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SUMMARY

In a classical description the displacement of the atoms along the vibrational
eigenmodes of a crystal can be measured with unlimited precision. Conversely, in
the quantum formalism positions and momenta of the atoms can be determined
simultaneously only within the boundary given by the Heisenberg uncertainty prin-
ciple. For this reason, in real materials, in addition to the thermal disorder, the
atomic displacements are subject to fluctuations which are intrinsic to their quan-
tum nature. Because a crystalline solid has symmetries, these vibrations can be
analyzed in terms of collective modes of motion of the atoms. These modes corre-
spond to collective excitations called phonons. The aim of this thesis is to study
the quantum fluctuations of the atoms involved in such collective vibrations.

The motivation of studying the quantum proprieties of phonons in crystals
comes from various evidences, recently reported in the literature, suggesting that
quantum fluctuations of the atoms in solids may be of relevance in determining the
onset of intriguing and still not completely understood material properties, such as
quantum para-electricity, charge density waves, or high temperature superconduc-
tivity.

The time evolution of phonons in crystals is usually addressed in the framework
of ultrafast optical spectroscopy by means of pump-probe experiments. In these
experiments the phonon dynamics is driven by an intense ultrashort laser pulse (the
pump), and then the collective excitation is investigated in time domain through
the interaction with a weaker pulse (the probe). Unfortunately this method typ-
ically provides information only about the average position of the atoms and an
intense scientific debate is on-going about the possibility to have access also to
the fluctuations of such positions measured with respect to a bound level for the
shot-noise limit (intrinsic quantum noise limit).

In this research activity a new approach to investigate quantum fluctuations
of collective atomic vibrations in crystals is proposed. It combines time resolved
optical spectroscopy techniques (pump and probe experiments) and quantum optics
techniques (balanced homodyne detection). The novel spectroscopic tool, pump-
probe quantum state tomography, consists in the time domain characterization of the
quantum state of probing light pulses after the interaction with the photo-excited
material. The approach has been tested by investigating quantum fluctuations
of the atomic positions in a-quartz, which serves as a case study for transparent
materials. However, it can be in principle generalized to the study any collective
excitations in crystals.
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Nobody said it was easy,
No one ever said it would be so hard,
I'm going back to the start...

The Scientist, Coldplay

Introduction

1.1 Invitation and historical remarks

Light-matter interaction belongs to our daily experience. It is the mechanism which
rules our perception of colors, our feeling of the sun on the skin in a spring day
outdoor, or the effects of the sunset over the sea when the air is clear.

Figure 1.1: Sunset over the sea in Trieste, ltaly.

The wonder with respect to these so familiar but every time surprising natural
phenomena leads myself since I was a high school student, stimulating my curiosity
about the road that from Newton’s experiments about colors in the 17th century
brought to the modern comprehension of the light-matter interaction in the terms
of quantum mechanics. Although eight years passed from my final high school
exam (where I presented a short report about nature of light) and this PhD thesis,
in these years of study and research, I tried to let me guide by the same wonder of



Chapter 1. Introduction

those early days.

My PhD research activity exploits light-matter interaction for studying quan-
tum proprieties of collective atomic vibrations in solids. In particular, quantum
proprieties of atoms in matter are investigated by measuring quantum proprieties
of interacting light pulses. Before going to the motivation of such a study, I would
like to give here a brief historical excursus citing the salient scientific achievements
that led to the present theoretical and experimental knowledge of light-matter in-
teraction. Such steps in the history of science intrigued myself since the first stage
of my studies. That’s why I am happy to briefly report them here in the hope of
leading the reader in the research field of this thesis.

The theory formulated by Isaac Newton in the 17th century for describing light-
matter interaction claimed that light was composed of a beam of particles able, for
example, to bounce back upon reflection from a mirror. Later, the necessity of
describing light phenomena like interference and diffraction, incompatible with the
Newton’s theory, led to profound investigations about the wave-like nature of the
light.

Almost two centuries of research in this field culminated in a complete descrip-
tion of light propagation in a mean, or in the vacuum, in terms of electromagnetic
radiation. This happened through what the physicists consider one of the most ele-
gant set of equations in science, the Maxwell’s equations, formulated in their whole
in 1861. The theory of the electromagnetism, developed due to the introduction of
the Maxwell’s equations, produced a unified interpretation of a set of phenomena
which were previously considered to belong to different domains: electricity, mag-
netism and optics'. A famous sentence of Richard Fayman summarizes the huge
impact of such a theory on the history of mankind: “from a long view of the history
of mankind there can be little doubt that the most significant event of the 19th
century will be judged as Maxwell’s discovery of the laws of electrodynamics”?.

However, at the beginning of 20th century the study of blackbody radiation
spectrum, which electromagnetic theory could not explain, led Max Plank to in-
troduce for the first time the quantization in the energy exchange between light
and matter (1900). He considered a simple model of matter as a collection of
one-dimensional charged harmonic oscillators each of them oscillating rather like a
weight at the end of a spring. He knew from Maxwell how exactly these charged
oscillators absorb and irradiate light and he could derive the observed radiation
frequency distribution only assuming a discrete energy exchange in multiples of
what he called quantum of energy®. It was the rise of quantum mechanics.

Later, Albert Einstein, in the annus mirabilis 1905, with the theory for the pho-
toelectric effect?, proposed the quantization of the light itself, claiming that the
electromagnetic field carries energy in discrete (quantized) packets, the photons.

In the successive years a scientific revolution impacted the intellectual commu-
nity, leading to the comprehension of many properties of nature at the microscopic
level which cannot be described with classical physics®. Quantum mechanics made
possible amazing scientific achievements, ranging from the invention of the first
transistor (1948)%, to the development of the first laser source”, whose countless
technological applications are at the basis of our modern society. The progresses in
the comprehension of light-matter interactions at the quantum level further devel-
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oped with the advent of some experimental techniques able to isolate single atoms
by cooling or trapping them with laser light®, discovery awarded with the Nobel
prize in 1997. Such advancements made possible the measurement and the ma-
nipulation of single photons and single atoms without destroying their quantum
properties. Such experiments (Nobel prize in 2012) represent the most elementary
manifestations of the quantum interaction between single atoms and photons.

In this thesis, the atoms under investigation are not isolated systems but they
are arranged in lattice structures, crystalline solids, which contain a number of
atoms of the order of 10?* (Avogadro number) per cm?.

Although arranged in crystalline structures, atoms still manifest their quantum
nature, that is responsible for many intriguing material proprieties. In particular
atoms in solids can generate collective excitation, phonons, which manifest as quan-
tized lattice vibrations.

In this Chapter the motivations of studying quantum properties of collective
excitations in solids are reported (Section 1.2), then the typical time domain tech-
niques for the study of collective excitations are presented (Section 1.3) and an
introduction is given about how these standard techniques have been broadened
out in this thesis to address quantum fluctuations (Section 1.4). Finally a reading
guide is provided (Section 1.5).

1.2 Motivations

The aim of this thesis is to study the quantum proprieties of coherent vibrational
modes of the atoms in crystalline solids. The displacement of the atoms along the
vibrational eigenmodes of a crystal can be chaotic, due to thermal disorder, or
can be characterized by a precise correlation between all the atomic positions.
When all the atoms in a crystal vibrate in phase, they constitute a collective
excitation commonly dubbed coherent phonon. The motivation of studying the
quantum proprieties of phonons in crystals comes from various evidences reported
in literature suggesting that quantum fluctuations of the atoms in solids may be of
relevance in determining the onset of intriguing and still not completely described
material properties, such as quantum para-electricity, charge density waves, or high
temperature superconductivity '°717. In the following I am going to mention two
examples selected from the literature in which lattice quantum fluctuations are
shown to significantly contribute to peculiar material proprieties.

In Fig 1.2 the observations of Nosawa and co-workers'! about fluctuations of
Ti atoms in SrTiO3 are shown. In this work the authors perform X-rays absorb-
tion spectroscopy (XAS) measurements and observe quantum fluctuations of Ti
atoms along the Ti — O direction in presence of UV irradiation. Their results in-
dicates the excitation of specific phononic modes, observed only in the quantum
para-electric phase. Experimentally, quantum para-electricity is associated with
an anomalous behaviour of the dielectric susceptibility with respect to the typical
ferroelectric comportment. In this case'!, the excitation of quantum fluctuations
of some specific lattice modes by UV irradiation is shown to be directly connected

3
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to the quantum para-electric phase.
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Figure 1.2: Quantum fluctuations controlled by ultraviolet irradiation in SrTiOs. Figures
from!!. (a) X-rays absorbtion intensity of a specific peak in the pre-threshold Ti K-edge
XAS spectra. The x axis indicates the measurement time characterized by UV irradiation
started at 0 min and stopped at 30 min. The lifetime and behaviour with temperature
are characteristic only of the quantum para-electric phase. (b) Schematic representation of
thermal local vibrations (no UV irradiation) and (c) of vibrations excited by UV irradiation in
quantum para-electric phase.

The second example regards the key role of atomic fluctuations in understating
the origin of high-temperature superconductivity in copper oxide layered materi-
als. In this framework, Newns and Tsuei demonstrated ' that a fluctuating bound
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Figure 1.3: Fluctuating Cu-O-Cu bond model of high-temperature superconductivity.
Figures from'?. (a) Frequency shift of the the out-of-plain oxygen mode in cuprate super-
conductors derived from the fluctuating bound model. Comparison with experimental results
(inset) for Raman experiments in*. (b) Schematic representation of the z component of the
fluctuating bond field in CuO2 planes. Cu atoms (yellow), O atoms (red).

model of high temperature superconductivity can predict many experimental ob-
servations. Their model'? explicitly accounts for the lattice atomic fluctuations
which involve the CuOs planes. It is characterized by a non linear coupling be-
tween the Cu-Cu bound and the in-plain and out-of-plain oxygen fluctuations. In

4



1.3. Time domain ultrafast spectroscopy

Fig 1.3 it is reported the result about the qualitative reproduction of the universal
experimental softening of the out-of-plane oxygen-bend mode below T in cuprate
superconductors 18721,

The two studies reported from the literature exemplify the motivations for
the investigation of the atomic collective fluctuations in solid state physics. They
represent two examples in a huge range of physical settings in which the intrinsic
atomic quantum fluctuations are important.

It important to note that, in addition to the the case of atomic vibrational
states, the problem of the quantum fluctuations can be also generalized to excita-
tions of different nature, like for example excitations of electronic origin??23.

In this framework, this thesis could be considered as a seeding work in which
a new spectroscopic approach to address the quantum fluctuations of collective
excitations in solids is proposed. The thesis put at test such a new approach
by investigating quantum fluctuations of simple excitations, Raman active atomic
vibrational modes, in simple systems, transparent materials.

In the following I am going to introduce the tools adopted here to address
quantum fluctuations of lattice displacements. I will first present the typical spec-
troscopic technique for studying the time evolution of the average collective atomic
vibrations in solids: ultrafast spectroscopy. Then I will introduce the novel ap-
proach developed and tested in this thesis to investigate not only the average but
also the fluctuations of the atomic positions in time domain experiments.

1.3 Time domain ultrafast spectroscopy

In the research field of solid state physics, light matter-interaction is a fundamental
brick since the electromagnetic radiation scattered by a material carries a huge
amount of information which can be used for investigating different characteristics
of the material itself. This is the basis of all spectroscopies. From a historical
point of view, spectroscopy arose already after the famous experiment carried out
by Isaac Newton and published in 1672 in which, refracting sunlight in a glass
prism, he observed the dispersion of the colors of the rainbow, labelling this rainbow
spectrum?*. Solid state spectroscopy is today a wide research field that deals with
the study of the interaction between matter and radiation * both at the equilibrium
and out-of-the-equilibrium 2°.

In equilibrium spectroscopies the external stimuli are either extremely weak or
their application lasts for a time much longer than the interaction time among the

* Although, strictly speaking, the term radiation only deals with photons (electromag-
netic radiation), it should be noted that spectroscopy, in its general meaning, also involves
the interactions of other types of particles, such as neutrons, electrons, or protons, which
are also used to investigate matter?*. Even limiting the analysis to the case in which
the adopted probe is the electromagnetic radiation, the research field is still vast, since
in function of the energy content of the used photons, different degrees of freedom of the
material can be probed. When the energy content of the electromagnetic radiation drops
in what is called optical range, which includes the ultraviolet (UV), the visible (VIS) and

the near infrared (NIR) energy regions, one speaks of optical spectroscopy.
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internal degrees of freedom of the system. With the advent of ultrafast laser sources,
the possibility of applying external perturbations faster than the typical relaxation
times led to dramatic advances in solid state spectroscopy?°. This achievement
made possible the study of ultrafast dynamics with relatively cheap table-top lasers
which can easily deliver ultrashort coherent and tunable light pulses with a typical
duration ranging from a few to several hundreds of femtoseconds (1015 s) 2728, After
the first experiments, awarded with the Nobel prize in 19992?, in the last 20 years
a dramatic development of the out-of-equilibrium version of most of the traditional
equilibrium optical spectroscopies has been achieved *°.

In the framework of ultrafast spectroscopy, a single experiment, the so called
pump-probe experiment, can be applied to investigate an innumerable variety of dif-
ferent phenomena in extremely diverse physical regimes?S. The experiment consist
in two steps: (i) the photo-excitation of the material through an intense ultrashort
laser pulse (the pump) which drives the system out of equilibrium, and (ii) the
time domain probing of the material through the interaction with a weaker pulse
(the probe) at different instants after the pump perturbation. The intensity of the
probe as a function of time is measured in order to observe how the optical propri-
eties of the material evolves from the excitation to the relaxation of the system. A
scheme of a typical pump-probe experiment is shown in Fig 1.4.

Intensity

e pump
Pump-probe time delay

probe
sample

Figure 1.4: Scheme of a standard pump-probe optical experiment in transmission con-
figuration. A photodiode measures the intensity of the transmitted probe pulses at different
time delays between the pump and the probe arrivals on the sample. The intensity of the
transmitted light is indicated ad the average number of photons per pulse at each time: (1) ().

This simple scheme can be adapted to investigate the non-equilibrium physics
of solid state systems in substantially different conceptual frameworks. One of
this is the study of coherent collective excitation in materials. Any kind of im-
pulsive excitation coupled to specific collective modes, such as lattice vibrations
or charge/spin order, can indeed trigger a coherent oscillation at the typical fre-
quency of the mode and with a relaxation time that is related to its de-phasing
time?%. In this case, the pump-probe technique can be considered as a real time
domain technique, since the Fourier-transform of the time domain signal provides
the frequency and lifetime of the collective mode in the material.

The novel experimental approach adopted in this thesis to address quantum
fluctuations in condensed matter is rooted in the framework of ultrafast spec-
troscopy but also exploits techniques from quantum optics. An introduction to
such an approach is given in the following.

6



1.4. A novel approach to atomic quantum fluctuations

1.4 A novel approach to atomic quantum fluctuations

Although standard pump-probe technique has been largely adopted to investigate
coherent vibrational modes in crystal®?, the typically measured quantity, that is
the intensity of the output probe, provides information only about the average
of the atomic positions during the collective excitation. It is indeed possible to
follows the time evolution of the average position of the atoms, since it is linearly
mapped (through the modulation of the dielectric function) into the number of
probe photons scattered by the sample. Nevertheless one has no chances in this
way to directly measure the quantum fluctuations of the atomic positions around
their average. An intense scientific debate is indeed on-going about the possibility
to measure quantum fluctuations of atomic positions in time domain with respect
to a benchmark level for the shot-noise limit (intrinsic quantum noise limit).?!.
Here this problem is addressed starting from the consideration that in a pump-
probe experiment the probing light contains much more information that just the
intensity, which is measured in standard pump-probe experiments. I give here and
introduction to the two experimental schemes designed and realized during my
PhD research activity and that will be presented in detail in the next chapters.

e The first experimental apparatus has been designed starting from a typical
pump-probe setup but adding the possibility of measuring the entire photon
number quantum statistics of the scattered probing light. This experimental
scheme, sketched in Fig 1.5, is based on the possibility to separately acquire
each single scattered probe pulse. Working with high repetition-rate laser

Photon number quantum
statistics

....... £y

;'-Slnsle pulse:
| differential |

Figure 1.5: Scheme of the photon number quantum statistics experiment. For each time
delay between the pump and probe, several scattered probe pulses are singularly acquired and
the photon number statistics is measured.

sources allows to have access to a wide statistics in few seconds and to be
able to measure not only the average number of photons ({n) (¢)), related to
the average atomic positions, but also the higher photon number statistical
momenta ({7¥) (t)), into which the fluctuations of the atomic positions can be
mapped. In particular, by adopting a fully quantum mechanical theoretical
treatment, from the fluctuations of the photon number of the scattered probe
it is possible to extract information about the atomic quantum fluctuations.

e Following the same conceptual path, the second experimental apparatus in-
cludes the first one but at the same time expands its capabilities. In par-

7



Chapter 1. Introduction

ticular, it allows not only to investigate the photon number quantum dis-
tribution, but also to have access to the maximum information about the
scattered probing light, 7. e. its quantum state. This novel spectroscopic
tool combines time resolved optical spectroscopy techniques (pump-probe
experiments) and quantum optics techniques for the measurement of photon
quantum states. The experimental scheme, sketched in Fig 1.6, is similar to
a standard pump-probe experiment with the difference that the probe pulses,
after the interaction with the system, are sent to a quantum optics experi-
mental setup in order to study their quantum state. The method adopted for
the optical quantum state reconstruction is optical homodyne tomography.
With this experimental scheme, that we indicate as pump-probe quantum

Pump-probe quantum
state tomagraphy

sample

Figure 1.6: Scheme of the pump-probe quantum state tomography. For each time delay
between the pump and probe, several scattered probe pulses are sent to the balance homodyne
detection apparatus for the measurement of the optical quantum state at each instant.

state tomography, the quantum states of the probing light pulses are com-
pletely characterized in the time domain. The aim of this experiment is to
have access to the quantum state of collective atomic vibrations in crystals
through the study of the quantum states of the probing light pulses after the
interaction with the material.

The proposed spectroscopic approach, which consists in the two just introduced
experimental schemes, has been tested here for the study of quantum fluctuations
of phonons in a-quartz which serves as a case study for transparent materials.
However, it can be in principle generalized to the study of quantum proprieties of
any collective excitation in solids.

1.5 Reading guide

Here I would like to contextualize the PhD research activity reported in this thesis
and give some guidelines for the reading.

This research project has been carried out in the T-ReX laboratory within the
Fermi project at Elettra Trieste’s synchrotron facility. Some of the preliminary
experiments have been performed at the LOA laboratory at ENSTA ParisTech
institute in Palaiseau. The development of the technological instrumentation has
been obtained in collaboration with the CAEN company. The theoretical part of

8
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the project has been developed in close collaboration with the “open quantum sys-
tems - theory research team” at the University of Trieste. The computational part
of the project saw a collaboration with the scientific computing team of the Elet-
tra synchrotron facility. The project included the participation of several students
putting into effects two master theses, one bachelor thesis and several national and
international internships.

The daily comparison with all the involved persons and an intense team work
constituted the motor of the project and for this reason I am convinced it is correct
to adopt for the rest of the thesis a writing style with the first person plural.

A flow diagram representing the scientific purposes of the project and the dif-
ferent experimental approaches adopted is shown in Fig 1.7.

Scientific motivations Experimental strategy
s N h
STARTING Time domain study of the standard pump probe optical
GOAL average displacements of experimets

atoms in crystalline solids

1. Time resolved photon

CORE Time domain study the number quantum statistics
— quantum fluctuations of the

atomic displacements
2. Pump probe quantum state

tomography

. AN J

Prespectives

Unvealing the quantum nature of collective excitations in complex materials

Figure 1.7: Flow diagram of the research project.

The results obtained in this three years long research activity are presented
using the following scheme:

e Chapter 2 gives an introduction to the theoretical background needed for

the description of photon and phonon dynamics in quantum mechanics and
of their interaction. In particular, photons and phonons are described with
the formalism of the quantum harmonic oscillator; the standard classical
and semiclassical theoretical treatment of impulsive excitation of coherent
phonons in solids are reported and finally the proposal of a fully quantum
model for photon-phonon interaction in optical time domain experiments is
presented.

Chapter 3 is dedicated to the measurement of quantum states of light in
pulsed regime. The optical homodyne tomography technique is described
and our experimental results are reported. Our investigation about the treat-
ment of the inefficiencies in homodyning experiments is also presented. We
approached this issue both by the tomographic point of view and by the
technological and experimental point of view.
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e Chapter 4 reports our results about the investigation of quantum fluctuations

of lattice displacements by the photon number quantum statistics approach
in non-equilibrium experiments. The combination of shot-noise limited pump
probe experiments and a fully quantum description of the impulsive phonon
excitation in transparent materials allowed us to uncover the fluctuations in
non-equilibrium lattice dynamics.

Chapter 5 describes the pump probe quantum state tomography technique.
The method has the aim to characterize, via optical homodyne tomography,
the quantum state of the probing optical pulses in time domain ultrafast
spectroscopy experiments. The technique has been tested by studying the
dynamics of photo-excited phonons in a sample of quartz. The preliminary
experimental results are reported.

e Chapter 6 reports the conclusions and the perspectives of the research project.
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Photon - Phonon interaction

The word “quantum”, from the Latin for “how much”, indicates a discrete and indi-
visible quantity of energy'. As photons are the quanta of the electromagnetic field,
phonons are the quanta of the atomic vibrational field in matter. This thesis aims
at the study of quantum fluctuations of phonons in crystals by exploiting ultrafast
optical spectroscopy. The leading idea of this work is to map the fluctuations of
the atomic positions into the fluctuation of the number of probing photons after
the interaction with the material. In this Chapter the problem of a theoretical
treatment for photon-phonon interaction in time resolved optical experiments is
addressed.

2.1 Introduction

At a finite temperature the atoms that form a crystalline solid vibrate around their
equilibrium positions, with an amplitude that depends on the temperature. Since
in crystals the atoms are arranged in lattice with precise symmetries, these vibra-
tions can be analyzed in terms of normal modes describing the collective motion
of the atoms with specific patterns?. The displacement of the atoms along such
vibrational eigenmodes of the crystal are characterized not only by thermal fluc-
tuations but also by intrinsic quantum fluctuations. Indeed, even at absolute zero
temperature, according to quantum mechanics, there will be zero-point vibrations?.

In this thesis a novel approach to access the quantum fluctuations of the atomic
positions in pump-probe experiments is proposed. In this kind of experiments an
intense pump laser pulse drives a collective atomic excitation in the crystal and
a less intense probe laser pulse interacts with the system out-of-equilibrium. We
developed two experimental schemes that allow for (i) the measurement of the
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Chapter 2. Photon - Phonon interaction

photon number quantum statistics and (ii) the quantum state reconstruction of the
probe pulses in a pump-probe setup. In order to predict how the fluctuations of the
atomic positions in a lattice can be mapped onto the photon quantum fluctuations
of the probe field, we propose a novel theoretical approach to time domain studies.
This theoretical treatment describes quantum mechanically both the material and
the optical fields involved in the interaction process. The model has been developed
in close collaboration with the “open quantum systems - theory research team” at
the University of Trieste?.

Before going into the details of such a model it is necessary to introduce the
basic tools for the quantum description of both the electromagnetic fields and the
vibrational atomic fields. Both are typical examples of bosonic systems and can be
modelled as quantum harmonic oscillators.

This Chapter is organized as follows,

e The theoretical background necessary for the adoption of the quantum har-
monic oscillator formalism is provided (Section 2.2).

e The harmonic oscillator formalism is exploited to give an explicit description
of light pulses in terms of photons and collective atomic vibrations in terms
of phonons (Sections 2.3, 2.4 and 2.5 ).

e The photon-phonon interaction in pump probe experiments is described us-
ing two different theoretical approaches and focusing on the case of trans-
parent materials. In particular, the first approach is the standard non-linear
optical approach which, although treats both photons and phonons classi-
cally, is of fundamental importance to frame the physical context of our
experiments. The second treatment consists in the standard semi-classical
approach to phononic quantum states generation and describes quantum
mechanically only phonons while the optical fields are treated classically
(Section 2.6).

e Finally our fully quantum theoretical treatment for the description of phonon
excitation and detection in transparent materials is reported (Section 2.7).

2.2 The quantum state of a physical system

“State means whatever information is required about a specific system, in addition
to physical laws, in order to predict its behavior in future experiments”. With this
sentence Ugo Fano effectively introduces the concept of quantum state of a physical
system in his review paper”. A brief introduction to the basic concepts necessary
for the representation of a generic quantum state is now provided.

There are states, in quantum mechanics, which are characterized by the fact
that the information about the system under consideration is known in the most
deterministic way permitted by quantum mechanics itself®. Such states are called
pure states and the information about them is encoded in a normalized vector |¥).
The latter belongs to a Hilbert space H, which contains all the possible states of
that system. These vectors can be conveniently represented in one of the bases for
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2.2. The quantum state of a physical system

‘H and can therefore be expressed as a wavefunction W(¢,7). For pure states an
experiment exists, at least in principle, whose outcome is unique and predictable
with certainty when performed on a system prepared in that state. A measurement
of this kind is called “complete”, for it provides the maximum amount possible of
information about that variable of the system. In the formalism of vector states, the
expectation value of an observable, identified by an Hermitian operator O acting
on the Hilbert space H of the state, is given by

(0) = (¥[0]w) = T¥[O ) (¥]] , (2.1)

and it suggests that a state can also be identified by the projector |¥)(¥|.

However, systems also occur for which no complete experiment gives a unique
outcome predictable with certainty®. For this reason there exist a more general
description for quantum states in terms of density matrices acting on H: that is
by Hermitian, non-negative Hilbert-space operators of unit-trace,

p= ZMWW (2.2)

such that
=1 N>0, (W) =1, Vi (2.3)
3
The density operator formalism is necessary in order to describe statistical ensem-
bles of quantum systems, which cannot be associated with a single vector in H. A
state is pure when p becomes a projector on the Hilbert-space, i.e. when there is
only one coefficient \ different from zero and equal to one, otherwise it is mized and
describes a statistical ensemble of physical systems in states |¥;) (¥;| with weight
Ai. Note that, being (2.2) just one of the possible representations of p, the choice
of the set of |¥;) is not unique.
The expectation value of an observable O on the state identified by p is given
by . R
(O)p = Tr[Op] . (2.4)

This last equation offers a more general definition of the density matrix, by making
no reference to any particular set of pure states, as equation (2.2) instead does®.

From the definition of the density operator in (2.2) and the Schrodinger equa-
tion

0 i -
o ) = — 2 ). (25)

we can easily obtain the time evolution of p

9p o) |
5 = > | NGl + 310 A

- —7HZ|1/)Z (Wil + 7 sz (vil H
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The previous relation is known as Liouville von Neumann equation”’. In order to
describe the time evolution of the density operator one can also use the matrix
representation and study the time dependence of each matrix elements®.

The task of experimentally determining the quantum state of a system consists
in gathering all the information needed to perform the predictions about the future
behaviour of the system (like in (2.4)). One of the techniques to retrieve the state
of a system is the quantum tomography of the state, which will be discussed in
more detail in Chapter 3, where the problem of the tomographic reconstruction of
quantum states of light is addressed.

2.2.1 Wigner function

A useful object, which allows a direct visualization of the state of a system, is a
particular transform (the Wigner transform or Weyl anti-transform) of the density
matrix: the Wigner function, defined as follows

1 _
Wolep) = 5= dy<q+*|p|q > typ/h (2.6)

or symmetrically in p°. It is a normalized and real function in the phase-space,
i.e. a space spanned by two conjugate variables, usually denoted with ¢ and p.
The Wigner function univocally characterize the quantum state, however in this
respect infinite other functions satisfy this request'’. The main advantage in rep-
resenting a quantum state in terms of its Wigner function is that it behaves like
a quasiprobability distribution for the state. This means that its marginal distri-
butions, that is the integrals of the functions over the two phase-space conjugate
variables, correspond to the probability densities of the state in the two variables:

Lémww%m = (ol = (27)

Amm%m::wmmﬂ@mf, (2.8)

where the last equality in both the expressions is valid only in the case of a pure
state p = |U) (¥|.

Moreover, it is possible to express the expectation values of any observable O as
simple phase-space average of its Wigner transform, i.e., by taking the function

Wo(g,p) = dy g+ *I O lq— > —typ/h (2.9)

1
21h
the expectation value of O will be

(0) = /dqde (¢,p) Wo(q,p) = Tr[O p]. (2.10)
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This propriety derives from the so called overlap formula ! (or trace product rule !*)
of the Wigner function, which in the case of two pure states, p; = |¢1) (1] and

p2 = [th2) (P2l reads

| (Wr]gpa) 2
27Th/RdQ/deWp1 (4:2) Wp, (¢:p) - (2.11)

Tr [p12]

The latter represents the transition probability between the pure states |11) and
|th2). Notice that, if the two states are orthogonal their scalar product is zero. From
the second line of relation (2.11) one can observe that in order to have a null inte-
gral, at least one of the two Wigner functions should assume some negative values
(excluding particular cases). This possibility of assuming negative values repre-
sents one of the main differences of the Wigner function with respect to classical
probability distributions®.

The advantages of the Wigner function representation becomes evident in the
treatment of the quantum harmonic oscillator.

2.3 The quantum harmonic oscillator

Both the kinds of systems which we deal with in this thesis, i.e. the modes of the
electromagnetic field and the vibrational modes in condensed matter lattices, can
be described as quantum harmonic oscillators.

In order to describe a system as a quantum harmonic oscillator one has to iden-
tify two variables which behaves like the conjugate position and momentum of the
harmonic oscillator®. In the case of the vibrational field these quantities are the
displacement and the linear momentum of a normal mode of the atomic lattice. In
the case of the electromagnetic field, instead, they are the real and imaginary parts
of the complex time-evolving electric field, also known as quadratures. In the first
case the mode excitations are called phonons, in the second case, photons. Once
this correspondence between the harmonic oscillator position and momentum and
the associated physical quantities of the system has been identified, the procedure
is a straightforward application of the standard quantization of the harmonic os-
cillator 2. In the following a brief introduction to the quantum harmonic oscillator
formalism is reported and some examples of typical quantum states are given.

In classical mechanics an harmonic oscillator is a system that, when displaced
from its equilibrium position, experiences a restoring force which is proportional
to the displacement. The classical Hamiltonian of the harmonic oscillator is
_ P2 mw?

H + TQ2’ (2.12)

- 2m
where @ and P are the position and the linear momentum of an oscillator with
mass m. Such a system is characterized by an oscillating motion at the specific
frequency w which identifies a so called normal mode. A normal mode of an
generic oscillating system is a pattern of motion in which all parts of the system
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move sinusoidally with the same frequency and with a fixed phase relation'3. The
concept of normal mode is very important since the most general motion of a system
can be described as a superposition of its normal modes.

In quantum mechanics, given a specific mode characterized by the frequency
w, the harmonic oscillator is described starting from the bosonic creation and an-
nihilation operators of the mode: @ and a. The hamiltonian for the free oscillator
is 1

FIO:hw(&Td+§). (2.13)
The position and momentum operators are defined as the following linear combi-
nation of & and a',
a+al a-—al
) pP=—T—"7="-
V2 iV?2

The correspondence between the just defined position and momentum operators
and the position and linear momentum variables in the classical Hamiltonian in
(2.12) are the following:

(2.14)

K

R R mw
p — q — 7@

Throughout the rest of the thesis, we will use the natural units (i.e., A = 1) and
consider quantum harmonic oscillators of unity mass. With this convention, one
can verify, from the bosonic commutation relations ([a,a] = 1), that the position
and momentum operators are canonically conjugated observables,

[9,p] = 1, (2.15)

and satisfy the Heisenberg uncertainty principle,
1
Agdp> . (2.16)

where Aq = (§2) — (¢)* and Ap = (p%) — (p)” are the variances of the operators §
and p.

2.3.1 Examples of quantum states

The most natural states of the quantum harmonic oscillator to work with are
the Fock states |n), eigenstates of the Hamiltonian Hy and therefore also of the
number operator 7 = afa:

fln) = a'a|n) =n|n). (2.17)

They are also called number states and constitute an orthonormal basis of the
Hilbert space (number basis). The ground state of Hy, known as vacuum state
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|0}, is defined by the following action of the annihilation operator,

al0) =0, (2.18)

7 10 (2.19)

The action of the creation and annihilation operators on these eigenstates of the
Hamiltonian is to create of destroy a quantum of excitation in the following way:

atn)y = VnFlln+1) (2.20)
aln) = Vnjn—-1) .

The Wigner function of the Fock state with n = 1 is shown in Fig 2.1, together

Number state |n>, n=1

>
= 1.0 4 0.2
%
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g B Opd i 4 0.0
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Q —4r -0.2
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0 1 2 3 4 5 -4 -2 0 2 4

Fock number n q

4 -4
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(@) (b) ()

Figure 2.1: Number state |n) with n = 1. Occupation probability distribution (a). Wigner
function bi-dimensional (b) and tri-dimensional (c) plot.

with its occupation probability distribution. The Fock states of the harmonic
oscillator are the simpler example of states for which the Wigner function assumes
also negative values. The number states describe states in which the oscillator is
populated with exactly n excitations. For this states the expectation value of the
position (n|§|n) is time-independent and equals 0 whatever excited number state
the oscillator is in. To get a time-dependent expectation value of ¢, a superposition
of number states must be taken. Out of these non-number states of the harmonic
oscillator the commonest are coherent states, which are the closest analogue to
classical coherent oscillations.
Coherent states are defined as eigenstates of the annihilation operator:

ala) = ala), (2.21)

where a € C, because a is not Hermitian. The vacuum state is a special case of
coherent state, since it satisfies (2.21) with o = 0. The Wigner function of the
vacuum state and that of a coherent state with @ = 2 are shown in Fig 2.2 and
Fig 2.3 respectively. An important propriety of vacuum and coherent states is
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Vacuum state [0 >

>
§1_0 al 0.2
2
fos8 2k
=}
806
g o of . 0.0
5 0.4
‘:E' -2
502
go.
Q —4r -0.2
O 0.0 L I S R

0 1 2 3 4 5 -4 -2 0 2 4

Fock number n q

q 2, -4
(€Y] (b) ()

Figure 2.2: Vacuum state |0). Occupation probability distribution (a). Wigner function
bi-dimensional (b) and tri-dimensional (c) plot.

Coherent state |a >, a=2
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Figure 2.3: Coherent state |a) with & = 2. Occupation probability distribution (a). Wigner
function bi-dimensional (b) and tri-dimensional (c) plot.
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that a they are minimum uncertainty states, so that the equality sign in equation
(2.16) holds, as the uncertainties in the two conjugate variables results to be equal
(Agq=Ap= %) Moreover the occupation probability, i.e. the probability p(m) of
the state |a) to be populated with m excitations, is given by a Poisson distribution,

e (™ (p)™

plm) = [(mla)* = (m|a) (alm) = “—

(2.22)
The expectation value of the number operator on a coherent state is (2) = (a|atala) =
|o|?. A generic coherent state can be also written starting from the vacuum in the
following way:

) = D() |0) (2.23)

where
D(a) = exp(aal — a*a) (2.24)

is the displacement operator. The term displacement describes the action of this
operator on the Wigner function of the vacuum state. Coherent states can be also

written in the number basis!* as

la) = =% 1;) \% In). (2.25)

In this states the expectation value of the position (@|§|a) with o # 0 is time
dependent and oscillates at frequency w. The time dependence of the expectation
values of ¢ and p can be calculated starting from the coherent state’s definition
and the expression of ¢ and p as a function of the mode operators. However,
the Wigner phase space approach provides a more intuitive way to visualize the
evolution of a state. In fact, the time evolution operator of H, rotates the Wigner
function around the origin of the plane, analogously to the classical case, in which
a harmonic oscillator is described by a rotating vector in phase space®.

The vacuum and the coherent states satisfy the equality in the uncertainty rela-
tion in (2.16) in the most simple way possible, namely with both Ag and Ap equal
to 1/2. However, the Heisenberg relation does not make any request to the distri-
bution of the observables taken singularly but only to the product of the variances
of two conjugated observables. The fluctuations in one of the two can be therefore
reduced (or squeezed) at the price of the increasing of the fluctuation width of its
conjugate. States that display such noise properties are called squeezed states.
The term squeezed generally refers just to the unbalance in the noise between the
two observables, which can exist also for states that do not saturate the uncertainty
relation, such as thermal ones. In order to specify the case in which one of the un-
certainties falls below the vacuum limit (i.e. the Heisenberg relation is saturated)
one generally refers to vacuum squeezed state. Such a state can be defined starting
from the vacuum in the following way:

5(6)10), (2.26)
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where )
S() = e><10[§(5&T2 - ¢*a?)] (2.27)
is the squeezing operator with &€ = re’¥ € C the squeezing parameter. An example

of Wigner function associated with such a state is shown in Fig 2.4. In Fig 2.5 is
shown a displaced - squeezed state.

Vacuum squeezed S(¢)[0 >, £=0.9
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Figure 2.4: Vacuum squeezed state S(£)|0), with £ = 0.9. Occupation probability distri-
bution (a). Wigner function bi-dimensional (b) and tri-dimensional (c) plot.

Displaced - squeezed state D(«)S(¢)[0>, £=0.9, a=1
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Figure 2.5: Displaced squeezed state D(a)S(£) |0), with £ = 0.9 and a = 1. Occupation
probability distribution (a). Wigner function bi-dimensional (b) and tri-dimensional (c) plot.

An other important example among the quantum harmonic oscillator states
are thermal states. They are states of the harmonic oscillator which present a
thermal boson population. This means that the mean number excitations which
populates the state is given by

1

() = o - (2.28)

These states describe a harmonic oscillator at equilibrium at a temperature T'. The
inverse temperature § is defined as 8 = 1/kpT, with kp the Boltzmann constant.
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The density matrix of such a state can be written as

e—ﬁwzﬂa
b = ————— . 2.29
B Tr[e*ﬁ““““] ( )
Indicating with N the mean number of bosons in the thermal state (equation
(2.28)), the density matrix in (2.29) can be expressed as follows,

) = o 2 () el (2:30)

n=0

The thermal state Wigner function is a Gaussian function centred on the origin of
the phase space, as the one of the vacuum state. An example of Wigner function
of a thermal state is given in Fig 2.6. It is a Gaussian function centered in the
origin of the phase space as for the vacuum state, However, one can easily notice
that a thermal Wigner function is broader than a vacuum one. Moreover, in the
case of the vacuum state, the number of bosons in the harmonic oscillator is zero,
while for the thermal state it is given by equation 2.28. A broad quasiprobability
distribution means also a larger variance, and hence, noise, in the measurement of
G and p. In particular, the higher the temperature, the larger the noise.

Thermal state with <n >=0.7
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Figure 2.6: Thermal state pg, with (n) = 0.7. Occupation probability distribution (a).
Wigner function bi-dimensional (b) and tri-dimensional (c) plot.

Let us consider the case of the vibrational modes in crystals. There the atomic
oscillations have energies such that the thermal population of the mode is usually
relevant even at room temperature. In particular, being the energies of phonons
very small (tens of millielectronvolts), the vibrational modes are thermally pop-
ulated even at room temperature. Therefore, phonon modes at equilibrium must
generally be described with thermal states. For the electromagnetic modes instead
one usually works with photon energies much higher than the room temperature
energy (kpT = 25meV), and thus, the thermal photon population of the mode is
often negligible®.

Acting on a thermal state with a displacement operator produces a displaced
thermal state. Despite the term “thermal”, such a state does not describe a system
at equilibrium with its surroundings at a given temperature. As for a coherent
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state, in a displaced thermal state the operators ¢ and p have oscillating expec-
tation values. Their variance, instead, is larger than the one for a coherent state
and is determined by the original temperature of the “undisplaced” state. In the
same way, squeezed thermal states can also occur, which have the phase-dependent
variance characteristic of squeezed states. These states of the harmonic oscillator
are all characterized by Gaussian Wigner functions and for this reason they be-
long to the class of the so called Gaussian states. The most general single mode
Gaussian state can be given by:

ﬁGauss(a7 & N) = D(a) S(&) IéB(N) 51 (6) DT(Q)’ (2'31)

where D(«) is the displacement operator defined in equation (2.24), S(§) the
squeezing operator in equation (2.27) and N the mean number of bosons in the
thermal state (equation (2.30)). For example, if £ = 0 and N = 0, the Gaussian
state (2.31) is reduced to a coherent state (2.25) p = |a)(«a|, which is the vacuum
for a = 0; while, for « = 0, N = 0 and £ # 0 one obtains the squeezed vacuum.
The Gaussian states can be theoretically dealt with in a standard way. Indeed, it
is possible to define two quantities, the first-moments vector R = (G,p)T and the
covariance matrix o, that fully characterize such states'®. The covariance matrix
elements are given by:

ks = 5 {0k B)) — (Ry) (R (232

where {A,B;} = AB + BA is the anticommutator between two operators and
(A) = Tr[pA] the expectation value of the operator A on the state p. The explicit
expression for the covariance matrix for a generic quantum state is the following,

_(, @ -@ 3@t~ @) o)
T (% (Gp + pd) — (a) () () — (p)?* ) - (2.33)

For the specific case of Gaussian states, equation (2.31), with displacement
parameter a = ae'®, squeezing parameter £ = re’¥ and thermal parameter N, the
covariance matrix elements can be expressed with the following general form:

142N

Okk = [cosh (27) — (—1)* sinh (27) cos 1], (k=1,2)

142N

sinh (2r) sin ), (2.34)

012 = 021 =
while the first-moments vector is given by:
(R) = V2(Re|a], Sm[a])T = V2(acos ¢, asin p)” . (2.35)

With this notation, one can easily write the Wigner function of a generic single
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mode Gaussian state (2.31):

_exp{—3(X - R))To" (X~ (R))}
WPGauss (X) - ’]T\/(W 9

where X = (¢,p)T € R2.

Gaussian states are the typical phonon and photon states we deal with in our
experiments. Moreover, some of the interactions of a harmonic oscillator in a
Gaussian state with external degrees of freedom can be described as simple trans-
formations within the class of gaussian states. The interactions that fall into this
category are said to preserve the gaussianity of the state®.

(2.36)

2.3.2 Lowest order interactions for the harmonic oscillator

In the framework of the time evolution of quantum states of the harmonic oscil-
lator, those interactions which preserve the gaussianity of the state are associated
with interaction Hamiltonians which are linear or, at most, bilinear in the mode
operators aj and &; 15 (the index k indicate a specific mode of the harmonic oscil-
lator). Considering the general case in which many different modes are involved,
the most general linear and bilinear interaction Hamiltonian has the form:

i = [Nl 4 he] + [ Y Bafa+he|+ [ Y qvajal +he] . @37)
k k,l k,l

displacement 2 modes mixing 1 and 2 modes squeezing

where h.c. indicates the hermitian conjugate. In equation (2.37) one can easily
identify three distinct components which are commented in the following.

1. The linear part contains terms like (a +€L,T€). Each of these terms corresponds
to an evolution operator totally similar to the displacement operator defined
in (2.24), which acting on the vacuum generates a coherent state in the mode
k.

2. The second block contains terms of the form (d;idl + h.c.). Each of these
terms describes an interaction that involves linear mixing of two modes, like
for example the interaction between two optical modes due