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Introduction

This thesis describes the realization of an experimental apparatus for the

Balanced Homodyne Detection (BHD) of quantum states of light. This experi-

mental technique provides a way to measure optical quantum states generated

by both continuous and pulsed laser sources.

“Measuring” the quantum state of a physical system means to completely

characterize the system since in this way the expectation value of all its

observables can in principle be obtained.

BHD is extensively used in Quantum Optics, since it gives the unique opportu-

nity of measuring all possible linear combinations of position and momentum

of the harmonic oscillator representing a single mode of the electromagnetic

radiation. From such measurement the quantum state of the single mode

radiation field can be retrieved. The method as a whole is called Optical

Homodyne Tomography.

More specifically, we realized a Balanced Homodyne Detector which works

in pulsed regime; the optical states we measured are coherent states generated

by a pulsed laser source which produces a train of ultrashort pulses of about

10−13 seconds duration.

BHD in pulsed regime is experimentally more challenging then the BHD

based on continuous laser sources. We chose to work in a pulsed configu-

ration in view of possible applications of this apparatus to time-resolved

spectroscopy experiments: by measuring at different times the quantum state

of the pulsed light after the interaction with a material, it will be possible

to follow the dynamics of the excitation phenomena (for example coherent

vibrational states) which can be created in the material itself. This thesis can
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be regarded as the first step toward the realization of such novel experimental

framework. The research project, of which this thesis constitutes the starting

point, turns out to be a theoretical-experimental collaboration between the

theoretical group of the Department of Physics at the University of Trieste

(dr. Fabio Benatti and dr. Roberto Floreanini) and the T-Rex experimental

group at Elettra-Sincrotrone in Trieste led by prof. Fulvio Parmigiani.

The thesis is divided in two parts: a theoretical part, consisting in the study

of the theoretical model needed for the description of the Balanced Homodyne

Detection in a pulsed regime and an experimental one which deals with the

actual experimental realization and characterization of the apparatus.

The original content of the work can be regarded to be twofold: from the

theoretical point of view, a mathematical framework to appropriately describe

the homodyne detection in pulsed regime has been developed using the for-

malism of the Quantum Optics; to our knowledge, this issue has been poorly

treated in the literature. From the experimental point of view, the novelty of

our apparatus is that it has been realized using exclusively commercial tools

for the optical pulses detection.

The thesis consists in six Chapters and three Appendixes.

Chapter 1 introduces the theoretical background needed to describe the

homodyne measurements of optical quantum states, introducing the formalism

of Fock states and coherent states and starting from the concept of quantum

tomography as a technique to retrieve the state of a generic quantum system;

Chapter 2 discusses the theoretical model of the BHD technique; Chapter

3 describes the experimental apparatus in regard to the pulsed laser source,

the optomechanical set up and the acquisition system; Chapter 4 contains

the presentation of all the characterization measurements of the apparatus;

Chapters 5 and 6 present respectively the homodyne measurements of coherent

states with different mean number of photons per pulse and the data analysis

of such measurements. The mathematical formalism we developed to describe

the BHD in quantum regime is presented in Appendices.
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Chapter 1

Preliminary concepts

A physical system in Quantum Mechanics is totally described by its quantum

state, in which the whole information about the system is encoded. From the

experimental point of view, the challenge is to retrieve the state of a generic

physical system.

Nevertheless, as for continuous variable quantum states of light, a highly

efficient experimental method, called Optical Homodyne Tomography, exists

to achieve this goal. With this technique, the quantum state of a single

optical mode produced by a laser source can be totally reconstructed.

This thesis consists in the setting up of an experimental apparatus for the

homodyne tomography of single-mode states of light in pulsed regime.

In this chapter we provide the theoretical background necessary for the

description of the experimental scheme and the treatment of the experimental

data in order to retrieve the states of light under investigation.

1.1 The concept of quantum tomography

Quantum tomography consists in the determination of the state of a quantum

system. In Classical Mechanics, one can always fully recover the state of a

system by a set of multiple measurements on it. In Quantum Mechanics this

is not always possible, due to fundamental limitations imposed by the very

nature of the theory. In fact, the Heisenberg uncertainty principle forbids to

perform an arbitrary sequence of measurements on a single system without
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CHAPTER 1. PRELIMINARY CONCEPTS

inducing on it modifications of some sort. Moreover, the no-cloning theorem

asserts that it’s not possible to create a perfect copy of the system without

already knowing its state in advance. Thus, in general, there is no way to

infer the quantum state of a single system doing measurements on it.

Nevertheless, it is possible to estimate the unknown quantum state of a

physical system when many identical copies of it are available in the same

state: in this way independent measurements can be performed on each copy.

Indeed, quantum tomography typically consists in several measurements

performed on many ensembles of identically prepared systems, each time

modifying the measurement apparatus so that different sets of data, asso-

ciated with different bases, can be acquired. Then, the data are combined

using reconstructional algorithms to finally get the state of the system.

The problem of quantum state determination through repeated measurements

on identical copies of a quantum system was studied for the first time in

1957 by Fano [1], who recognized the need of measuring more than two

non commuting observables to achieve such goal. He called "quorum" a

set of observables whose measurements is sufficient to provide a complete

determination of the state of the system.

However, the first experimental demonstration of a tomographic state recon-

struction was done in the domain of Quantum Optics by Smithey et al. in

1993 [2], on the basis of the theoretical work of Vogel and Risken (1989) [3].

This 1993 paper introduced the term tomography into Quantum Optics and

its general scheme is still used today for investigating quantum properties of

continuous variable states of light.

In Quantum Optics, in fact, using a balanced homodyne detector (treated

in detail in the next chapter), one has the unique opportunity of measuring

all possible linear combinations of position and momentum of a harmonic

oscillator, which here represents a single mode of the electromagnetic field.

Such observables are called field quadratures and constitute a quorum of

observables for the state determination of a single mode radiation field. The

technique as a whole is called Optical Homodyne Tomography (OHT ).

The success of OHT promoted the development of state-reconstruction proce-

dures in other quantum harmonic oscillator systems, such as the vibrational

states of a molecule [4], or of a single trapped ion [5].
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1.1. The concept of quantum tomography

Other general methods of state reconstruction led to generalize homodyne

tomography with any number of modes, and then to extend the tomographic

method from the harmonic oscillator to an arbitrary quantum system using

group theory [6].

Nowadays, quantum tomography is applied to a variety of quantum sys-

tems [7, 8] and constitutes a standard tool especially in the experimental

implementation of Quantum Information protocols [9].

1.1.1 Density operator formalism

Quantum tomography is a method to estimate the state of a quantum system;

we now specify what one means for states of a quantum system. The formalism

used in Quantum Mechanics to describe the state of a generic quantum system

is now presented.

Quantum states embody all what one knows about a physical system: the

standard ones are the so-called pure states corresponding to normalized

vectors |Ψ〉 in a suitable Hilbert-space H.
The mean values of the system observables, Hermitian operators A = A†

acting on H, are given by: 〈A〉Ψ = 〈Ψ|A|Ψ〉 = Tr[A|Ψ〉〈Ψ|]. Thus, vector

states can be identified by projectors |Ψ〉〈Ψ|.
More generally, the so-called mixed states are described by density matrices

ρ̂ acting on H: that is by Hermitian, non-negative Hilbert-space operators of

unit-trace,

ρ̂ =
∑
i

λi|Ψi〉〈Ψi| (1.1)

such that ∑
i

λi = 1, λi > 0, 〈Ψi|Ψi〉 = 1, ∀i. (1.2)

The states of quantum systems are generic density matrices.

A state is pure when ρ̂ becomes a projector on the Hilbert-space, i.e. when

there is only one coefficient λ different from zero and equal to one, otherwise

it is mixed and describes a statistical ensemble of physical systems in states

|Ψi〉 〈Ψi| with weight λi. In order to clarify this concept, we give an example

of mixed quantum state in Appendix A.
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CHAPTER 1. PRELIMINARY CONCEPTS

To estimate the state of a physical system quantitatively means estimating

all matrix elements of ρ̂,

ρjk = 〈Φj |ρ̂|Φk〉 (1.3)

in a representation of the density matrix in a given basis {|Φi〉}. Indeed, the
knowledge of all the density matrix elements (1.3) enables the observer to

make the best possible statistical predictions about any future time-evolution

of the system; namely the knowledge of the expectation value 〈A〉t = Tr[ρ̂t Â],

with respect the state ρ̂t at time t, of any observable Â of the system.

For example, if one considers a generic two-levels quantum system, a so called

qubit, the density operator ρ̂ will be defined in a two-dimensional Hilbert

space with the standard basis {|0〉 , |1〉} (eigenstates of the Pauli matrix σz):

ρ̂ =

(
ρ00 ρ01

ρ01 ρ11

)
; (1.4)

the conditions for ρ̂ to be hermitian, non negative and of unit trace are:

ρ00, ρ11 ≥ 0; ρ00 + ρ11 = 1; ρ01 = ρ∗10; Det[ρ̂] ≥ 0. (1.5)

In order to determine the state of the system, it’s necessary to retrieve all

matrix elements in (1.4).

As for the diagonal elements, they can easily be estimated by measuring

the probabilities P (0) and P (1) of obtaining the results 0 or 1 after a high

number of measurements of the system in the standard basis. Indeed, those

probabilities approach the mean values of the projectors |0〉 〈0| and |1〉 〈1|:

ρ00 = Tr[ρ̂ |0〉 〈0|], ρ11 = Tr[ρ̂ |1〉 〈1|]. (1.6)

On the contrary, to obtain both real and imaginary parts of the off-diagonal

elements is not so immediate.

For example, they could be obtained from the mean values of the observables

|0〉 〈1|+ |1〉 〈0|√
2

,
|0〉 〈1| − |1〉 〈0|

i
√

2
. (1.7)

This can be done performing measurements of the system in a basis different

from the standard one; for instance, that of the Pauli matrix σx.

The operators in (1.7) together with |0〉〈0| and |1〉〈1| constitute a quorum
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1.2. Tomography in quantum optics

of observables, because, measuring them, one can completely estimate the

density matrix.

Only the knowledge of all matrix elements corresponds to a complete knowl-

edge of the state ρ̂.

This simple example concretely shows the necessity in quantum tomography

to identify a quorum of observables of the system and to estimate their mean

values by measurements in different bases of the Hilbert space in order to

retrieve, from the experimental results, the density matrix elements, that is

the state of the system.

1.2 Tomography in quantum optics

After the previous brief introduction to the tomographic reconstruction of a

generic quantum state, the specific case of quantum tomography of light is

now presented, with particular attention to the OHT technique.

1.2.1 Review of Quantum Optics concepts

In quantum optics there is a perfect formal analogy between an electromag-

netic field mode, characterized by a certain frequency and polarization, and a

quantum harmonic oscillator, whose description is set within the framework

of a infinite dimensional Hilbert space called Fock space.

A single mode of the radiation field is described by the mode operators â and

â†, satisfying the bosonic commutation relation [â, â†] = 1.

The Fock space, in which the system lives, is spanned by the number basis

{ | n〉 }n∈N , formed by the eigenstates of the number operator n̂ = â†â,

corresponding to n photons in the single mode.

The free mode-Hamiltonian is Ĥ = (â†â + 1
2); throughout this thesis, we

use the natural units (i.e.,~ = 1) and associate modes to quantum harmonic

oscillators of unity mass and frequency.

It is then possible to define position- and momentum-like operators for the

single mode:

q̂ =
1√
2

(â+ â†), p̂ =
1

i
√

2
(â− â†). (1.8)
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It is easy to see that, from the bosonic commutation relations, the operators

just defined are canonically conjugated observables:

[q̂, p̂] = i, (1.9)

and satisfy the Heisenberg uncertainty principle:

∆q∆p ≥ 1

4
, (1.10)

where ∆q = 〈q̂2〉 − 〈q̂〉2 and ∆p = 〈p̂2〉 − 〈p̂〉2 are the variances of the

observables q̂ and p̂.

So, they can be treated as position and momentum operators, even if they

have nothing to do with the position and momentum of the photons but they

refer to the harmonic oscillator associated to the single optical mode.

Moreover, using the complete formalism of electromagnetic field quantization

[10], one can demonstrate the operators q̂ and p̂ are associated to the electric

field operator in the following way:

Êx(z, t) = E0[cos(ωt)q̂ + sin(ωt)p̂] sin(kz), (1.11)

where E0 has the dimensions of an electric field. We assumed here the single

mode electric field to be polarized along the x -direction while propagating

along the z -direction with frequency ω and wavevector k.

The simplest example of single-mode states of the electromagnetic ra-

diation field are the Fock states |n〉, also called number states, because

eigenstates of the number operator:

n̂ |n〉 = â†â |n〉 = n |n〉 . (1.12)

They constitute an orthonormal basis of the single mode Fock space (number

basis).

The ground state, known as vacuum state , is defined by the following action

of the annihilation operator:

â |0〉 = 0, (1.13)

6



1.2. Tomography in quantum optics

while the excited states are given by:

|n〉 =
(â†)n√
n
|0〉 . (1.14)

The number states have a perfectly fixed photon number (n) and possess

appealing physical properties, but are difficult to generate with present

technology.

Another important class of single-mode states, for their physical meaning,

are coherent states [11], which we now consider in detail.

Coherent states are eigenstates of the annihilation operator:

â |α〉 = α |α〉 , (1.15)

where α ∈ C, because â is not Hermitian.

The Fock vacuum is a coherent state, since it satisfies (1.15) with α = 0.

In particular a generic coherent state can be written starting from the vacuum

in the following way:

|α〉 = D(α) |0〉 , (1.16)

where

D(α) = exp(αâ† − α∗â) (1.17)

is the single mode displacement operator ; indeed,

D†(α)âD(α) = â+ α, (1.18)

D†(α)â†D(α) = â† + α∗. (1.19)

Coherent states can be also written in the number basis [11] as:

|α〉 = e−
|α|2

2

∞∑
n=0

αn√
n!
|n〉 . (1.20)

Finally, it can be shown [12] that a coherent state is a minimum uncertainty

state, so that the equality sign in equation (1.10) holds, as the uncertainties

in the two observables results to be equal (∆q = ∆p = 1
2).

Further details about the coherent states properties are given in Appendix B.

Those pure states, which like the coherent states verify the minimum un-

certainty relation (∆q∆p = 1/4), but for which the two uncertainties are
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CHAPTER 1. PRELIMINARY CONCEPTS

different (∆q 6= ∆p), are called squeezed states.

A quantized light field can be graphically represented using the phasor

diagram, very popular in Quantum Optics, which plots p̂ versus q̂. In such

(a) (b) (c)

Figure 1.1: Phasor diagrams for a vacuum state (a), a coherent state (b),

and a squeezed vacuum state(c) [12].

diagram any particular single mode state is equivalent to an area centered

around the point given by the mean values (〈q̂〉 , 〈p̂〉). Moreover, the size of

the area is given by the square root of the variances:
√

∆q and
√

∆p.

Using these graphics, to note the differences between vacuum, coherent and

squeezed single mode optical states is immediate (Figure 1.1).

1.2.2 Optical homodyne tomography

Optical homodyne tomography is a specific technique for characterizing quan-

tum states of light by measuring a series of continuous-spectrum observables

x̂Φ, called field quadratures, for different Φ ∈ [0, 2π].

This set of observables constitutes a quorum, whose measurement provide

tomographically complete information about the quantum state.

For a single mode radiation field, these continuous degrees of freedom are

defined by generalizing equations (1.8):

x̂Φ =
1√
2

(âe−iΦ + â†eiΦ), (1.21)
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1.2. Tomography in quantum optics

Position- and momentum-like operator (1.8) are obtained for Φ = 0 and

Φ = π/2, respectively: 
x̂0 = 1√

2
(â+ â†) = q̂

x̂π/2 = 1
i
√

2
(â− â†) = p̂

(1.22)

In the quantum optical formalism, these observables can also be considered as

linear combinations of the position and momentum of the harmonic oscillator

associated to the optical mode: x̂Φ = q̂ cos Φ + p̂ sin Φ. The eigenstates |xΦ〉
of the quadrature operator for each Φ can be written in the number basis as:

|xΦ〉 =
e−

1
2
x2

4
√
π

∞∑
n=0

Hn(x)√
2n n!

e−inΦ |n〉 , (1.23)

where Hn(x) is the n-th Hermite polynomial.

They constitute a complete system of eigenstates (
∫
R dxΦ |xΦ〉 〈xΦ| = 1 ∀Φ).

The measurements of the field quadrature x̂Φ are provided by means of an

experimental apparatus called balanced homodyne detector (BHD).

In a typical BHD, the field under study, called signal, interferes at a 50%

beam-splitter with a strong coherent reference beam, called Local Oscillator

(LO). The outputs are collected by two photodiodes and the difference in the

produced photocurrents results to be proportional to the field quadrature

expectation value xΦ, where Φ is defined by the phase of the LO with respect

to the signal and can be easily varied changing the length of the LO optical

path. A more detailed description of the homodyne detection apparatus is

given in the next chapter.

Repeated homodyne measurements on identically prepared light mode in the

state ρ̂ are performed to obtain an experimental histogram which approaches

the probability distribution of the quadrature outcome at a fixed phase:

p(x,Φ) = Tr[ρ̂ |xΦ〉 〈xΦ|] = 〈xΦ|ρ̂|xΦ〉 . (1.24)

This is the probability of having outcome x when measuring x̂Φ. The proce-

dure is repeated for different phases Φ ∈ [0, 2π].

The actual tomography is the technique that from such set of experimental

data leads one to completely characterize the quantum state by reconstructing

9



CHAPTER 1. PRELIMINARY CONCEPTS

its density matrix ρ̂ or equivalently its Wigner function W [ρ̂].

The Wigner function is a c-number quasi-probability distribution, i.e. it is

normalized but it can generally also assume negative values [9]. For a single

mode optical field it is defined as:

W [ρ̂](z) =

∫
C

d2λ

π2
exp{i(λ∗z + z∗λ)}Tr[D(λ)ρ̂], (1.25)

where z = 1√
2
(q + ip) and D(λ) is the displacement operator defined in the

equation (1.17).

The knowledge either of the Wigner distribution or of the density matrix is

equivalent to knowing the quantum state of the system under investigation.

In the first quantum tomography experiment by Smithely and his group [2],

a set of probability distributions for the quadrature of coherent and squeezed

states of light was measured. These histograms were inverted using the

inverse Radon transform to yield the reconstructed Wigner function of the

states (Figure 1.2).

Figure 1.2: Image from [2]. Measured Wigner functions for a squeezed

state (a-b) and vacuum state (c-d) viewed in 3D and as contour plot. The

reconstruction is performed by using inverse Radon transformation.

The Radon transform is an algorithm usually adopted in medical tomography;

10



1.2. Tomography in quantum optics

the main idea at the basis is to recover a two-dimensional (mass) distribution

from one-dimensional projections in different directions. This explains the

origin of the term tomography, from the Greek word τ o µ o ς = slice, which

describes a method to infer an unknown object from its projections under

various angles. Quantum tomography is the application of this idea to

quantum mechanics.

According to theoretical work of Vogel and Risken ([3]), the probability

distribution p(x,Φ), at a fixed phase Φ, is equal to the marginal distribution

of the Wigner function W [ρ̂](q, p) = W [ρ̂](z ≡ q+ip√
2

):

p(x,Φ) =

∫
R
dpW [ρ̂](q cos Φ− p sin Φ, q sin Φ + p cos Φ). (1.26)

In Figure 1.3 the marginal distribution of the Wigner function of a squeezed

state is shown.

Figure 1.3: Marginal distribution of a Wigner function onto a plane rotated

of a Φ angle with respect the q axis [13].

Therefore, in the experiment by Smithely, once have been measured a suf-

ficient number of quadrature distributions p(x,Φ) for different values of Φ,

it was possible to reconstruct the Wigner function using the inverse Radon

transform.

This first tomographic method [2] was very important for the historical devel-

opment of quantum tomography, but it was unreliable for the reconstruction

of an unknown quantum state, since arbitrary smoothing parameters were

needed in the Radon-transform based imaging procedure.

11



CHAPTER 1. PRELIMINARY CONCEPTS

Subsequent more and more reliable reconstructional algorithms were proposed

after 1993, when the studies in quantum-state reconstruction boomed.

The first exact unbiased tomographic method was the pattern function

tomography, proposed in Ref. [14], and successively simplified in Ref. [15].

Unlike the Radon transform, this method allows the reconstruction of the

quantum state bypassing the need of the Wigner function, and achieving

the expectation value of any arbitrary operator by just averaging suitable

estimators (also called kernel functions or pattern functions), evaluated from

the experimental homodyne data ([6]).

A more detailed description of the pattern function tomography will be given

in Section (6.3), where this technique will be used to analyse the experimental

results.

In this section we focused on the Optical Homodyne Tomography descrip-

tion, which it is the technique used in our experiment for the characterization

of continuous variable (CV) optical states. For the sake of completeness, it’s

important to point out the possibility to perform tomography also for discrete

variable quantum states of light, that is of measuring discrete spectrum

degrees of freedom of light.

An example is the polarization degree of freedom of photons emitted by a

single-photon source. In this case the state of the system lives in a two-

dimensional Hilbert space, indeed each polarization state can be written as a

linear combination of two basis vectors, such as the vertical and horizontal

polarization states or the left- and right-circular ones. This kind of two-states

quantum-mechanical systems are called quantum bits (qubits) and are the

quantum analogue of the classical bits in Quantum Information.

In addition to the polarization state of a single photon, several physical

implementations of qubits can be realized with the actual technology, such

as the spin state of an electron or the energetic state of a two-level atom

and so on. In these cases, other experimental techniques exist for the qubits

tomography [16].
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1.3. Gaussian states

1.3 Gaussian states

A particularly useful class of continuous-variables (CV ) states in Quantum

Optics are Gaussian states, defined by Gaussian Wigner functions.

The electrodynamic vacuum is itself a Gaussian state and most of the states

generated in laboratory are Gaussian [9]. The optical states used in our

experiment are Gaussian too.

The most general single mode Gaussian state can be always written as:

ρ̂ = ρ̂(α, ξ,N) = D(α)S(ξ) ν̂th(N) S†(ξ)D†(α), (1.27)

where D(α) is the displacement operator defined in the (1.17),

S(ξ) = exp[
1

2
(ξâ†2 − ξ∗â2)] (1.28)

is the single mode squeezing operator and

ν̂th(N) =
e−β~ωâ

†â

Tr[e−β~ωâ†â]
=

N â†â

(1 +N)â†â+1
(1.29)

=
1

(1 +N)

∞∑
n=0

(
N

1 +N
)n |n〉〈n| (1.30)

is the thermal state, where β = 1/(kBT ), kB is the Boltzmann constant,

and N = 1/(eβ~ω − 1) is the average number of photons in the state; ν̂th(N)

describes a thermal equilibrium state at temperature T .

For example, if ξ = 0 and N = 0, the Gaussian state (1.27) is reduced to a

coherent state (1.20) ρ̂ = |α〉〈α|, which is the vacuum for α = 0; while, for

α = 0, N = 0 and ξ 6= 0 one obtains the squeezed vacuum.

The Gaussian states can be theoretically dealt with in a standard way.

Indeed, it is possible to define two quantities, the first-moments vector

R̂ = (q̂, p̂)T and the covariance matrix CM σσσ, that fully characterize such

states and directly depend on the field quadratures.

The CM elements are given by:

[σσσ]kj =
1

2
〈{R̂k, R̂j}〉 − 〈R̂j〉 〈R̂k〉 , (1.31)
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CHAPTER 1. PRELIMINARY CONCEPTS

where {Â, B̂} = ÂB̂ + B̂Â is the anticommutator between two operators and

〈Â〉 = Tr[ρ̂Â] the expectation value of the operator Â on the state ρ̂.

For a generic state (1.27) with α = aeiφ and ξ = reiψ, the explicit

expressions of the CM elements are:

σkk =
1 + 2N

2
[cosh (2r)− (−1)k sinh (2r) cosψ], (k = 1, 2) (1.32)

σ12 = σ21 =
1 + 2N

2
sinh (2r) sinψ, (1.33)

while the first-moments vector is given by:

〈R̂〉 =
√

2(<e[α],=m[α])T =
√

2(a cosφ, a sinφ)T . (1.34)

With this notation, one can easily write the Wigner function (1.25) of the

generic single mode Gaussian state (1.27):

W [ρ̂](z) = W [ρ̂](X) =
exp{−1

2(X− 〈R̂〉)Tσσσ−1(X− 〈R̂〉)}
π
√

det[σσσ]
, (1.35)

where z = 1√
2
(q + ip) and X = (q, p)T ∈ R2.

The equation (1.35) is the expression of the Wigner function in the phase

space (q, p). It is a sort of extension of a classical phase space distribution

function to a quantum one, in which the variables are the eigenvalues q and

p of the position- and momentum-like operators.

It is important to note that in the quantum domain, due to the commutation

relations (1.9) between q̂ and p̂, the Wigner quasi-probability function is not

a genuine phase space distribution as in the classical case. Indeed, it can also

assume negative values, as for the Fock states |n〉 with n > 0.

Since (1.35) is a Gaussian function, the state ρ̂ is fully characterized by its

CM σσσ and by its first-moments vector R̂.

Thus, it is natural to consider time-evolutions of a Gaussian state as trans-

formations of these parameters (σσσ and R̂) in such a way to preserve the

commutation relations [q, p] = i.

It can be shown that, in order to preserve the Gaussian character of a state

during its evolution, the evolution Hamiltonian has to be linear or bilinear in

the field mode [9].

14



1.3. Gaussian states

This is the basic reason for the fundamental role of Gaussian states in quan-

tum optics, because most of the quantum evolutions achievable with current

technology, and implementable in laboratories, are actually described by

Hamiltonian operators at most bilinear in the field mode and all the states

produced in laboratory are evolutions of the vacuum state that is itself a

Gaussian state. Gaussian states are also interesting for their “extremality”

property [17].

Thus, the continuous variable states of light commonly studied in quantum

optics laboratories are Gaussian and evolve preserving this character.

Moreover, one can easily characterize a Gaussian state by reconstructing its

CM (1.31) by the measurements of the field quadratures with a balanced

homodyne detector.

In the figure (1.4) the Wigner functions of some characteristic gaussian states

are shown.
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(a) (b)

(c)

Figure 1.4: Wigner function and its projection for a vacuum state (a), a

coherent state (α = aeiφ, a = 2, φ = π/4) (b), and a squeezed vacuum

state(ξ = reiψ, r = 0.7, ψ = π/2)(c) [12].
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Chapter 2

Balanced homodyne detection

If one knows the statistics of the field quadratures x̂Φ (1.21) with Φ ∈ [0, 2π],

then it is possible to reconstruct the quantum state ρ̂ of a single mode

radiation field.

Balanced homodyne detection (BHD) is an experimental technique that

provides the measurement of such single-mode quadratures through the

mixing of the field under investigation, called signal, with a highly excited

semiclassical field (e.g. a laser beam) at the same frequency, called local

oscillator (LO). The signal and the LO are generated by a common source,

so they have a fixed phase relation.

In this chapter a theoretical analysis of the BHD technique in pulsed regime

(pulsed laser source) is presented.

2.1 BHD scheme

The schematic diagram of a balanced homodyne detector is reported in Fig.

(2.1). The signal mode a is in the state ρ̂s under investigation, it interferes

with a second mode b (LO) excited in a coherent state |z〉 with z ∈ C.
The detection technique is called balanced because the interference between

the two modes happens in a balanced (50/50) beam splitter (BS ).

A beam splitter is an optical device composed of a dielectric plate that

produces the mixing of the two incident optical modes a and b.
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CHAPTER 2. BALANCED HOMODYNE DETECTION

Figure 2.1: Schematic diagram of a balanced homodyne detector.

In general, a beam splitter is described by a unitary evolution operator:

UBS(η) = exp(ηâ†b̂− η∗âb̂†), (2.1)

where η = |η|eiχ ∈ C is proportional to the interaction time and to the linear

susceptibility of the medium.

The Heisenberg evolution of the modes a and b under the action of UBS is:

U †BS(η)

(
â

b̂

)
UBS(η) = B(η)

(
â

b̂

)
(2.2)

where

B(η) =

(
cos |η| eiχ sin |η|

−eiχ sin |η| cos |η|

)
. (2.3)

In particular, for a 50/50 BS, used in the BHD, the parameters of the evolution

operator 2.1 are χ = 0 and |η| = π/4, so the action of a 50/50 BS on the

incident modes a and b is the following:
â −→ ĉ = (â+ b̂)/

√
2

b̂ −→ d̂ = (b̂− â)/(
√

2)

, (2.4)

where ĉ and d̂ are the output mode operators.

After the BS, the two modes are detected by two identical photodetectors,
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2.1. BHD scheme

the two photocurrents are measured and subtracted from each other. The

photocurrents Ic and Id are the measured values of the the photon number

observables n̂c = ĉ†ĉ and n̂d = d̂†d̂.

The difference photocurrent Î is associated to the photon number differ-

ence operator between the two output channels:

Î = n̂c − n̂d = ĉ†ĉ− d̂†d̂, (2.5)

which, using the transformations (2.4), becomes:

Î = â†b̂+ b̂†â. (2.6)

The phase difference between the LO and the signal can be varied changing

the length of the LO optical path; this means that the LO modes are subjected

to the following phase shift:

b̂ → b̂ eiΦ

b̂† → b̂† e−iΦ.
(2.7)

We now define the homodyne photocurrent operator as:

ÎΦ = â†b̂ eiΦ + b̂†â e−iΦ, (2.8)

which is the observable actually measured by a balanced homodyne detector.

Now the natural question is: how, measuring the homodyne photocurrent ÎΦ,

can one obtain a value for the quadrature x̂Φ of the signal field for a fixed

phase shift Φ of the LO mode?

The answer comes from the fact that the expectation value of the homodyne

photocurrent ÎΦ on the total input state ρ̂s ⊗ |z〉〈z| is proportional to the

expectation value of the field quadrature x̂Φ defined in (1.21):

〈ÎΦ〉 = Tr
[
ρ̂s ⊗ |z〉〈z| ÎΦ

]
= Tr

[
ρ̂s ⊗ |z〉〈z| (â†b̂ eiΦ + b̂†â e−iΦ)

]
= Tr

[
ρ̂s ⊗ |z〉〈z| (â†b̂ eiΦ)

]
+ h.c. =

(
Tr[ρ̂s â†] · Tr[|z〉〈z|b̂ eiΦ]

)
+ h.c.

=
(
Tr[ρ̂s â†] · 〈z|b̂ eiΦ|z〉

)
+ h.c. =

(
Tr[ρ̂s â†] · z eiΦ

)
+ h.c.

= Tr
[
ρ̂s (â† z eiΦ + â z∗ e−iΦ)

]
= |z|Tr

[
ρ̂s (â†eiΦ + âe−iΦ)

]
=
√

2 |z| 〈x̂Φ〉 , (2.9)
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CHAPTER 2. BALANCED HOMODYNE DETECTION

where we absorbed the argument of z (arg[z]) in the phase Φ and we considered:

〈x̂Φ〉 = Tr[ρ̂s x̂Φ]. (2.10)

A BHD thus measures the quadrature components x̂Φ rescaling the measured

ÎΦ by a factor (
√

2 |z|). Redefining the homodyne photocurrent ÎΦ including

the rescaling factor, its expectation value coincides now with the quadratures’s

one:

ÎΦ =
â†b̂ eiΦ + b̂†â e−iΦ√

2 |z|
. (2.11)

The reference phase Φ is provided by the LO mode phase shift and can be

varied experimentally, using, for instance, a piezo-electrically movable mirror

which changes the LO optical path. Therefore one can obtain the statistics

of the homodyne photocurrent ÎΦ for different values of Φ ∈ [0, π].

One can ensure that this statistics coincides with the one of the quadrature

x̂Φ, only under some conditions on the LO. In particular the latter has to

be in a strong semiclassical state. This fundamental point is treated in the

following section.

2.2 Validity of homodyne detection for quadrature

measures

To study the validity of the homodyne detection for measurements of the

quadrature x̂Φ, one has to study the conditions needed to consider a mea-

surement of the observable ÎΦ, defined in (2.11), as a good measurement of

the quadrature.

The first thing to note is that the operator ÎΦ has a discrete spectrum, that

coincide with the set Z of relative integers. It approaches the real axis only

in the limit of highly excited LO (|z| � 1).

In this limit, the local oscillator is excited in a strong semiclassical state

such that one can consider it powerful enough to be treated classically, its

quantum fluctuations can be totally neglected and the following substitutions
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2.2. Validity of homodyne detection for quadrature measures

can be done: 
b̂ −→ z

b̂† −→ z∗.

(2.12)

Using the (2.12), that is treating the LO classically, it’s easy to note the

equality between the homodyne photocurrent mean value 〈ÎΦ〉 and the mean

value of the field quadrature x̂Φ defined in the equation (1.21):

〈ÎΦ〉 = 〈(â
†eiΦ + âe−iΦ)√

2
〉 = 〈x̂Φ〉 . (2.13)

Nevertheless, one can observe that the moments of order greater than one

of the homodyne photocurrent ÎΦ (2.11) are different from the quadrature

moments.

Indeed, for the second order moment we have:

〈Î2
Φ〉 =

1

2|z|2
Tr[ρ̂⊗ |z〉〈z| (â†b̂ eiΦ + b̂†â e−iΦ)2]

= Tr[ρ̂⊗ |z〉〈z| (x̂2
Φ +

â†â

2 |z|2
)]

= 〈x̂2
Φ〉+ 〈 â

†â

2 |z|2
〉 . (2.14)

The following results can be proved [9] in general for all the moments of the

homodyne photocurrent:

〈ÎΦ〉 = 〈x̂Φ〉 , 〈Î2
Φ〉 = 〈x̂2

Φ〉+ 〈 â†â
2 |z|2 〉 ,

... 〈ÎnΦ〉 = 〈 x̂2n−2
Φ (x2

Φ + â†â
2|z|2 ) 〉 .

(2.15)

They coincide with the quadrature moments only when the signal in the

mode a satisfies the condition

〈â†â〉 � |z|2. (2.16)

In this limit the distribution of the outcomes IΦ of the homodyne photocur-

rent is equal to that of the corresponding field quadrature [9]. In all the

calculations before arg[z] was absorbed in the phase Φ.
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CHAPTER 2. BALANCED HOMODYNE DETECTION

In conclusion, the balanced homodyne detector achieves the ideal measure-

ment of the quadrature x̂Φ in the strong LO regime. This limit can be

expressed by the two following conditions:

i) |z| � 1

ii) |z|2 � 〈â†â〉 .
(2.17)

The first guarantees the continuous spectrum of the homodyne photocurrent

ÎΦ. The second neglects extra terms in the photocurrents moments. Under

these conditions the probability distribution of the output photocurrent ÎΦ

approaches the probability distribution p(x,Φ) = 〈xΦ|ρ|xΦ〉 of the quadrature
x̂Φ for the signal mode a and the fixed phase Φ.

2.3 Classical and quantum regimes

For classical regime of the homodyne measurement process we intend the case

in which both the input modes in the Figure (2.1) are in a strong semiclassical

state, i.e. when two highly excited coherent states, with a fixed phase relation

between each other, interfere on the 50/50 BS.

Let’s consider, for the mode a and b respectively, the coherent states |α〉
(α = |α|eiθ) and |z〉 (z = |z|eiξ) with very large amplitudes |α| and |z|.
From the definition (1.15) of a coherent state, we know that:

â |α〉 = α |α〉 , b̂ |z〉 = z |z〉 . (2.18)

In this case, the measured values of the homodyne photocurrent operator,

defined in the (2.8), contain information about the phase difference between

the two coherent states. Indeed, using (2.18) it is easy to verify that:

〈ÎΦ〉 = Tr[|α〉〈α| ⊗ |z〉〈z| ÎΦ] = 〈α|〈z| (â†b̂ eiΦ + b̂†â e−iΦ)|z〉|α〉

= z α∗ eiΦ + z∗ α e−iΦ = 2|z||α| cos Φ, (2.19)

where the phases ξ = arg[z] and θ = arg[α] were absorbed in Φ.

This kind of detection, with two classical fields as input states, is a preliminary

measurement, fundamental to verify the performance of the experimental ap-

paratus before attenuating the signal beam to reach the quantum regime. For

quantum regime we intend the conditions in which the signal field quadrature
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can be reasonably estimated trough measurements of the homodyne pho-

tocurrent ÎΦ. In order to reach the quantum regime the signal is attenuated

using neutral filters, whose attenuation action is the following:

|α〉 → |ε α〉 , (2.20)

where 0 < ε < 1.

Since in a Balanced Homodyne Detection the signal and the LO come from

the same laser source, we can consider α = z. Using these considerations

and the equation (2.19), the homodyne photocurrent expectation value in

quantum regime, i.e. when the signal is attenuated, results:

〈ÎΦ〉 = 2 ε |z|2 cos Φ. (2.21)

2.4 Time-domain pulsed regime

BHD was originally designed for measurements in frequency-domain, for

evaluating field quadrature noise at definite detection frequencies.

Frequency-domain detection was used, for example, to observe quadrature

squeezing ([18]).

Using a frequency-domain approach, one can study a field state in the con-

tinuum wave (cw) regime, by observing a certain spectral component of the

homodyne photocurrent (2.5) using an electronic spectral analyzer.

In the time-domain regime, on the contrary, the signal and the LO are pro-

vided by pulsed laser and the homodyne photocurrent, for each laser pulse, is

singulary electronically integrated. The measured photon number differences,

for each pulse, are used to build-up the field quadrature distribution.

Both these schemes (frequency- and time-domain) have been used to produce

tomographic reconstructions, but, in order to investigate states of light with

stronger non classical features, time-domain pulsed regime is necessary.

Indeed, with the time-domain approach, one can exploit the higher non linear

effects caused by the high peak intensities of pulsed laser. Moreover, the

time-domain provides a synchronization clock which gives the opportunity to

apply the homodyne tomographic technique to pump and probe experiments

in order to study coherent vibrational states in materials.
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However, constructing a BHD in the time domain regime (in which the signal

and the LO are both pulsed light) is more technically challenging than in

the frequency-domain. The main reasons are:

• The electronics must be fast enough to ensure temporal separation of

responses to individual laser pulses, to avoid an overlap between the

statistics from consecutive pulses.

• The detector must provide a precise subtraction of the two photocurrents

(high subtraction efficiency), in order to eliminate the classical noise

of the LO. This requirement is easier to satisfy at lower LO energies;

however, at the same time, the LO power must be also high enough to

give a sufficiently strong subtraction signal IΦ [19].

• The shot noise difference charge must be low-noise amplified and a flat

amplification profile must be provided.

• All these characteristics have to be verified in the entire frequency range

from DC to at least the LO pulse repetition rate (high bandwidth).

Moreover, the previous theoretical treatment of the Balanced Homodyne

Detection is not exactly correct in pulsed regime: we considered the signal

and the LO as single mode optical fields generated by the same laser source;

in this case, they cannot be monochromatic as they are pulsed. In order to

fill this conceptual gap, we developed a mathematical formalism in order to

generalize the theoretical treatment of the single-mode Balanced Homodyne

Detection also to the pulsed regime (Appendix C).

In a generic BHD apparatus, a pair of high-efficiency photodiodes are

wired in series to subtract their output currents, this difference signal is

then amplified and stored in a digital oscilloscope. The data are numerically

integrated over time intervals corresponding to the duration of each pulse;

then, one extracts the area of each pulse in the difference signal and performs

statistical analysis.

The integral of each pulse in the difference signal is the quantity associated

to the field quadrature in a pulsed BHD experiment.
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The typical problem is that an amplifier with higher bandwidth usually

exhibits poorer noise characteristics. So, a tradeoff has to be found between

the bandwidth and the signal-to-noise ratio, that ,more precisely, is a shot-

to-electronic noise ratio.

In photodetection, shot noise describes the fluctuations of the number of

photons detected. In our case it is the fluctuation of the light intensity

measured by each photodiode. To be directly measurable it has to dominate

the noise of the subsequent electronic amplifier.

It is important to note that the shot noise is not a property of the detector,

but it reflects the real fluctuations of the light intensity and we can use the

detector itself to probe the statistics of the light fluctuations. This will be

correct as long as the efficiency of the detector ηdet approach 1.

For ηdet = 1 the photocurrent fluctuations are directly linked to those of the

light and we can investigate the statistical properties of the light studying

the current fluctuations.

To check that the pulsed noise ∆IΦ = 〈(IΦ − 〈IΦ〉)2〉 generated by the

homodyne detector with a vacuum signal in input is indeed the shot noise,

one needs to verify that the noise variance (∆IΦ) scales linearly as the LO

power increases. This is a signature distinguishing the shot noise from the

classical noise, which scales quadratically, and the electronic noise, which is

constant because independent from the LO intensity [20].

2.5 State of art

The first time-domain BHD experiment, performed by Smithey at al. in

1993 [2], achieved a shot-to-electronic noise ratio of 9 dB and worked at a

repetition rate of 1 kHz. It is a relatively low frequencies compared to the

repetition rate of the commonly used pump mode-locked laser.

The use of low-repetition-rate laser source, in the first BHD experiments,

was forced because of the dead time of the low-noise charge amplifiers, which

provided a maximum pulse acquisition rate well below the MHz.

Hansen and colleagues in 2001 [21] built a BHD working at a repetition rate

of 1 MHz with a shot-to-electronic noise of 14 dB.

However, in order to access quantum states with a low generation probability,
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a time-domain homodyne detection capable to work at the high repetition

rate of mode-locked lasers (tent of MHz) is required.

So far, only few groups in the world were able to obtain this goal (for example

[22, 23, 24]). In particular, Zavatta at al. reached this aim for the first time

[25], developing an homodyne detector working at a repetition rate of 82

MHz with a shot-to-electronic-noise ratio of 7 dB.

The aim of this thesis is to implement a BHD apparatus in time-domain

regime with a mode-locked laser source. In our apparatus we don’t use an

electronic scheme built ad hoc, as it happens in the just cited papers, but a

commercial device for the homodyne photocurrent detection is exploited.

To our knowledge, there is no published paper about pulsed balanced ho-

modyne detection apparatus implemented with a commercial differential

photodetector.
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Chapter 3

Experimental apparatus

The implementation of a balanced homodyne detection apparatus for time

domain quantum tomography of pulsed optical quantum states must comply

with the following experimental requirements.

• In order to measure field quadratures with temporal resolution sufficient

to distinguish between consecutive pulses of the laser source, a high

bandwidth detection system is required. It should be noted that a

high bandwidth low noise amplified detection system is technically chal-

lenging as increasing the bandwidth implies reducing the amplification

gain and therefore increasing the electronic noise.

• The detection apparatus must also ensure a high ratio of the measured

quantum noise over the electronic noise, that means a sufficiently high

shot-to-electronic noise ratio.

• Another key point of the apparatus is the ability to efficiently perform

the difference between the amplitude fluctuations of the beams im-

pinging on the two detectors, reaching a high subtraction efficiency

between the two photocurrents generated by the photodiodes. This is

expressed by the Common Mode Rejection Ratio (CMRR), defined as

the spectral power measured when both photodiodes are illuminated di-

vided the power measured on one photodiode when the other is blocked.

The CMRR measures the ability of the device to reject the classical

noise of the local oscillator [26].
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• Finally the two photodiodes must have the same high quantum

efficiency (ideally ηdet ∼ 1). This is a fundamental condition in order

to actually measure the signal noise statistic [11]. Small differences in

the quantum efficiencies of the two photodiodes can be compensated

using half wave plates and polarizers as variable attenuators of the

input of each photodiode.

In this chapter we descrbe the instrumentation used to implement our bal-

anced homodyne detector in pulsed regime; in the next chapter we will

characterize all the parts constituting it, in order to satisfy the previous

experimental requirements.

The apparatus is divided in three parts: the laser source, the optomechanical

scheme and the acquisition system.

3.1 Pulsed laser source

The light source in our homodyne detector is a mode-locked pulsed laser.

Mode-locking is a technique by which a laser can be constructed to produce

pulses of light of extremely short duration. This kind of ultrafast laser sys-

tems are capable of producing a train of ultrashort pulses, with a temporal

duration of 100− 1000 fs and an extremely high repetition rate (number of

pulses per unit of time, measured in Hz).

In particular, our laser source is a Kerr lens mode-locked Ti:Sapphire

oscillator (Mira Seed), in which the active medium is Ti doped Al2O3.

This source is pumped by a solid state laser which produces 18 W of monochro-

matic continuous wave radiation at 532 nm (Verdi V-18 ).

The final laser output consists of a train of 100 fs pulses with a fixed repetition

rate of 80 MHz. The pulse photon energy is 1, 55 eV (i.e. a wavelength of

800 nm) and it is called the fundamental of the laser.

The oscillator has an output average power of 800 mW, of which only few

mW are used for our experiment. The laser power fraction needed in our

experiment (4−5%) is taken using an unbalanced beam splitter placed at the

laser source output. The remaining fraction, which is the most part of the

laser source, goes in a regenerative amplifier system (REGA) and in an optical
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3.1. Pulsed laser source

parametric amplifier (OPA), to be finally used as a source for experiments

of ultrafast spectroscopy, which is the research field mostly developed in the

laboratory in which this thesis has been carried out. We will not discuss the

amplification system which has not been used in the experiment.

A block representation of the laser system used in our experiment is given in

Figure 3.1.

Figure 3.1: Block diagram of the laser system.

The production of short laser pulses in Ti:Sapphire laser is based on the

concept of mode-locking. In a laser cavity sustaining many longitudinal

modes, a pulsed regime can be reached when all the modes participating to

the lasing can be locked in phase, i.e. a fixed phase relation between them is

induced.

In the next section we will see in detail the most common passive scheme to

obtain mode-locking, Kerr Lens mode-locking (KLML). The KLML technique

exploits non linear optical proprieties of the active medium together with the

geometrical structure of the laser cavity to generate ultrashort pulses.

For a detailed quantum mechanical treatment of mode locked laser pulses see

Appendix C.

3.1.1 Kerr lens mode-locking

The electric field in a laser cavity is made up of the sum of all the longitudinal

modes of the cavity. Their wavelengths have to verify the relation L = l λ2 ,

where L is the cavity length and l are integers known as mode orders.
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The frequency separation between two consecutive modes is ∆ν = c
2L where

c is the speed of light.

In a simple laser, the longitudinal modes oscillate incoherently, i.e. with

random phase relationships between each other. This leads to random

fluctuations in the laser output intensity with periodicity τ = 1/∆ν (Figure

3.2 b). When the longitudinal modes are many thousands, the interference

effects between them tend to average to a near-constant output intensity and

the laser emission is called continuous wave (CW).

Mode-locking consists in forcing each longitudinal mode to have a fixed

phase relation with the others, in this way the modes of the laser will all

constructively interfere, producing, instead of a random or constant output

intensity, a train of light pulses separated in time by τ = 2L
c .

For example, if the phase difference between two consecutive modes is forced

to be constant (ϕl+1−ϕl = ϕ0), the total electric field in the laser cavity is:

E(t) =
M∑

l=−M
E0 e

i [ωl t+ϕl], (3.1)

where we assumed for simplicity the same amplitude E0 for each mode,

ωl = ω0 + l∆ω = 2π(ν0 + l∆ν) is the lth mode frequency and ϕl = l ϕ0 is the

mode-locked phase.

The total number of longitudinal modes in the cavity is (2M + 1).

Separating in two part the sum in the (3.1) and using the geometric series

convergence, it’s easy to show that:

E(t) = E0
sin (2M+1

M t′)

sin (1
2 t
′)

eiω0t, (3.2)

where t′ = ∆ω t+ ϕ0.

A plot of the intensity of such electric field in time domain is given in the

Figure 3.2 c, for the case of locked phases.

It is possible to observe that the pulse intensity is proportional to [(2M +

1)E0]2, the pulse full width at half maximum (FWHM) is 2π
(2M+1)∆ω and the

distance between two pulses is τ = 2π/∆ω.

The ratio between the laser cavity length L and the pulse duration is a

measurement of the number of modes oscillating in phase. Typically, for a

meter long laser producing a train of 100 fs pulses, there are over 104 modes
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3.1. Pulsed laser source

contributing to the pulse bandwidth.

(a) (b) (c)

Figure 3.2: Set of equally spaced longitudinal modes (B = (2M + 1) ∆ω)

(a). Inverse Fourier transform of the laser spectrum in case of random phase

distribution of the modes(b), and in case of locked modes(c) [27].

Several techniques to lock the longitudinal modes in a laser cavity exist.

The Kerr lens mode-locking method exploits a nonlinear optical process

known as the optical Kerr effect (OKE ). It is based on the dependence of the

refractive index of a medium on the electromagnetic field intensity, i.e. the

fact that non linear terms contribute to the medium refractive index when

the incident field is sufficiently intense.

Since the light beam in a laser cavity has a transversal Gaussian power density

distribution, the refractive index changes across the beam profile. The beam

experiences a refractive index greater in its center than at the edge [28].

Figure 3.3: Kerr lens scheme [29].

In this way the active Kerr medium works like a lens and focuses the beam.

Since this effect is proportional to the field intensity, in the laser cavity

this “focalization” will be different for pulsed and continuous wave mode.

The geometrical properties of the cavity and of its aperture play at this

point an important rule, they are designed to favor operation of pulsed over
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CHAPTER 3. EXPERIMENTAL APPARATUS

continuous radiation due to intensity dependent loss or dispersion mechanisms.

When such conditions are fulfilled, intensity fluctuation will be amplified,

continuous wave lasing modes will be suppressed and the cavity will "lase" in

the pulsed regime. The end mirror of the cavity will then partially transmit

the pulses sustained by the cavity and a train of pulses at the repetition rate

of (τ)−1 = c
2L will propagate in the free space.

3.2 Optomechanical scheme

The core of the homodyne detector is a Mach-Zehender interferometer. A

scheme of the optomechanical system is given in Figure (3.4).

Figure 3.4: Optomechanical scheme

The laser source is divided in two beams by a beam splitter, one is the so

called local oscillator (LO) and the other, made weaker by a reflective neutral

density (ND) filter (F1), is called signal and is the field we want to investigate.

The signal power can be made even weaker by using filters with higher optical

densities. In order to make equal the optical paths of the two beams, an

other neutral-density filter (F2), of optical density OD = 0.2, is placed on
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3.2. Optomechanical scheme

the local oscillator arm too. The optical density of a filter indicates that the

attenuation factor of the input beam is 10−OD.

The two beams interfere in a second beam splitter and the output beams are

detected and subtracted by a commercial photodetector.

Two 100mm lenses focus the output beams onto the entrances of the pho-

todetector. In Figure 3.5 a picture of the experimental optomechanical set

up is shown.

Figure 3.5: Experimental optomechanical set up

The phase difference Φ between the two arms of the interferometer can be

varied by moving a mirror set up on a piezoelectric translator in the LO arm.

The piezoelectric translator is a piezo linear stage (PI P622-ZCD) with a

travel range of 250µm and a 1nm nominal resolution. The stage position

is controlled by a Piezo Servo-Controller (PI E625 ). The latter is equipped

with a RS-232 interface connected with a computer.

A software has been developed, using the programming language LabVIEW,

to control and to read the piezo stage position along the motion axis.
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The total laser power can be varied by means of a half wave plate followed

by a polarizer at the beginning of the system.

Other two pairs of half wave plates and polarizers are put at the outputs of

the second beam splitter, which is a (50/50) non polarizing cube beam splitter

(NPBS). In this case, they are used to compensate the different efficiency of

the photodiodes in the differential detector. In the experiment they are used

to minimize the difference current measured by the differential photodetector

when the signal is blocked.

3.3 Acquisition system

A scheme of the acquisition system is given in Figure 3.6.

Figure 3.6: Block diagram of the acquisition system

It consists of a balanced amplified differential photodetector (Thorlabs

PDB430A) which is able to measure the difference between the photocurrents

generated by the two beams in input.

We chose this commercial device for its characteristic of hight bandwidth

(from DC to 350 MHz) , high subtraction efficiency and high photodi-

odes quantum efficiency.

It consists of two Si/PIN well matched photodiodes and an ultra-low noise,

high-speed transimpedance amplifier that generates an output voltage pro-

portional to the difference between the photocurrents of the two photodiodes,

i.e. the two optical input signals. The two diodes have nominal values of the

quantum efficiency of 0.77. The photodetector has a nominal value of the
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3.3. Acquisition system

CMRR > 25 dB. The damage threshold of the input power for each diode is

20mW .

The photodetector output signal (difference signal) is recorded by a digital

oscilloscope (Tektronix TDS3000B) with a bandwidth of 500 MHz and a

sampling rate of 5 Gsamples/s, this means we can digitize the voltage output

of the differential detector with a sampling rate of a point every 0.2 ns.

The oscilloscope traces are finally sent to a computer to be memorized and

analyzed.

3.3.1 Acquisition software

In order to perform quadrature measurements of the field under investigation

through our homodyne detection apparatus in pulsed regime, a series of

softwares have been developed, using the programming language "LabVIEW".

Such softwares allow us to control the piezomotor, deciding the number and

the length of the piezo steps to do in a measurement, and, for each position,

to digitalize and memorize a well-defined number of oscilloscope traces.

In addition to the possibility of choosing the number of traces per position

to acquire, one can also set the number of pulses for each trace. Then the

software provides the integral of each pulse in the acquired trace and the

corresponding read piezo position.

In this section a schematic description of the acquisition software working is

given:

• Initial settings : number of piezoelectric positions, step length, number

of traces per position, number of pulses per trace.

• The piezo-translator moves and for each position the following opera-

tions are performed:

– Acquire and save the oscilloscope trace

– Read and memorize the piezo position

– Integrate each pulse in the acquired trace

• Final output: a piezo position and a quadrature value are associated to

each acquired pulse
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The details of the data analysis are given in the next chapter.
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Chapter 4

Pulsed homodyne detector

characterization

In this chapter the characterization measurements of the experimental appa-

ratus are described. They are divided in two groups: stability measurements

of the optomechanics and characterization measurements of the acquisition

system. The aim of all those preliminary measurements is to completely

determine the balanced homodyne detector performances in pulsed regime.

4.1 Characterization of the mechanical stability

In order to verify the mechanical stability of the Mach-Zehender interferome-

ter, which is the core of the optomechanical system, two kinds of tests have

been done. In the first, we measure the stability of the piezoelectric read-out

position, in order to check the piezoelectric translator performances. In the

second, we verify the stability and the alignment of the whole optomechanical

system using a continuous wave (CW) laser source in input.

The experimental procedures are now described.

4.1.1 Stability of the the piezoelectric read-out position

The piezoelectric translator stage is put at certain position sending a specific

command to the Piezo-Servo Controller. In this test the chosen position is

p = 81µm.
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Now we use the Controller to read the piezo position for 4000 consecutive

times. The read-out values are registered. The mean value and the root mean

square are computed.

We obtain pmean = 81.036 and a standard deviation of 3nm.

The histogram of the piezo positions with subtracted mean value is shown in

Figure (4.1). The stability in the read piezo position is necessary to associate

Figure 4.1: Hystogram of 4000 read-out piezo position subtracted of the

mean value.

the right phase value Φ to a certain measured quadrature xΦ in the homodyne

detection.

Our apparatus allow us to read the piezo position with an error of ±3nm.

4.1.2 Interferometer stability measurement with CW laser
source

In order to check the interferometer stability performance we use a CW laser

source. It is a He-Ne laser pointer with wavelength λ = 632.8nm.

In this case the filters in the two interferometer arms (Figure 3.4) are removed,

in order to have the same intensity for the LO and the signal.

The piezoelectric translator is moved of 50nm for 100 steps. At each position

100 traces of the difference signal measured by the photodetector are acquired

by the oscilloscope (Figure 4.2). The sum of all the voltages divided by the

number of traces is plotted against the piezo position (Figure 4.3). Given the

piezo shift d between two peaks of the interference figure, the actual optical
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4.2. Characterization of the differential acquisition system

Figure 4.2: 100 difference signal traces acquired by the oscilloscope. CW

laser source.

Figure 4.3: Difference signal against piezoelectric translator position. CW

laser source.

path difference between the two beams is D =
√

2d, due to the geometry of

the apparatus.

If the interferometer works correctly, the optical path difference D between

the two peaks of the interference figure should be equal to the wavelength λ of

the CW laser source. Our measurement (Figure 4.3) verifies such condition.

4.2 Characterization of the differential acquisition

system

After the first check of the interferometer stability with a CW laser source,

we performed a series of measurements to characterize the apparatus for the
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acquisition in pulsed regime, that is when the mode-locked oscillator is used

as source.

The characterization of the differential detector in pulsed regime is performed

in the experimental configuration described in Figure 3.4, where the signal

beam is closed by a beam blocker (vacuum state in input).

In this section the experimental details of these preliminary measurements

are presented.

4.2.1 Acquisition in pulsed regime

When the pulsed laser source is used, the local oscillator power can be con-

trolled changing the orientation of a half wave plate (HWP1 in Figure 3.4).

The LO power can be tuned in the range from 90µW to 890µW . This power

is measured using a power-meter with sensitivity of 5µW . The following

tests are performed at the maximum LO power.

In this configuration, for a fixed position of the piezo translator, a time-trace

of the difference signal measured by the detector is acquired. The oscilloscope

is configured to acquire 250 points for each trace, since it takes a point every

0.2 ns (5 Gsample/s sampling rate), every trace contains 4 pulses. Since the

pulse width is much shorter than the time resolution of the electronics, the

shape of the acquired pulses is given by the detector response function.

The acquisition is done at first by closing one by one the photodiodes en-

trances and afterwards keeping both open, in order to see a trace of positive

pulses, negative pulses, and the difference of the two (Figure 4.4). // The

difference signal (green curve in Figure 4.4) is not exactly zero, there is indeed

a residual shape in the pulsed regions due to the different response functions

of the two photodiodes in the detector.

This shape of the difference signal can be balanced by slightly changing the

orientations of the half wave plates placed after the BS (Figure 3.4).

To quantify the subtraction efficiency in the chosen configuration, we

estimate the Common Mode Rejection Ratio (CMRR). This is a measure of

the subtraction ability of the differential detector.

The detector output could be ideally expressed as I = A(I1 − I2), where I1
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4.2. Characterization of the differential acquisition system

Figure 4.4: Time-traces of 4 individual pulses. The red and blue traces are

detected closing the photodiodes entrances one by one; the difference signal

is acquired when both photodiodes are illuminated. LO power: 890µW

and I2 are the input signals. However, for a real differential photodetector,

the output I0 is described as [26, 30]:

I0 = A1(I1 − I2) +
A2

2
(I1 + I2) (4.1)

where A1 is the rejection mode gain and A2 is the common mode gain.

When I0, I1 and I2 are represented in powers, the CMRR is defined as:

CMRR = 10 log10

∣∣∣∣A1

A2

∣∣∣∣. (4.2)

To estimate this quantity experimentally, the following approximations are

used:

• When only one photodiode is illuminated and the other is blocked

(I2 = 0), the output is

I0a = A1 I1 +
A2

2
I1 ≈ A1 I1 (4.3)

Such approximation is valid because for a balanced differential detector

the rejection mode gain is far larger than the common mode gain

(A1 � A2).
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• When both photodiodes are illuminated, assuming the input signals

are perfectly balanced (i.e. I1 = I2), the output is

I0b = A1(I1 − I2) +
A2

2
(I1 + I2) ≈ A2

2
2I1 = A2I1 (4.4)

Under these approximations A1
A2
≈ I0a

I0b
.

Thus, the CMRR can be calculated from the ratio between the spectral

power measured when both photodiodes are illuminated (I0a) and the power

measured when one photodiode is blocked (I0b). In our case, I0a = (6.575V )2

and I0b = (105mV )2. The numeric values in such expressions are given

integrating the voltages in Figure (4.4) (blue and green curves) in the pulse

region1.

The CMRR estimation in our configuration is 10 log10 | I1I2 | = 36 dB. This is

in agreement with our detector specifications, described in Section 3.3.

Greater subtraction efficiencies could be obtained with a differential photode-

tector built "ad hoc" [25, 22, 23].

4.2.2 Photodetector linearity test

The first characterization of the balanced differential photodetector used

in the experiment concerns the characterization of the two photodiodes

independently. In order to test the linearity of each photodiode we proceed

as follows: we keep the photodiodes open one at a time and we measure the

output voltage as a function of the LO intensity, which can be controlled by

the HPW1 in Figure (3.4). The signal beam is blocked.

In each measurement set the output voltage over the pulse region is integrated

for 1000 different pulses. The average value of these integrals is plotted for

both photodiodes as a function of the LO power (Figure 4.5).

In Figure 4.5 a linear fit to the data is reported.

It’s possible to note that the response of the diodes is linear up to 0.6 mW

LO power, while it becomes non-linear for higher fluencies.

1The right expression for I0a and I0b in terms of powers can be obtained dividing them

by the termination resistance of the oscilloscope (R = 50Ω); we neglected this factor since

it is not relevant in the ratio of the two quantities.
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4.2. Characterization of the differential acquisition system

(a)

(b)

Figure 4.5: Mean value of 1000 integrated pulses versus LO power. Photodi-

ode + (a). Photodiode - (b)

These non-linearity effects could be attributed to the photodiodes themselves

or to the electronic amplifier in our commercial photodetector device.

4.2.3 Shot noise linearity test

Another important test to study the differential detector performances in

time-domain is to measure the noise variance as the LO power changes. This

is done with the vacuum state in input i.e. signal beam blocked.

The noise variance of a balanced differential detector in the shot noise regime
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is expected to change linearly in the LO power with a constant offset repre-

senting the electronic noise [20].

As described in Section 2.4, the linearity in the noise variance ensures the

fact that the measured noise is actually the shot noise.

The procedure used to measure the differential detector noise variance is now

presented.

From now on we use the term time-trace to indicate the difference signal

trace, that is the trace acquired when both the photodiodes entrances are

open (for example the green curve in Figure 4.4; Such time-traces contain a

series of pulses resulting from the subtraction between the photo-currents

produced by a pear of light pulses impinging on the photodiodes.

A set of 2000 time-traces, each containing 4 pulses, is acquired for a fixed

piezo position (Figure 4.6 a). Thus we have a total of 8000 acquired pulses

Ai. The characteristic shape of these pulses, as described before, is due to

the different electronic response of the two photodiodes.

The average trace is calculated (Figure 4.6 b) and subtracted from each

original trace.

The traces obtained by this procedure are shown in Figure 4.6 c.

With this procedure, from each original pulse Ai (Figure 4.6 a) we obtain a

processed pulse Bi (Figure 4.6 c).

Then, for each processed pulse Bi, the noise Ni is obtained by measuring the

integral in the pulse region (integration length 5 ns).

These noise values Ni are the quantities which, appositely rescaled, will con-

stitute a measurement of the field quadrature. In this particular case (signal

beam closed in Figure 3.4) the field under investigation is in the vacuum state.

Finally, the variance of the quantities Ni is calculated, this is the HD

noise variance of our apparatus.

In order to have a characterization of the HD noise, the procedure is repeated

for different values of the LO power. In Figure 4.7 the HD noise variance

values are plotted as a function of the LO power. In Figure 4.7 it is possible

to note an expected electronic noise background and a linear regime of the

HD noise variance up to 0.6-0.7 mW LO power.
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(a)

(b)

(c)

Figure 4.6: Data processing procedure, LO power 0, 6 mW.(a) 2000 original

time-traces (8000 pulses Ai). (b) Average trace. (c) 2000 processed traces

(8000 processed pulses Bi)

45



CHAPTER 4. PULSED HOMODYNE DETECTOR CHARACTERIZATION

Figure 4.7: HD noise variance versus local oscillator power. Dashed curve,

shot noise contribution; dashed-dotted curve, electronic noise background.

It is easy to note that the data deviate from linearity just in correspondence

to the beginning of the non-linearity observed in the characterization of the

photodiodes (Figure 4.5).

The coincidence between the deviation from linearity of the photodetector

response and the onset of non-linear noise is likely not coincidental. When

the non-linearity of the photodetector amplifier sets in, a high electronic noise

is observed.

The conditions of the photodetector linearity and of the HD noise variance

linearity define the optimum LO power to be used in the homodyne measure-

ments.

We chose to work at 0.6 mW LO oscillator power. This is the maximum

power at which the HD noise variance is linear, so at this power there is

the maximum shot-to-electronic noise ratio (S = 1.2) achievable in the

linear regime of our balanced detector.

The electronic noise is due to any non-desiderable ambient noise, dark current

noise from the photodiodes and the intrinsic noise of the amplifier in the

differential photodetector.

In our apparatus the electronic noise constitutes a significant contribution to

the shot noise.
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The electronic noise effect is to add a random quantity to each field quadra-

ture measurement. It was demonstrated [31] that this effect is equivalent to

that of optical losses. We will treat this problem in the Data analysis chapter

(Section 6.2.1).

4.3 Correlation test between successive pulses

In a pulsed balanced homodyne detector it’s very important to verify that

we are measuring n independent copies of the same state, so that each pulse

yields only one quadrature value.

In order to verify this hypothesis we performed a correlation test between

two subsequent pulses. In Figure (4.8) a parametric plot of 20000 vacuum

Figure 4.8: Plot of 20000 vacuum integrated pulses. Each integrated pulse

(n+ 1) is plotted against the previous one (n) at a LO power of 0.6 mW.

integrated pulses ( the pulse n+ 1 is plotted against the pulse n) is shown.

The lack of correlation in this plot demonstrates that there is no significant

impact on the measured integral of the pulse n+ 1 from that of the pulse n.

We make the analysis more quantitative evaluating the Correlation Co-

efficient (CC) between adjacent pulses [26]. This is a simple check of the

randomness of the noise.

At the chosen LO power, we measure 200 homodyne traces, each containing
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10 pulses.

For each pulse we determine the noise Ni as described in the previous section.

Now we consider the data arrays A(k) and B(k), each containing 200 noise

values, such that:

A(k) = Nk, B(k) = Nk+m, (m = 0, 1, 2...9). (4.5)

The CC between pulse n (data array A(k)) and n+m (data array B(k)) is

defined as:

CC =
E(AB)− E(A) · E(B)√

[E(A2)− E2(A)] · [E(B2)− E2(B)]
, (4.6)

where by E(X) we intend the average value of the elements of the array

X(k).

10 data sets each containing 200 pulses are used to evaluate the CC between

pulse n and n+m (m = 0, 1...9). The results are shown in Figure (4.9).

Figure 4.9: CC between different pulses. LO power: 0, 6 mW.

The uncertainties in each value are given by the standard deviation of the

CC from the 10 data sets.

The CC between pulse n and n + 1 is 0.30 ± 0.08. This value is slightly

higher with respect to other reported BHDs [22, 23, 26, 32], in which it always

results less than 0.1.

We can conclude that there is a small correlation between adjacent pulses,
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but, since the CC has approximately the same value for m = 2, ...9, this

could be attributed to noise correlation effects at a lower frequency with

respect the pulse repetition rate.
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Chapter 5

Measurements

After the characterization of the experimental apparatus performances, a

set of homodyne measurements for different powers of the signal have been

performed. The signal power in each measurement was controlled by changing

the optical density (OD) of the filter F1 in the optomechanical scheme (Figure

3.4). The higher is the OD of the filter F1, the weaker is the signal with

respect to the LO.

As explained in Section (2.3), we distinguish two homodyne measurement

regimes: the classical regime, when the signal and LO are both in a highly

excited coherent state and the quantum regime, when the signal amplitude

is much lower than the LO one. The conditions for the latter regime are

summarized in the equation (2.17).

In this chapter the procedure used to perform homodyne measurements

for different OD of the filter F1 is described and the experimental results

are shown. In particular, we start from the classical regime and then we

progressively attenuate the signal (increasing the OD of the filter F1) up to

reach the quantum regime. Finally we block the signal and we perform a

homodyne measurement of the vacuum state.

5.1 Homodyne measurement procedure

In this section we present the procedure adopted to perform a homodyne

measurement in a generic configuration. We now consider the configuration
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obtained by removing the filters F1 and F2 from the optomechanical scheme

(Figure 3.4). In this case the LO and the signal have the same power (classical

regime). The power value we choose is 0.6mW (Section 4.2.3).

At first, we need to identify the piezo positions for which the pulses, coming

from the two interferometer arms, actually interfere. We move the piezo

translator trough its entire travel range (250µm), with steps of 50nm and

at each step we digitalize a homodyne photocurrent time-trace containing 4

pulses, of which we measure the integrals in the pulse regions. The mean value

of these integrals is plotted versus the piezo position. The result is shown in

Figure 5.1. This kind of measurement gives interferometric autocorrelation

Figure 5.1: Interferometric autocorrelation figure, configuration without

filters.

[27] between the pulses and it is commonly used to estimate the duration of

ultrashort pulses produced by mode-locked lasers. It should be noted that a

linear interferometric autocorrelation gives insights on the real duration of

the pulse only in the case those are Fourier-transformed-limited and a non

linear technique is necessary otherwise.

We use the interferometric autocorrelation in order to identify the the region

of the piezo range for which the pulses interfere. Once such region is identified,

we move the piezo translator trough a single optical cycle (1µm) with steps of

5nm, in correspondence to the center of the interferometric autocorrelation

(Figure 5.1). In the considered case the piezo scan is done from 67µm to
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68µm.

For each step we digitalize 100 time-traces containing 4 difference pulses. For

each acquired time-trace we read and save the exact piezo position.

Thus, we measure a total of 80000 difference pulses and their related piezo

positions. Each pulse Ai is elaborated and integrated using the procedure

described in Section (4.2.3), in order to obtain the noise value Ni. Such

values are plotted versus the corresponding piezo positions.

The result, that we called homodyne trace, is shown in Figure 5.2. The black

solid curve in the figure is obtained by calculating the average of 400 values

Ni for each step of the piezo. In the homodyne trace each point is associated

Figure 5.2: Homodyne trace, configuration without filters.

to a pair (Ni; pi), where Ni is the single difference pulse noise value and pi
is the related piezo position. These quantities, appositely rescaled in the

quantum regime, will provide a measurement of the signal field quadrature at

a specific phase, that is (xΦ; Φ). The rescaling procedure will be described

in the next chapter.

We use the procedure described also for the configurations in which the filters

F1 and F2 are inserted in the arm of the signal and of the LO respectively.

The piezo position at which we have interference slightly shifts by changing

the filter configuration. The small movement (tents of µm) of the interference

region observed by changing the OD of the filter F1 is due to the slightly

different thickness of reflective filters with different OD.
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5.2 Measurements in quantum regime

After the first homodyne measurement in the classical regime without filters,

we used the configurations in which the filters F1 and F2 are inserted in the

interferometer arms. In these configurations, for signal and LO we intend

the fields transmitted by the filters F1 and F2 respectively (Figure 3.4).

We first achieve a good spatio-temporal overlap (mode-matching) between the

signal field and the LO by carefully adjusting the position of the mirrors and

the lenghts of the two Mach-Zehnder interferometer arms (Figure 3.4), in order

to obtain high visibility interference fringes. Once the visibility is optimized

the signal beam is strongly attenuated by means of calibrated neutral density

filters (F1). The optical path length is correspondingly compensated with

the filter F2. The filter F1 is different for each measurement because we

progressively increases its OD. On the contrary, the filter F2 is the same for

all the measurements (OD = 0.2), because it has the only aim to match the

length of the optical paths in the two interferometer arms (Section 3.2).

Starting from the nominal OD of the filter F1, we can give a rough estimation

of the mean number of photons per pulse in the signal field. The procedure

used is now presented.

• Using the nominal OD of the filter F1, we can calculate the power of

the signal field : Ps = (0.6 · 10−OD)mW . Where 0.6mW is the power

of the signal before going trough the filter F1, measured by means of a

power-meter with 5µW sensitivity.

• We divide Ps by the repetition rate of the laser source (80 MHz) in

order to obtain the mean energy per pulse Epulse.

• Since we know the photon energy of our laser source Ephoton = 1.55 eV

(Section 3.1), the estimated mean number of photons per pulse will be:

nest =
Epulse
Ephoton

≈ 0.3 · 10(8−OD). (5.1)

Using the expression (5.1), we can estimate the order of magnitude of the

mean number of photons per pulse of the signal field, for a generic nominal

OD value.
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We performed a set of homodyne measurements with different OD of the

filter F1.

The obtained homodyne traces are shown in the following figures.

For each trace we specify the OD of the filter F1 and the estimated mean

number of photons per pulse nest.

Figure 5.3: Homodyne trace with F1 OD = 4.2; nest ≈ 1.9 · 103.

Figure 5.4: Homodyne trace with F1 OD = 6; nest ≈ 30.
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Figure 5.5: Homodyne trace with F1 OD = 7; nest ≈ 3.

Figure 5.6: Homodyne trace with F1 OD = 8; nest ≈ 0.3.

The modulation of the homodyne noise with the piezo position is due to

the coherent signal field in input. The amplitude of the signal field obviously

decreases when the OD grows. The modulation is still visible also in the last

two cases, where the estimated number of photons per pulse is of the order

of unity or lower.
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5.2.1 Quadrature measurements of the vacuum state

By closing the signal beam with a beam blocker, we perform a homodyne

measurement of the vacuum state.

The obtained homodyne trace is shown in Figure 5.7.

Figure 5.7: Homodyne trace of the vacuum state (signal blocked).

As before, the trace is composed of 80000 experimental data Ni0 and their

mean value 〈Ni0〉 results approximately zero as one expects.

This vacuum homodyne trace will be used as a reference in the next chapter,

for the rescaling procedure of the homodyne traces.

5.3 Effects of the piezo translator instability

In this section we shell discuss the effect of the the piezo read-out position

instability (Section 4.1.1) on the homodyne traces, in particular on the noise

variance of the homodyne traces.

We know in advance that our signal field is in a coherent state (definition

1.15), because the signal and the LO are generated from the same pulsed

laser source; for this reason the noise variance is expected to be constant as

the piezo position changes, both in the classical and in the quantum regime.

We show a block average of the homodyne trace in the configuration without

filters (Figure 5.8 a); each point is given by the average of a block of 400
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noise values in the homodyne trace (Figure 5.2). The block variance is also

shown (Figure 5.8 b).

(a)

(b)

Figure 5.8: Block average (a) and block variance (b) of the homodyne trace

in Figure 5.2. Configuration without filters. Each block contains 400 data.

It’s immediate to note that the variance is not constant as one expects, but it

shows a sistematic periodicity. The variance is minimum when the derivative

of the homodyne trace is minimum and vice versa.

This effect can be attributed to the instability of the read out piezo position

(Section 4.1.1). Indeed, an error in the read out piezo position contributes

much less to the variance in the regions of minimum derivative then in the

other regions of the homodyne trace. Such effect is observable also for the

traces in the quantum regime. In that case the modulation of the variance

becomes less evident as the OD grows, as one expects.
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Chapter 6

Data analysis

In this chapter the procedure used to analyse the measured homodyne traces

is presented.

In Section 2.1 we showed that the homodyne photocurrent is proportional to

the expectation value of the quadrature x̂Φ, where Φ is the relative optical

phase of the signal and the LO.

In the following data analysis we rescale the homodyne traces in an appropriate

way, so that each point in a trace will be associated to a measurement of the

signal field quadrature. In other words, each point in a rescaled trace will be

given by the pair of measurements (xΦ; Φ).

From a rescaled homodyne trace, we then estimate the expectation value of

the number operator on the signal coherent state and we compare this one

with the mean number of photons per pulse evaluated in the equation (5.1).

In addition to this we will show how the low efficiency of the BHD can be

taken into account.

A series of softwares have been developed, using the programming language

"Mathematica", in order to perform the data analysis calculations.

The whole procedure will now be described in detail.

6.1 Rescaling procedure

The homodyne photocurrent in the time-domain regime is integrated for each

difference pulse. The obtained value Ni, corresponding to a certain piezo
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position pi, is proportional to the a quadrature value xΦ:

Ni = γ′ xΦ. (6.1)

We need to evaluate the proportionality factor γ′ in order to obtain the

quadrature values from the homodyne trace data.

At this point the homodyne trace of the vacuum state (Section 5.2.1) plays a

very important role, since it is used as a reference.

6.1.1 Vacuum analysis

When we block the signal beam in a homodyne measurement, this corresponds

to measure the quadrature values of the vacuum state |0〉.
The quadrature expectation value for the vacuum state is expected to be zero

for all phases:

〈x̂Φ〉|0〉 = Tr[x̂Φ |0〉〈0|] = 〈0|(âe
−iΦ + â†eiΦ)√

2
|0〉 = 0 ∀Φ, (6.2)

while the variance results:

σ2[x̂Φ]|0〉 = 〈x̂2
Φ〉|0〉 − 〈x̂Φ〉2|0〉 = Tr[x̂2

Φ |0〉〈0|] = 〈0| â
†â

2
|0〉 =

1

2
∀Φ. (6.3)

Thus, we can use the experimental data Ni0 of the vacuum homodyne trace

(Figure 5.7) to evaluate the proportionality factor γ′.

Using the equation 6.1 and imposing the condition 6.3 for the variance of the

vacuum state, we obtain:

γ′ =
√

2 〈N2
i0〉, (6.4)

where 〈N2
i0〉 is the variance of the 80000 experimental data in the vacuum

homodyne trace (Figure 5.7).

Now, in order to obtain the rescaled vacuum homodyne trace, we divide all

these data by the calculated factor γ′ (Figure 6.1).

The dotted red lines mark out the root mean square deviation of the rescaled

data :
√
〈N2

i0/γ
′〉 = 1/

√
2.

In the case of the vacuum, it is not possible to establish the exact relation

between the phase Φ and the piezo position because the quadrature is

obviously phase-independent.
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6.1. Rescaling procedure

Figure 6.1: Rescaled homodyne trace of the vacuum state (signal blocked).

6.1.2 Signal analysis

We know in advance that the signal under investigation is in a coherent state

|α〉 with α = |α|eiθ.
The field quadrature expectation value for a coherent state is:

〈x̂Φ〉|α〉 = Tr[x̂Φ |α〉〈α|] = 〈α|(âe
−iΦ + â†eiΦ)√

2
|α〉 =

√
2|α| cos (Φ− θ), (6.5)

where we absorbed θ in Φ.

The quadrature variance results:

σ2[x̂Φ]|α〉 = 〈x̂2
Φ〉|α〉 − 〈x̂Φ〉2|α〉 =

1

2
∀Φ. (6.6)

As mentioned before, in order to rescale each pair of data (Ni; pi) in a

homodyne trace in order to obtain the associated pair (xΦ; Φ).

Once the proportionality factor γ′ has been calculated using the vacuum

trace as reference, we can obtain the value xΦ from the Ni by dividing this

one by γ′; further, we can find the phase value Φ associated to each piezo

position pi, exploiting the periodicity of the trace.

The whole rescaling procedure is now presented considering the homodyne

trace with F1 OD = 8 (Figure 5.6), but it has also been similarly applied to

the other traces.
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• We divide all the experimental data Ni (Figure 5.6) by the factor γ′

(Figure 6.2 a).

• We perform a fit of the rescaled data with the function :

f(p) = f0 +A cos (ω · p+ φ0), (6.7)

taking f0, A, ω and φ0 as free parameters.

• Using the parameters values obtained from the fit, we plot the rescaled

data, subtracted by the offset f0, versus the values θi = ω · pi + φ0,

calculated starting from the measured piezo positions pi (Figure 6.2 b).

The obtained fit curve is also shown in the plot .

• Being ∆ the distance between two consecutive θ values for which the

fit function goes to zero, we define the variable Φ such that Φ = π
∆ · θ.

• Finally we plot the rescaled data versus the values Φi = π
∆ · θi and we

report all the data in the interval Φ ∈ [0, 2π] (Figure 6.2 c). The fit

obtained fit curve is also shown.

In the last trace (Figure 6.2 c) each point is given by a pair of measurements

(xΦ; Φ), with Φ ∈ [0, 2π]. As discussed in Section 1.2.2, from this experimental

data set it is possible to completely characterize the signal field investigated

with the homodyne detection.

6.2 Estimation of 〈n̂〉

The first information one can obtain from the elaborated homodyne data

(Figure 6.2 c) is the mean number of photons in the coherent signal field

under investigation.

We know that the expectation value of the number operator n̂ on a coherent

state |α〉 is:
〈n̂〉 = 〈α|n̂|α〉 = 〈α|â†â|α〉 = |α|2 (6.8)

and corresponds to the mean number of photons per pulse in the coherent

state.

We can estimate 〈n̂〉 = |α|2 from the parameter A, obtained from the fit of
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(a)

(b)

(c)

Figure 6.2: Data analysis procedure, homodyne trace with F1 OD = 8.
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our rescaled data with the function in (6.7). Comparing the equations (6.5)

and (6.7), our estimation of the mean number of photons is the following:

〈n̂〉γ′ =
|A|2

2
. (6.9)

The results for all the homodyne traces are shown in Table (6.1), since

the programming language Mathematica does not provide an error for the

estimation of the fit parameter A, we consider as error in the estimation of

〈n̂〉γ′ the square root of the value. The obtained values are compared with

nest, calculated in the equation (5.1) starting from the power of the signal

transmitted from the filter F1. The estimated 〈n̂〉γ′ for different traces results

F1 OD nest 〈n̂〉γ′

4.5 1.9 · 103 14.6827

6 30 0.281914

7 3 0.042178

8 0.3 0.00996636

Table 6.1:

always about two orders of magnitude lower then nest calculated using the

equation (5.1).

We can attribute this dicrepancy to the performance characteristics of the

homodyne detector. The estimated 〈n̂〉γ′ is a sort of "effective" mean photon

number, which includes all the losses and the inefficiencies of the detection

system [33]. A very important source of inefficiency in our experimental

apparatus is the electronic noise.

In the next section we will show in detail how we can take into account the

effects of the electronic noise in our detector.

6.2.1 Electronic noise treatment

As explained in Section 4.2.3, any non-desiderable ambient noise, dark current

noise from the photodiodes and the intrinsic noise of the amplifier in the

differential photodetector are source of electronic noise (EN ). The effect of

such noise is to add a random quantity to each field quadrature measurement.
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In reference [31], Appel at al. demonstrate that this effect is equivalent to an

optical loss channel with equivalent transmission efficiency:

ηeq = 1− 1

S
, (6.10)

where S is the ratio between shot and electronic noises at the chosen LO power.

In particular, the vacuum state measurement (Section 6.1.1) is distorted by

the EN and consequently the rescaling factor γ′ should be changed.

γ′ is the conversion factor between the measured difference pulses and the

field quadratures (equation 6.1) in presence of the electronic noise.

Following the treatment in the Appel’s paper and considering the equation

(6.4), we obtain the expression:

γ′ =
√

2 〈N2
i0〉 =

γ
√
ηeq

, (6.11)

where γ is the conversion factor in case of absence of electronic noise.

After these considerations, we decided to repeat the data analysis using

the conversion factor γ instead of γ′, in order to estimate the mean number

of photons in the coherent signal field without considering the optical loss

due to the EN presence.

6.2.2 New rescaling procedure

In Section 4.2.3 we analysed the linearity of the shot noise variance of our

detector and we decided to work at 0.6mW LO power.

At this power, the shot-to-electronic noise ratio is S = 1.2 (Figure 4.7). This

means that the EN constitutes a significant contribution to the measured

noise.

From the equation (6.10) we calculate the value of ηeq for our homodyne

detector and then we repeat the whole data analysis using the conversion

factor

γ = γ′ · √ηeq. (6.12)
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Figure 6.3: New rescaled homodyne trace of the vacuum state ( γ conversion

factor ).

The new rescaled vacuum homodyne trace, for the homodyne trace with

OD = 8, is shown in Figure (6.3).

The dotted red lines mark out the root mean square deviation of the new

rescaled data :
√
〈N2

i0/γ〉 = 3.125. As expected, this values is larger then

1/
√

2 = σ[x̂Φ]|0〉 (equation 6.3). This effect is due to the EN contribution to

the homodyne trace.

The new rescaled homodyne trace with OD = 8 is reported in Figure 6.4.

Figure 6.4: New rescaled signal (OD = 8) homodyne trace ( γ conversion

factor ).
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This new procedure allows us to estimate the mean number of photons in

the signal coherent state, corrected from the EN effect:

〈n̂〉γ =
|A′|2

2
· 1

ηeq
(6.13)

where A′ is the new amplitude parameter of the fit.

The analysis is repeated also for the homodyne traces in the other configura-

tions of the filter F1, the results are shown in following table. It is immediate

F1 OD nest 〈n̂〉γ
4.5 1.9 · 103 573.542

6 30 11.015

7 3 1.6488

8 0.3 0.389096

Table 6.2:

to observe that, with this procedure, the mean number of photons obtained

by homodyne detection and calculated using the equation (5.1) now have the

same order of magnitude for all the configurations.

It is also interesting to note that the approach in the reference [31], in treating

the EN as an optical loss, is aimed at describing homodyne detectors with

very high shot-to-electronic noise ratio. We have just shown that such kind

of approach works also for a homodyne detector with low shot-to-electronic

noise ratio.

6.3 Pattern function tomography

The homodyne measurement of the field quadratures (xΦ;φ), with φ ∈ [0, 2π],

provides the complete knowledge of the state under investigation; indeed, the

expectation value of any quantity of interest can be calculated, using the so

called pattern function tomography technique [6].

6.3.1 Basic concepts

Given an arbitrary quantum system, the mean value 〈Ô〉 of a generic system

operator, can be estimated using only the results of the measurements on a
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set of observables {Q̂λ, λ ∈ Λ} called quorum (Section 1.1). This is possible

trough the estimator R[Ô](q;λ), called pattern function, which is a function

of the eigenvalues q of the quorum operators. Integrating the estimator with

the probability p(q, λ) of having outcome q when measuring Q̂λ, the mean

value of Ô is obtained as follows:

〈Ô〉 =

∫
Λ
dλ

∫
dqλ p(q, λ)R[Ô](q;λ), (6.14)

where the first integral is performed on the values of λ that denote all quorum

observables, and the second on the eigenvalues of the quorum observable qλ
determined by the λ variable of the outer integral.

In Optical Homodyne Tomography, the quorum of observables is composed

by the quadrature operators: {x̂Φ, Φ ∈ [0, 2π]}. In this case the equation

(6.14) becomes:

〈Ô〉 =

∫ 2π

0

dΦ

π

∫
R
dx p(x,Φ)R[Ô](x; Φ), (6.15)

where p(x,Φ) is the the probability distribution of the quadrature outcome

at a fixed phase (equation 1.24).

In a homodyne measurement we obtain the following pair of experimental

homodyne data: {(x1; Φ1), (x2; Φ2), ..., (xk; Φk), ..., (xM ; ΦM )}. Assuming

know the pattern function of Ô, the finite sum:

SM =
1

M

M∑
k=1

R[Ô](xk; Φk) (6.16)

gives an approximation of 〈Ô〉 (equation 6.15). The error εM in such approx-

imation can be estimated using the central limit theorem:

εM =

√∑M
k=1[R[Ô](xk; Φk)− SM ]2

M(M − 1)
. (6.17)

6.3.2 Applications

The pattern function of the normally ordered products of mode operators is

expressed as:

R[â†nâm](x; Φ) = e(m−n)Φ Hn+m(
√
ηxΦ)√

(2η)n+m
(
n+m
n

) , (6.18)
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where Hk are the Hermite polynomial of order k. A complete treatment

about the theoretical derivation of the pattern function expression is reported

in [6].

The factor η in the definition (6.18) is the quantum efficiency of the homodyne

detection apparatus. Our homodyne detector has an equivalent quantum

efficiency ηeq ≈ 0.16, due to a high electronic noise contribution. This

corresponds to a shot-to-noise electronic ratio S = 1.2. This value is not

sufficiently high to perform a complete quantum state reconstruction, since

the EN blurs too much the quadrature distribution p(x,Φ) (equation 1.24).

Nevertheless, we show in the following that by means of pattern function

tomography we can evaluate of the mean number of photons in the coherent

signal field under investigation.

From the equation (6.18) with (n = m = 1) we obtain:

R[â†â](xΦ; Φ) = (xΦ)2 − 1

2η
. (6.19)

In order to correct for the EN loss effect, we put η = ηeq. Finally we estimate

the mean photon number as:

〈n̂〉pattern =
1

M

M∑
k=1

R[â†â](xk; Φk)
1

ηeq
. (6.20)

The error on this estimation is calculated using the equation (6.17). The re-

sults for the different homodyne traces are reported in Table 6.3 and compared

with those obtained with the previous method, that is starting from the fit

of the homodyne data. The estimations with the two methods are consistent.

F1 OD 〈n̂〉γ 〈n̂〉pattern
4.5 573.542 557± 2

6 11.015 11.0± 0.2

7 1.6488 1.6± 0.1

8 0.389096 0.6± 0.1

Table 6.3:

In both cases we corrected the loss effect of the electronic noise substituting

the nominal quantum efficiency of our differential detector η = 0.77 with the
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equivalent quantum efficiency ηeq, calculated by the shot-to-electronic noise

ratio S = 1.2 (equation 6.10) following [31].

The equation (6.18) can be used to obtain the pattern functions of the

quadrature operator x̂Φ and of its square x̂2
Φ at the specific phase Φ = ϕ.

Considering the quadrature operator definition (equation 1.21), its pattern

function can be written as:

R[x̂ϕ](x,Φ) =
R[â†0â1](x; Φ)e−iϕ +R[â†1â0](x; Φ)e−iϕ√

2
(6.21)

= 2x cos (ϕ− Φ) (6.22)

At this point we can evaluate the mean value of x̂ϕ using the pattern function

tomography:

〈x̂ϕ〉pattern =
1

M

M∑
k=1

R[x̂ϕ](xk; Φk) ϕ ∈ [0, 2π]. (6.23)

The result, for the filter configuration OD = 8, are shown in Figure 6.5 (red

curve); the blue curve is the fit curve obtained with the previous method.

The result shown in Figure 6.5 confirms the agreement between the pattern

Figure 6.5: Red curve: estimation of the mean value of the quadrature using

the pattern function tomography. Blue curve: fit of the experimental data

obtained in Section (6.2.2). (F1 OD = 8).

function tomography and the fit of the experimental data.

70



6.3. Pattern function tomography

With the same approach used in the equation (6.21), we obtain the patter

function also of the operator x̂2
ϕ:

R[x̂2
ϕ](x,Φ) =

1

2
{1 + (2x2 − 1

η
)[4 cos2 (ϕ− Φ)− 1]} (6.24)

As before, we put η = ηeq and we evaluate the mean value of x̂2
ϕ:

〈x̂2
ϕ〉pattern =

1

M

M∑
k=1

R[x̂2
ϕ](xk; Φk) ϕ ∈ [0, 2π]. (6.25)

The result is used to estimate the quadrature variance as follows:

σ2[x̂ϕ]pattern = 〈x̂2
ϕ〉pattern − (〈x̂ϕ〉pattern)2 ϕ ∈ [0, 2π]. (6.26)

The obtained variance values are shown in Figure 6.6, for the filter configura-

tion OD = 8.

Figure 6.6: Estimation of the quadrature variance using the pattern function

tomography (solid curve). Equivalent quantum efficiency ηeq (F1 OD = 8).

The systematic periodicity of the calculated variance is an effect of the piezo

position instability, treated in Section 5.3. The obtained curve oscillate

around the value 1
2 , which is the expected quadrature variance for a coherent

state (equation 6.6).

If we consider the nominal detector quantum efficiency η = 0, 77 instead of

ηeq in the equation (6.24), then we obtain the variance values shown in Figure
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Figure 6.7: Estimation of the quadrature variance using the pattern function

tomography (solid curve). Nominal quantum efficiency η (F1 OD = 8).

6.7. As expected, the variance results higher than 1
2 , since the electronic

noise adds a random quantity to each field quadrature measurement.
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Appendix A

Density operator formalism

A physical system in Quantum Mechanics is associated to a Hilbert-space H.
In Section 1.1.1 we showed that the state of a generic quantum system is

described by a density matrix ρ̂ acting on H. The density operator formalism

is necessary in order to describe statistical ensembles of quantum systems,

which can’t be associated to a single vector in H.
In order to clarify this concept, we consider an ensemble of particles such

that each of the particles can be in either state |a〉 or |b〉 (but only one of

them). We assume for instance that the classical probability of finding a

particle in the state |a〉 or |b〉 is 50%.

It is evident that this system can’t be described by the state vector |Ψ〉 =
|a〉+|b〉√

2
, which represents a system in a state given by the linear superposition

of |a〉 and |b〉 both with probability 1
2 .

The system in the example is instead in a mixed state, which is correctly

described by the density operator

ρ̂ =
1

2
|a〉 〈a|+ 1

2
|b〉 〈b| . (A.1)

If the particles in the ensemble are all prepared in the same state |a〉, then
the system will be in a pure state described by the projector |a〉〈a|.

We see immediately that the density operator formalism allows the de-

scription of both pure and mixed states. We can easily distinguish between a

pure state and a mixed state using the density operator itself. For a pure
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state,

ρ̂2 = ρ̂ (A.2)

and the trace of the squared density operator is 1,

Tr[ρ̂2] = Tr[ρ̂] = 1. (A.3)

For a mixed state

ρ̂2 6= ρ̂, (A.4)

and

Tr[ρ̂2] < 1. (A.5)

In this sense Tr[ρ̂2] is a measure of the purity of the system. When Tr[ρ̂2] = 1,

the state is pure and can be described by a state-vector.

The complete information of a state is contained in the density operator. If

we can somehow reconstruct the density operator in a representation, we know

everything about the quantum state. For example, in Fock representation,

the density matrix elements are ρnm ≡ 〈n|ρ̂|m〉 [34].
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Coherent states

A single mode of the radiation field is described by the mode operators â and

â†, satisfying the bosonic commutation relation [â, â†] = 1.

A coherent state |α〉 is defined as an eigenstate of the annihilation operator

â with an eigenvalue α ∈ C, i.e.,:

â |α〉 = α |α〉 . (B.1)

It is possible to write a coherent state in terms of photon number eigenstates

|n〉:

|α〉 =

∞∑
n=0

cn |n〉 . (B.2)

The coefficients cn are given from the equations (B.1) and (B.2) as follows:

â |α〉 =
∞∑
n=0

cnâ |n〉 =
∞∑
n=1

cn
√
n |n− 1〉 =

∞∑
n=0

cn+1

√
n+ 1 |n〉 = α |α〉 ;

(B.3)

from the last equality in (B.3) we obtain

cn+1 =
α cn√
n+ 1

(B.4)

and by recursion

cn = c0
αn√
n!
. (B.5)

The coefficient c0 is obtained from the normalization condition 〈α|α〉 = 1,

which, by using (B.2), gives c0 = e−|α|
2/2.
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The final result is:

|α〉 = e−
|α|2

2

∞∑
n=0

αn√
n!
|n〉 , (B.6)

which we showed in section (1.2.1) without proof.

We now prove also the expression (1.16) in which the coherent state is written

as the displacement operator acting on the vacuum state.

Since |n〉 = [(â†n)/
√
n!] |0〉 the equation (B.6) becomes

|α〉 = e−
|α|2

2 eαâ
† |0〉 ; (B.7)

by considering the fact that e(−α∗â) |0〉 = |0〉, the equation (B.7) can be

rewritten as:

|α〉 = D(α) |0〉 , (B.8)

where

D(α) = e−
|α|2

2 e−α
∗âeαâ

†
(B.9)

is a unitary operator, it will be demonstrated it is equivalent to the displace-

ment operator defined in the equation (1.17).

By using the Baker -Hausdorff formula: given A and B any two operators

such that

[[A,B], A] = [[A,B], B] = 0, (B.10)

then

eA+B = e(−[A,B]/2)eAeB. (B.11)

If we impose Â = αâ† and B̂ = −α∗â, it follows that the operator in (B.9)

becomes

D(α) = e(αâ†−α∗â), (B.12)

which is the standard definition of the displacement operator as introduced

in (1.17).

D(α) is a unitary operator, D†(α) = D(−α) = D−1(α), which act as a

displacement on the creation and annihilation operators:

D†(α)âD(α) = â+ α, (B.13)

D†(α)â†D(α) = â† + α∗. (B.14)
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The displacement property (B.13) is now proved by writing

D†(α)âD(α) = e(α∗â−αâ†) â e(αâ†−α∗â), (B.15)

and considering the following identity valid for arbitrary operators A and B:

eAB e−A =
∞∑
k=0

1

k!
[A, [A, ... [︸ ︷︷ ︸

k times

A,B ] ...]]︸ ︷︷ ︸
k times

= A+
[A,B]

1!
+

[A, [A,B]]

2!
+ ...; (B.16)

for A = (α∗â− αâ†), B = â and since [â, â†] = 1, we can easily obtain the

property in (B.13). The displacement property in (B.14) can be proved in a

similar way.

Another important property of the coherent states is that the probability

p(m) of finding m photons in |α〉 is given by a Poisson distribution. Indeed,

from the equation (B.6) the following result is immediate to verify:

p(m) = |〈m|α〉|2 =

∣∣∣∣∣e− |α|22

∞∑
n=0

αn√
n!
〈m|n〉

∣∣∣∣∣
2

=
e−|α|

2 |α|2m

m!
=
e−〈n〉〈n〉m

m!
.

(B.17)

In the last equality we use that the expectation value of the number operator

on a coherent state is 〈n〉 = 〈α|â†â|α〉 = |α|2.
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Appendix C

Homodyne detection formalism

in pulsed regime

Balanced Homodyne Detection in pulsed regime requires a formal generaliza-

tion of its theoretical description (Chapter 2), since the local oscillator and

the signal at the beam splitter are not monochromatic. This issue has been

poorely treted in the literature on the subject. In this appendix we developed

a mathematical formalism that generalizes the theoretical treatment of the

single-mode Balanced Homodyne Detection to the pulsed regime.

As we showed in Section 3.1.1, classically the electric field of a pulsed

laser beam is a mode-locked superposition of amplitudes:

E(t) =

M∑
l=−M

|αl| ei
Φl(t)︷ ︸︸ ︷

(ωl t+ ϕl), (C.1)

where the phases Φl(t) = ωl t+ ϕl contain the mode-locking condition ϕl =

l ϕ0.

In (3.1) we considered for simplicity the same amplitude for each contributing

frequency ωl; here we generalize that expression by setting αl = |αl| eiΦl and.
The number 2M + 1 of contributing frequencies depends on the shape of the

pulse.

As showed in reference [35], pulsed laser light can be treated in a quantized

framework by associating to each monochromatic component a coherent
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state and to the field E(t) the tensor product of the coherent states of each

contributing frequency.

As showed in Appendix B, a monochromatic coherent state for the l mode is:

|αl〉 = D(αl) |0〉 , (C.2)

where D(αl) is the displacement operator defined in (B.12) and |0〉 is the

vacuum state. In this case:

D(αl) = e(αlâ
†
l−α

∗
l âl), (C.3)

with âl and â†l the annihilation and creation operators of a photons of

frequency ωl. The commutation relations in this case are

[âi, â
†
j ] = δij ; (C.4)

finally, the displacement property in (B.13) can be generalized as:

D†(αj)âlD(αj) = D(−αj)âlD(αj) = âl + αl δjl, (C.5)

We can now write the coherent state associated to the laser pulse as:

|ᾱ〉 =
M⊗

l=−M
|αl〉 = exp

(
M∑

l=−M
(αlâ

†
l − α

∗
l âl)

)
|0〉 , (C.6)

where ᾱ is a vector, whose components are the amplitudes αl. We have

regrouped all exponentials into one using [âi, â
†
j ] = 0 for different frequencies

(i 6= j).

The reason for labeling the state by |ᾱ〉 can be easily understood. The state

of one photon of frequency ωl is given by â†l |0〉 = |1l〉. If one photon is in a

non-monochromatic superposition of frequencies ωl with amplitudes αl, we

write the state as |1ᾱ〉 =
∑

l αl |1l〉; it can be expressed as the result of the

action on the vacuum of a new creation operator

Â†(ᾱ) =
∑
l

αl â
†
l , (C.7)

such that

Â†(ᾱ) |0〉 =
∑
l

αl â
†
l |0〉 =

∑
l

αl |1l〉 = |1ᾱ〉 . (C.8)
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In this formalism 〈ᾱ〉 turns out to be the coherent state with amplitudes αl.

Indeed, given

Â(ᾱ) =
∑
l

α∗l âl (C.9)

and using (C.4), one can compute the following generalized commutation

relations:[
Â(ᾱ), Â†(f̄)

]
=
∑
ij

α∗i fj [âi, â
†
j ] =

∑
i

α∗i fi = 〈1ᾱ|1f̄ 〉 . (C.10)

From the substitution of the definitions (C.7) and (C.9) into (C.6), we finally

obtain:

|ᾱ〉 = eÂ
†(ᾱ)−Â(ᾱ) |0〉 . (C.11)

Thus, the quantum state of the pulsed laser is a coherent state associated not

to a single amplitude αl, but to the vector ᾱ of all the amplitudes contributing

to the pulse: in other words, we have a Poissonian distribution not with

respect to the number of photons in a monochromatic wave, but to the

number of photons in the superposition |ᾱ〉.
A last technically useful relation is a generalization of the displacement

property in (C.5). Being

D(f̄) = eÂ
†(f̄)−Â(f̄), |f̄〉 = D(f̄) |0〉 and |1f̄ 〉 =

∑
l

fl |1l〉 ,

(C.12)

using the identity in (B.16) and the generalized commutation relations in

(C.10), we can obtain:

D†(f̄) Â(ᾱ)D(f̄) = D(−f̄) Â(ᾱ)D(f̄) = Â(ᾱ) + 〈1ᾱ|1f̄ 〉 . (C.13)

By means of this new formalism we can describe the state of a pulsed laser

and we can generalize the expectation value of the homodyne photocurrent

(equation 2.9) to the case in which the signal and the Local Oscillator are

pulsed.

If more frequencies ωl are present both in the Local Oscillator and in the

Signal, each one of the corresponding mode operators will be subjected to

the beam splitting transformation (2.4) and the detectors will ideally register

photons of all involved frequencies.
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Therefore, the generalization of the difference photocurrent operator, given

in (2.5), will be:

Î =
∑
l

ĉ†l ĉl − d̂
†
l d̂l =

∑
l

â†l b̂l + b̂†l âl (C.14)

We now consider the Local Oscillator incoming state given by |z̄〉〈z̄|, such
that |z̄〉 = eB̂

†(z̄)−B̂(z̄) |0〉, where the generalized creation and annihilation

operators are:

B̂†(z̄) =
∑
l

zlb̂
†
l , B̂(z̄) =

∑
l

z∗l b̂l. (C.15)

As explained in Section 2.1, there is a fixed phase difference Φ between the

LO and the signal state ρ̂s; it is due to the action of a piezoelectric translator

placed in the LO arm in the Balanced Homodyne Detector. This means that

all the LO modes are subjected to a phase shift:

b̂l → b̂l e
iΦ

b̂†l → b̂†l e
−iΦ.

(C.16)

The homodyne current will be evaluated as:

〈ÎΦ〉 =
∑
l

(
Tr
[
ρ̂s ⊗ |z̄〉〈z̄| (â†l b̂l e

iΦ + b̂†l âl e
−iΦ)

])
=

∑
l

(
Tr
[
ρ̂s ⊗ |z̄〉〈z̄| (â†l b̂l e

iΦ)
]

+ h.c.
)

=
∑
l

(
Tr
[
ρ̂s â

†
l

]
· Tr

[
|z̄〉〈z̄|b̂l eiΦ

]
+ h.c.

)
=

∑
l

(
Tr
[
ρ̂s â

†
l

]
· 〈z̄|b̂l|z̄〉 eiΦ + h.c.

)
. (C.17)

Using the identity in (B.16), we can show the following result:

〈z̄|b̂l|z̄〉 = 〈0|e−B̂†(z̄)+B̂(z̄) b̂l e
B̂†(z̄)−B̂(z̄)|0〉

= 〈0|[−B̂†(z̄), b̂l] |0〉 = zl. (C.18)

In a similar way we can prove that 〈z̄|b̂†l |z̄〉 = z∗l . Thus, the expectation value
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in (C.17) becomes:

〈ÎΦ〉 =
∑
l

(
Tr
[
ρ̂s â

†
l

]
· zl eiΦ + h.c.

)
=

∑
l

(
Tr
[
ρ̂s â

†
l

]
· zl eiΦ + Tr [ρ̂s âl] · z∗l e−iΦ

)
=

∑
l

(
Tr
[
ρ̂s (â†l zl e

iΦ + âl z
∗
l e
−iΦ)

])
= Tr

[
ρ̂s

(
Â†(z̄) eiΦ + Â(z̄) e−iΦ

)]
. (C.19)

In the last equality, we used the definitions in (C.7) and (C.9), which in this

case are Â(z̄) =
∑

l z
∗
l âl and Â

†(z̄) =
∑

l zl â
†
l .

Furthermore, suppose the signal state ρ̂s = |ᾱ〉〈ᾱ| is another non-

monochromatic coherent state, then the result in (C.19) becomes:

〈ÎΦ〉 = 〈ᾱ|Â†(z̄)|ᾱ〉 eiΦ + 〈ᾱ|Â(z̄)|ᾱ〉 e−iΦ = 〈1ᾱ|1z̄〉 eiΦ + 〈1z̄|1ᾱ〉 e−iΦ;

(C.20)

where we used the result in (C.13) to demonstrate that:

〈ᾱ|Â(z̄)|ᾱ〉 = 〈0|D(−ᾱ) Â(z̄)D(ᾱ)|0〉 = 〈1z̄|1ᾱ〉 , (C.21)

and similarly 〈ᾱ|Â†(z̄)|ᾱ〉 = 〈1ᾱ|1z̄〉.

Since in a Balanced Homodyne Detection the signal and the LO come

from the same pulsed laser source, we can consider z̄ = ᾱ, it follows that the

equation in (C.20) becomes: 〈ÎΦ〉 = 2 〈1z̄|1z̄〉 cos Φ.

Comparing these results with the ones obtained in Chapter 2 for the

single-mode case, one realizes that in the pulsed BHD correctly measures the

quadrature x̂Φ = Â†(z̄) eiΦ + Â(z̄) e−iΦ associated with the pulsed field laser

of amplitude |z̄| =
√
〈1z̄|1z̄〉.

For this reason, in the main text of the thesis we have limited the discussion

to the simpler case of a single mode BHD, with the proviso that whenever

quadrature x̂Φ and amplitude |z| are used, they actually refer to the pulsed

ones x̂Φ = Â†(z̄) eiΦ + Â(z̄) e−iΦ and |z̄| =
√
〈1z̄|1z̄〉. In particular, when the

input signal state is the vacuum |0〉, then 〈IΦ〉 = 0, as in the single mode
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case; further, for an attenuated input state |ε z̄〉 (0 < ε < 1), one regains the

results in Section 2.3: 〈ÎΦ〉 = 2 ε |z̄|2 cos Φ.

We have thus generalized the treatment of a monochromatic BHD, to the

case of pulsed input light; it explicitly takes in account the fact that the

state of a pulsed laser is the tensor product of the coherent states of each

contributing frequency. This is of great importance for the future applications

of the realized apparatus to time-resolved spectroscopy experiments.
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Conclusions

Balanced Homodyne Detection (BHD) is one of the most powerful exper-

imental technique in Quantum Optics; through the measurements of the

electromagnetic field quadratures it allows the complete reconstruction of the

optical quantum states (Optical Homodyne Tomography).

In this thesis we described the realization of an experimental apparatus for

the BHD in a pulsed regime. In the first part, a theoretical treatment of

the BHD is presented in detail; in particular, we generalized the standard

theoretical treatment of the BHD in order to describe the pulsed regime.

Afterwards, a description of the experimental apparatus and its performances

is given.

As in standard BHD scheme, the field we want to study, called signal,

interferes at a 50% beam-splitter with a strong coherent reference beam, called

Local Oscillator (LO). The outputs are collected by two photodiodes and

the difference in the produced photocurrents is measured by a commercial

differential photodetector. The measured photocurrents are proportional to

the field quadratures expectation values xΦ, where the phase Φ is varied by

means of a piezo-electric translator. The signal and the LO are generated by

a pulsed laser source with 80 MHz repetition rate.

We characterized the apparatus, both from the point of view of the mechanical

stability and from that of the differential acquisition system. We checked

that the temporal resolution of the detection system is sufficient to provide

independent measurements of each pair of pulses impinging on the differential

photodetector. We measured the shot-to-electronic noise ratio (S = 1.2),

discovering that the electronic noise constitutes a significant contribution
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to the our apparatus noise; the shot noise reflects the statistics of the light

amplitude fluctuations for different phase values, while the effect of the elec-

tronic noise is to blur such statistics.

After the characterization measurements, we used the apparatus to perform

homodyne measurements of pulsed coherent states with different mean num-

ber of photons. In particular, we managed to observe the variation with Φ of

the mean field quadrature of coherent states with a mean number of photon

of the order of unity or less.

We analyse the obtained homodyne data, also taking into account the effects

due to the presence of the electronic noise. In particular, we verify that

the electronic noise treatment in the reference [31] is valid also in our case,

despite the fact that the shot-to-electronic noise ratio is much higher in our

apparatus then in the one described there.

Finally we used the pattern function tomography technique to estimate the

mean values a few observables of the investigated coherent states, such as

the number operator and the quadrature operator itself. In particular, we

verified that the expectation value of the number operator, calculated by the

pattern function tomography, is consistent with an independent estimation

obtained starting from the measurement of the signal beam power.

To the best of our knowledge, the realized experimental apparatus is

the first Balanced Homodyne Detector built with a commercial differential

photodetector. Despite the rather high shot-to-electronic noise ratio, it

performs extremely well, allowing the analysis of signal inputs containing an

average of less then one photon per pulse.

The realization of the apparatus is a very important and promising step

forward in the ongoing project of applying pulsed BHD to time-resolved

spectroscopy experiment.
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Riassunto dettagliato

Questo lavoro di tesi consiste nello studio teorico e nella realizzazione spe-

rimentale di un apparato per la Rivelazione Omodina Bilanciata in regime

impulsato. Questa tecnica, indicata con il termine inglese Balance Homodyne

Detection (BHD), permette di caratterizzare, o meglio “misurare” stati quan-

tistici della luce [11].

In Meccanica Quantistica, la luce, come ogni altro sistema fisico, è descrit-

ta infatti dal suo stato quantistico. Gli esempi più semplici di stati quantistici

della radiazione elettromagnetica a singolo modo, ovvero caratterizzata da

una determinata frequenza e polarizzazione, sono i così detti stati di Fock,

che descrivono un sistema di n fotoni nel modo considerato; i tipici stati

quantistici della luce generata da una sorgente laser ideale sono invece i così

detti stati coerenti.

“Misurare” lo stato quantistico di un generico sistema fisico significa carat-

terizzarlo completamente, ovvero avere su di esso la massima informazione,

che, in Meccanica Quantistica, si traduce nel poter calcolare il valore di

aspettazione di qualsiasi sua osservabile fisica. È stato dimostrato [6] che

da misure ripetute di un certo insieme di osservabili di un sistema fisico è

possibile ricostruire lo stato quantistico del sistema stesso; lo specifico insieme

di osservabili è detto quorum, la procedura di ricostruzione dello stato è detta

tomografia quantistica.

Nel nostro caso, il sistema fisico in esame, di cui vogliamo determinare

lo stato quantistico, è la luce generata da un laser impulsato, attenuata in

modo da avere un bassissimo numero medio di fotoni per impulso, dell’ordine
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dell’unità e inferiore; il quorum di osservabili è costituito dalle quadrature del

campo elettromagnetico, tali osservabili sono combinazioni lineari degli ope-

ratori di posizione e momento associati all’oscillatore armonico che descrive

il modo della radiazione. La BHD ci permette di misurare tali quadrature

e da queste misure di ricostruire lo stato quantistico attraverso tecniche di

tomografia quantistica, nello specifico Optical Homodyne Tomography [19].

Descriviamo ora brevemente la procedura di misura omodina. Il campo

in esame, detto segnale, interferisce su di un beam-splitter con un secondo

campo molto più intenso, detto oscillatore locale, i due campi provengono

dalla stessa sorgente laser impulsata che genera, sfruttando la tecnica del

mode-locking, un treno di impulsi della durata di circa 10−13 secondi. Varian-

do il cammino ottico di uno dei due campi con un traslatore piezoelettrico è

possibile variare la loro differenza di fase Φ. I fasci in uscita dal beam splitter

vengono focalizzati su due fotodiodi e la differenza tra le foto-correnti generate

viene amplificata e misurata. Dal modello teorico è possibile dimostrare che

la misura di questa corrente differenza fornisce una stima della quadratura

del campo in esame. Misure di quadratura per diversi valori della fase Φ

costituiscono la così detta misura omodina da cui si può determinare lo stato

quantistico del segnale. La novità del nostro apparato è che si sono utilizzati

esclusivamente strumenti commerciali per la rivelazione della corrente diffe-

renza.

La tecnica omodina è ampiamente utilizzata per caratterizzare stati

quantistici della radiazione sia in regime continuo che in regime impulsato

[33]. Pochi gruppi al mondo ([22, 23, 24, 25]) però sono riusciti ad utilizzare

questa tecnica per caratterizzare stati quantistici di luce impulsata con il

tasso di ripetizione tipico dei laser a mode-locking: circa 80 MHz. Il regime

impulsato infatti comporta non poche difficoltà sperimentali, poiché oltre

alla stabilità opto-meccanica è necessario un sistema di rivelazione veloce

e a basso rumore elettronico in grado di effettuare misure di quadratura

indipendenti per ogni coppia di impulsi che interferiscono sul bem-splitter.

In questa tesi si è scelto di lavorare in regime mode-locking impulsato,

nella prospettiva futura di utilizzare il rivelatore omodino in esperimenti
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di spettroscopia di materiali nel dominio dei tempi. Riuscire a misurare

infatti lo stato quantistico della radiazione impulsata prima e dopo aver

interagito con un campione di materiale, può in linea di principio fornire

informazioni su stati di eccitazione che possono crearsi nel campione, come ad

esempio stati vibrazionali coerenti. La realizzazione di un rivelatore omodino

impulsato è il punto di partenza di questo nuovo obiettivo di ricerca, nato

dalla collaborazione tra il gruppo teorico del dott. Fabio Benatti e del dott.

Roberto Floreanini presso il Dipartimento di Fisica dell’Università di Trieste

e il gruppo sperimentale T-Rex coordinato dal prof. Fulvio Parmigiani presso

Elettra-Sincrotrone Trieste.

Anche il lavoro di tesi è diviso in una parte teorica ed in una sperimentale.

La parte teorica è così sviluppata:

• si sono delineate le base teoriche di Ottica Quantistica necessarie a

descrivere gli stati quantistici della luce in esame, introducendo il

formalismo degli stati di Fock e degli stati coerenti e si è approfondito

il concetto di tomografia quantistica per un generico sistema fisico, tale

studio è riportato nel Capitolo 1 e nelle Appendici A e B;

• si è studiato il modello teorico standard che descrive la tecnica di rive-

lazione omodina di un singolo modo della radiazione elettromagnetica

(Capitolo 2), calcolando quali sono le condizioni per cui la misura della

corrente differenza in un rivelatore omodino fornisce una stima della

quadratura del campo in esame;

• si è sviluppato un formalismo matematico che permette di generalizzare

il modello standard della rivelazione omodina a singolo modo al caso

del regime impulsato: classicamente il campo elettrico di un impulso di

luce è descritto dalla sovrapposizione di più modi longitudinali della

cavità laser (Sezione 3.1.1), il problema di descrivere lo stato quantistico

di un campo ottico impulsato è invece poco trattato in letteratura, il

formalismo da noi sviluppato permette di descrivere tale tipo di stato

quantistico ottico e quindi di generalizzare il modello della rivelazione

omodina al caso in cui l’oscillatore locale e il segnale sono impulsati;

tale trattazione è presentata in Appendice C.
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La parte sperimentale della tesi riguarda invece l’effettiva realizzazione e

caratterizzazione del rivelatore omodino e la verifica del suo funzionamento

tramite la misura delle quadrature di campi segnale con un numero medio di

fotoni per impulso 〈n〉 ' 1 e inferiore. Bloccando il fascio segnale in ingresso

nel beam-splitter abbiamo effettuato una misura omodina anche per lo stato

di vuoto di Fock. Le fasi del lavoro sperimentale sono le seguenti:

• si è costruito l’apparato considerandolo diviso in tre parti: sorgente

impulsata, set up opto-meccanico e sistema di rivelazione e acquisizione;

si è usata la sorgente impulsata al Ti:Sapphire (Mira seed) presente

nei laboratori T-Rex a Elettra-Sincrotrone, il set up opto-meccanico è

stato assemblato da zero e connesso al sistema di rivelazione composto

da un foto-rivelatore differenziale commerciale collegato ad un oscillo-

scopio digitale e ad un pc; alcuni softwares sono stati sviluppati con il

linguaggio di programmazione Lab-View per gestire e interfacciare il

sistema opto-meccanico e il sistema di rivelazione; la strumentazione

completa è descritta nel Capitolo 3;

• si sono effettuate misure di caratterizzazione dell’apparato per quel che

riguarda sia la stabilità opto-meccanica che il sistema di acquisizione

differenziale in regime impulsato, esse sono presentate nel Capitolo 4;

il principale risultato è che il sistema è in grado di misurare indipen-

dentemente la corrente differenza dovuta a due coppie successive di

impulsi interferenti, ma, nella misura di quadratura del vuoto (campo

segnale bloccato), il rumore risulta per più della metà costituito da

rumore elettronico e solo una piccola parte è rappresentata dal rumore

intrinseco (shot-noise); l’effetto del rumore elettronico è di aggiungere

una quantità random alle varie misure di quadratura, si è tenuto conto

di quest’effetto nell’analisi dati;

• si è poi proceduto ad effettuare le misure omodina vere e proprie per

campi segnale con diversi numeri di fotoni medi per impulso; ciascuna

così detta traccia omodina è costituita da 80000 dati fatti da coppie

corrente differenza-posizione piezo, che in tutti i casi mostrano la tipica

periodicità attesa per uno stato coerente in uscita dal laser impulsato,

le misure sono mostrate nel Capitolo 5;
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• le tracce omodine sono state analizzate in modo da trasformare i dati in

coppie quadratura-fase; a partire da questi dati sperimentali abbiamo

calcolato il valore di aspettazione del numero medio di fotoni per cia-

scuna traccia tramite una particolare tecnica tomografica detta pattern

function tomography [6]; tale valore è stato confrontarlo con una stima

indipendente ottenuta a partire dalla misura della potenza del fascio

segnale; tenendo conto degli effetti dovuti al rumore elettronico [31], le

due stime risultano consistenti; l’analisi dati completa è presentata nel

Capitolo 6.

Concludendo, l’obiettivo della tesi può dirsi raggiunto, in quanto l’apparato

di Balanced Homodyne Detection è stato realizzato e caratterizzato in regime

impulsato utilizzando esclusivamente strumenti commerciali per la rivelazione

differenziale. Si è dimostrato che il rivelatore può misurare tracce omodina

di campi segnale con numero medio di fotoni per impulso 〈n〉 ' 1 e inferiore.

La realizzazione e la caratterizazzione di questo apparato costituiscono un

promettente primo passo per l’utilizzo del metodo di rivelazione omodina

impulstata in esperimenti di spettrocsopia dei materiali nel dominio dei tempi,

obiettivo questo del progetto di ricerca teorico-sperimentale in cui si colloca

la tesi stessa.
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