses guarantees that classical slow noise
contributions are excluded.

• Moreover we measured the obtained variance ∆Tvar for a fixed number of
pulses (N = 800) in absence of the pump as a function of the unbalance
between the transmitted probe pulse and the reference pulse, that is as a
function of the acquired mean voltage ∆Tmean. The results of such char-
acterization measurement are shown in Fig A.7. One can notice that the
noise randomly fluctuates in a range of minimal values (grey area) for small
positive or negative unbalance (yellow area). For larger unbalance the noise
starts to increase due to artifacts in the amplification process. All the time
domain experiments reported here have been performed within the region
of small detector unbalancing (green area) in order to be sure of working in
shot noise limited conditions.
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Figure A.7: Noise characterization as a function of the unbalance. Variance, ∆Tvar, in
absence of the pump for a fixed number of pulses (N = 800), as a function of the unbalance
between the transmitted probe pulse and the reference pulse, expressed as acquired mean
voltage ∆Tmean. Grey area: range of minimal noise; yellow area: unbalance region in which
the noise randomly fluctuates in a range of minimal values; green area: unbalance region in
which the experiments have been performed. Notice that we use the convention of expressing
the voltage acquired for every single pulse acquisition as the sum of the voltages digitized for
500 points at 1 GS s−1. For reference, the digitized measurement of a differential pulse with a
1 V (−1 V) voltage peak corresponds to a value of 300 V (−300 V). The error bars indicate
the standard deviation over 10 repeated measurements 3.
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B
Wigner function reconstruction error

In this appendix we report the derivation of an upper bound to the mean square
error of the reconstructed Wigner function in equation (3.58) in Section 3.5.

B.1 Upper bound error derivation

This analysis is necessary in order to find an optimal functional relation between the
free parameters in the reconstruction algorithm such to minimise the reconstruction
error. For this purpose we follow the techniques developed in1 adapting them to
the case on a linear superposition of coherent states. Using (3.29) and (3.31), one
starts by rewriting the error in (3.32) as the sum of three contributions:

∆η,r
h,n(ρ̂) =

∫
Cr(0)

dqdp

(
E

[∣∣∣W η
h,n(q, p)

∣∣∣2]− ∣∣∣E [W η
h,n(q, p)

]∣∣∣2) (B.1)

+

∫
Cc

r(0)

dqdp |Wρ(q, p)|2 (B.2)

+

∫
Cr(0)

dqdp
∣∣∣E [W η

h,n(q, p)
]
−Wρ(q, p)

∣∣∣2 , (B.3)

Ccr(0) denoting the region outside the circle Cr(0), where q2 + p2 > r2. The
first and the third term correspond to the variance and bias of the reconstructed
Wigner function respectively, while the second term is the error due to restricting
the reconstruction to the circle Cr(0).
Given a density matrix ρ̂, the second term can be directly calculated. This is
true also of the bias; indeed, because of the hypothesis that the pairs (Xℓ,Φℓ) are
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independent identically distributed stochastic variables, it turns out that

E
[
W η
h,n(q, p)

]
=

1

π n

n∑
ℓ=1

E

[
Kη
h

(
[(q, p); Φℓ]−

Xℓ√
η

)]
=

1

π
E

[
Kη
h

(
[(q, p); Φ]− X

√
η

)]
(B.4)

=

∫ π

0

dϕ

∫ 1/h

−1/h

dξ
|ξ|

(2π)2

∫ +∞

−∞
dx eiξ(q cosϕ+p sinϕ−x/

√
η) eγξ

2

pρ(x, ϕ)

differs from the true Wigner function Wρ(q, p) in (3.28) by the integration over ξ
being restricted to the interval [−1/h, 1/h]. Moreover, its Fourier transform reads

F
[
E
[
W η
h,n

]]
(w) =

∫ +∞

−∞
dq

∫ +∞

−∞
dp e−i(qw1+pw2)E

[
W η
h,n(q, p)

]
= χ[−1/h,1/h](∥w∥)F [Wρ] (w), w = (w1, w2) , (B.5)

where χ[−1/h,1/h](∥w∥) is the characteristic function of the interval [−1/h, 1/h].
Then, by means of Plancherel equality, one gets∫

Cr(0)

dqdp
∣∣∣E [W η

h,n(q, p)
]
−Wρ(q, p)

∣∣∣2 ≤∫
R2

dqdp
∣∣∣E [W η

h,n(q, p)
]
−Wρ(q, p)

∣∣∣2 , (B.6)

where the second term in the inequality can be expressed as follows∥∥∥E [W η
h,n

]
−Wρ

∥∥∥2
2

=
1

4π2

∥∥∥F [E [W η
h,n

]]
− F [Wρ]

∥∥∥2
2

=
1

4π2

∥∥∥F [Wρ] χ[−1/h,1/h] − F [Wρ]
∥∥∥2
2

=
1

4π2

∫
∥w∥≥1/h

dw
∣∣∣F [Wρ] (w)

∣∣∣2 . (B.7)

The variance contribution can be estimated as follows: firstly, by using (3.29)
and (3.31), one recasts it as∫

Cr(0)

dqdp

(
E

[∣∣∣W η
h,n(q, p)

∣∣∣2]− ∣∣∣E [W η
h,n(q, p)

]∣∣∣2) =

=
1

π2 n

{
E

[∥∥∥∥Kη
h

(
[ (q, p) ; Φ]− X

√
η

)
χr(q, p)

∥∥∥∥2
]
+

−
∥∥∥∥E [Kη

h

(
[ (q, p) ; Φ]− X

√
η

)
χr(q, p)

]∥∥∥∥2
}

. (B.8)
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Then, a direct computation of the first contribution yields the upper bound

E

[∥∥∥∥Kη
h

(
[ (q, p) ; Φ]− X

√
η

)
χr(q, p)

∥∥∥∥2
]

≤
√
π

γ

r2

16h
e

2γ

h2 (1 + o(1)) ,

γ =
1− η

4η
, (B.9)

with o(1) denoting a quantity which vanishes as h when h → 0. On the other
hand, the second contribution can be estimated by extending the integration over
the whole plane (q, p) ∈ R2 and using (B.5):∥∥∥∥E [Kη

h

(
[ (q, p) ; Φ]− X

√
η

)
χr(q, p)

]∥∥∥∥2 ≤ 1

4π2
∥F [Wρ]∥2 = ∥Wρ∥2 ≤ 1

2π
.

(B.10)
Let us consider now the specific case of ρ̂ = ρ̂α, the superposition of coherent

states defined in (3.52). The auxiliary parameter β labelling the class of density
matrices Aβ,s,L in (3.33) with s = 2 can be used to further optimize the recon-
struction error ∆η,r

h,n(ρ̂α). In particular, since
∣∣∣∑M

j=1 zj

∣∣∣2 ≤ M
∑M
j=1 |zj |2, we get

the upper bounds

|Wα(q, p)| ≤ 2

π
, |F [Wα] (w1, w2)| ≤ 2 (B.11)

|Wα(q, p)|2 ≤ 3

4π2

(
e−2(q−

√
2α1)

2−2(p−
√
2α2)

2

+ e−2(q+
√
2α1)

2−2(p+
√
2α2)

2

+4 e−2(q2+p2)
)
≤ 3

2π2

(
e−(

√
2R−|α|)2 + 2e−2R2

)
(B.12)

|F [Wα] (w1, w2)|2 ≤ 3

4

(
e−

(w1+2
√

2α2)2+(w2−2
√

2α1)2)
2 + e−

(w1−2
√

2α2)2+(w2+2
√

2α1)2)
2

+4 e−
w2

1+w2
2

2

)
≤ 3

2

(
e−(R/

√
2−2|α|)2 + 2e−R

2/2
)
, (B.13)

where R2 = q2 + p2 in (B.12) and R2 = w2
1 +w2

2 in (B.13) . Then, one derives
the upper bounds∫
R2

dqdp |Wα(q, p)|2 e2β(q
2+p2)

≤
3
(
1 + e4β|α|

2/(1−β)
(
1 + 2

√
π|α|√
1−β − e−4|α|2/(1−β)

))
2π(1− β)

(B.14)

∫
R2

dw1dw2 |F [Wα] (w1, w2)|2 e2β(w
2
1+w

2
2)

≤
6π
(
1 + e16β|α|

2/(1−4β)
(
1 + 2

√
π|α|√

1−4β
− e−4|α|2/(1−4β)

))
1− 4β

(B.15)
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which simultaneously hold for 0 < β < 1/4.
Then, by means of the Cauchy-Schwartz inequality, one can estimate the con-

tribution (B.2) to the error,∫
Cc

r(0)

dqdp |Wα(q, p)|2 =

∫
R2

dqdp |Wα(q, p)|2 eβ(q
2+p2) e−β(q

2+p2) Θ(q2 + p2 − r2)

≤

√∫
R2

dqdp |Wα(q, p)|2 e2β(q2+p2)

√∫
R2

dqdp |Wα(q, p)|2 e−2β(q2+p2) Θ(q2 + p2 − r2)

≤ e−β r
2

∆2(β) , (B.16)

and similary for (B.7),

1

4π2

∫
∥w∥≥1/h

dw1dw2 |F [Wα] (w1, w2)|2 ≤ e−β/h
2

∆3(h) , (B.17)

where Θ(x) = 0 if x ≤ 0, Θ(x) = 1 otherwise, and

∆2(β) =

√√√√3
(
1 + e4β|α|2/(1−β)

(
1 + 2

√
π|α|√
1−β − e−4|α|2/(1−β)

))
4π2π(1− β)

(B.18)

∆3(β) =

√√√√3
(
1 + e16β|α|2/(1−4β)

(
1 + 2

√
π|α|√

1−4β
− e−4|α|2/(1−4β)

))
4π2π(1− 4β)

. (B.19)

Altogether, the previous estimates provide the following upper bound to the mean
square error in (B.1)-(B.3):

∆η,r
h,n(ρ̂α) ≤ ∆ , ∆ =

r2

nh
e2γ/h

2

∆1(γ) + e−βr
2

∆2(β) + e−β/h
2

∆3(β) , (B.20)

where ∆1,2,3 do not depend on h, r and n and ∆1(γ) =
√
π/(16π2√γ) is the leading

order term in (B.9). By setting the derivatives with respect r and h of the right
hand side equal to 0, one finds

2γ

h2
+ βr2 = log n + log

(
βh

∆2(β)

∆1(γ)

)
(B.21)

2γ + β

h2
= log n + log

(
2βh

r2(h2 + 4γ)

∆3(β)

∆1(γ)

)
. (B.22)

Whenever β is such that the arguments of the logarithms are much smaller than
the number of data n, to leading order in n the upper bound to the mean square
deviation is minimised by

r =
1

h
=

√
log n

β + 2γ
. (B.23)

The range of possible values of β is 0 ≤ β ≤ 1/4: however, the upper bound ∆
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B.1. Upper bound error derivation

Figure B.1: Upper bound reconstruction error ∆ as a function of the parameter β. Two
efficiencies η are considered.

becomes loose when β → 1/4 and β → 0. In the first case, it is the quantity ∆3(β)
which diverges, in the second one, it is the variance contribution which diverges
as the logarithm of the number of data. It thus follows that the range of values
β ∈ [β0, β1] where the numerical errors ∆η,r

h,n(ρ̂α) are comparable with their upper
bounds ∆ is roughly between β0 = 0.04 and β1 = 0.10 for η = 0.45 as indicated in
Fig B.1.
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